Discovery of a Magnetic DZ White Dwarf with Zeeman-Split Lines of Heavy Elements

I. Neill Reid
Dept. of Physics & Astronomy
University of Pennsylvania
209 S. 33rd St.
Philadelphia, PA 19104-6396
inr@herschel.physics.upenn.edu

and

James Liebert and Gary D. Schmidt
Steward Observatory
University of Arizona, Tucson AZ 85721
jliebert,gschmidt@as.arizona.edu

ABSTRACT

A spectroscopic survey of unstudied Luyten Half Second proper motion stars has resulted in the discoveries of two new cool magnetic white dwarfs. One (LHS 2273) is a routine DA star, $T_{\text{eff}} = 6,500$ K, with Zeeman-split Hα and Hβ, for which a simple model suggests a polar field strength of 18.5 MG viewed close to equator-on. However, the white dwarf LHS 2534 proves to be the first magnetic DZ showing Zeeman-split Na I and Mg I components, as well as Ca I and Ca II lines for which Zeeman components are blended. The Na I splittings result in a mean surface field strength estimate of 1.92 MG. Apart from the magnetic field, LHS 2534 is one of the most heavily-blanketed and coolest DZ white dwarfs at $T_{\text{eff}} \sim 6,000$ K.

Subject headings: stars: magnetic fields — stars: white dwarfs

1 Portions of the data presented here were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.
1. Introduction

Magnetic white dwarfs comprise \sim5% of all white dwarfs and have surface field strengths in the range $\sim 3 \times 10^4$ to 10^9 gauss (G). The 65 isolated (non-interacting binary) cases known at the time of the review of Wickramasinghe & Ferrario (2000) cover most of the white dwarf spectral types (eg. DA, DB, DQ, DC), but have up to now not included any DZ stars which show lines of heavy elements like Ca, Mg, Na and Fe. This has restricted their use as astrophysical laboratories of the effects of strong magnetic fields on the light elements hydrogen, helium and molecular carbon. The subject of this paper is the discovery of the first magnetic DZ object, identified in the course of routine spectral classification of cool stars from the Luyten Half Second (1979, LHS) proper motion catalog. We present in §2 the spectrum of this object, LHS 2534 (WD 1221-023, using the notation of McCook & Sion 1999), along with that of a second new magnetic star from the same catalog, LHS 2273 (WD 1026+114). While the latter DA star has many close cousins among known magnetic examples, LHS 2534 offers the first empirical data in an astrophysical setting of the Zeeman effect on neutral Na, Mg, and both ionized and neutral Ca.

2. The LHS 2534 Spectrum

The spectra of the two new magnetic white dwarfs were obtained on 8 February 1998 using the Low Resolution Imaging Spectrograph (LRIS, Oke et al. 1994) at the 10m W. M. Keck Observatory (Keck-II) on Mauna Kea, Hawaii. These observations were made as part of a service observing request. The 300 g/mm grating blazed at 5000 Å was used with a one arc second slit to obtain spectra of 6Å resolution covering 3800 – 7600 Å. Single 900-second exposures of each star were obtained. The magnetic DZ spectrum is shown in Figure 1, while the cool magnetic DA star is presented in Figure 2.

In addition to being magnetic, LHS 2534 is one of the most heavily-blanketed of the known cool DZ white dwarfs. The temperature is evidently not too different from that of the Sun, as the strongest features – Ca II 3933, 3968 Å, Ca I 4226 Å, Mg I 5175 Å, and Na I 5892AA – are also among the strongest in the optical spectrum of the Sun. Hydrogen, especially Hα, is not detected, so one may conclude the star has a helium-dominated atmosphere, like most DZ stars.

Monochromatic magnitudes for many cool white dwarfs were measured using the Palomar Multichannel Spectrophotometer colors and published by Oke (1974) and Greenstein (1976); the colors b(4255 Å), g(4717 Å), v(5405 Å), r(6944 Å) and i(8000 Å) overlap the wavelength range of these spectra. Synthetic colors from the pure helium
atmosphere models of Bergeron, Wesemael, & Beauchamp (1995) may be compared. The v-i slope is probably least affected by metallic absorption. The measured value of +0.24 from our spectrum compares with +0.266 for a 6,000 K log g=8 atmosphere, and +0.152 at 6,500 K. From this we may conclude that LHS 2534 has a T_{eff} near 6,000 K. The star is clearly warmer than the heavily-blanketed LP 701-29 (Dahn et al. 1978) for which Kapranidis & Liebert (1986) estimated $T_{\text{eff}} = 4,500$ K. The v-i measurement of Greenstein (1984) suggests $\sim 4,800$ K from the pure-helium models. Both g-r and especially b-v are substantially redder than the pure-He models predict. Likewise, LHS 2534 is cooler than the heavily-blanketed DZ star G 165-7, for which Wehrse & Liebert (1980) estimated 7,500 K and the v-i color (Greenstein 1984) suggests 7,100 K. Perhaps the most similar of the well known DZ stars is van Maanen 2, at g-r = +0.26 and v-i = +0.13. Bergeron, Ruiz & Leggett (1997) estimate 6,770 K from fitting a multi-color energy distribution of this star.

2.1. The Sodium Triplet and the Magnetic Field Strength

The Zeeman effect on neutral sodium is a classic problem (Zeeman 1897) that is encountered here for the first time in regard to white dwarfs. Thus, we briefly summarize the situation. Sodium is isoelectronic with hydrogen, so magnetic effects involve only the single valence electron. The D$_1$ ($\lambda 5895.9$) and D$_2$ ($\lambda 5890.0$) lines comprise a resonance doublet that couples the $^2S_{1/2}$ term with $^2P_{1/2}$ and $^2P_{3/2}$, respectively. The feature is also seen in G 165-7 (Hintzen & Strittmatter 1974, Wehrse & Liebert 1980), where the doublet splitting cannot be resolved due to pressure broadening.

In a weak magnetic field ($B \lesssim 10^5$ G), the $J = 1/2$ levels are each split into 2 sublevels, and the $J = 3/2$ level splits into 5 according to M_J, and the magnitude of the splitting is computed according to LS coupling. Ten distinct components result. This is the regime normally encountered in solar observations (e.g., Beckers 1969; Caccin, Gomez, & Severino 1993). The spin and orbit decouple when the splitting due to the external magnetic field overwhelms that due to the fine-structure effect. In Figure 1, the Na I feature appears as a strong triplet at $\lambda\lambda 5862, 5892,$ and 5924. The observed splitting is not only considerably larger than the 6 Å fine-structure effect, but the pattern is centered near the mean wavelength of the nonmagnetic doublet. Hence, we conclude that the Paschen-Back approximation is appropriate and we analyze the feature as an ordinary linear Zeeman triplet with an insignificant quadratic component. The displacements of the σ components are then $\Delta(1/\lambda) = +87$ cm$^{-1}$ and -92 cm$^{-1}$ for $\lambda 5862$ and $\lambda 5924$, respectively. (It is customary in atomic spectroscopy to use wavenumber units.) From the linear Zeeman
effect, the mean surface field (cf. Garstang 1977) is computed according to

\[B(G) = \frac{\Delta(1/\lambda)(\text{cm}^{-1})}{4.6686 \times 10^{-5}} \]

(1)

which yields an average value for the two components of \(B = 1.92 \times 10^6 \text{ G} = 1.92 \text{ MG} \).

There are, in fact, direct laboratory measurements of the Na I D lines which overlap this field strength and corroborate the accuracy of the linear approximation. Garn et al. (1966) reported splittings between the \(\sigma \) components that from 30 Å for a longitudinal field of 0.94 MG up to 163 Å at 5.1 MG.

Our measurement of 1.92 MG is the mean surface field strength. Detailed modeling of the line profile, preferably supported with spectropolarimetric observations, is necessary to draw conclusions about the field geometry. A dipolar geometry is usually an adequate approximation, though the pattern is often offset significantly from the center of the star. Time-dependent observations might determine if the star rotates, and allow the modeling of periodic changes in the geometric view. Both \(\sigma \) components and, to a lesser extent, the \(\pi \) component should be circularly polarized, while linear polarization and polarization of the continuum should be small.

2.2. Magnesium and Calcium

The subordinate Mg I triplet connects levels \(^3S_1 \) with \(^3P_{0,1,2} \) for \(\lambda\lambda 5167.3, 5172.7, 5183.6 \), respectively. In LHS 2534 the region shows 4 principal components at wavelengths of \(\sim 5149 \text{ Å}, 5180 \text{ Å}, 5205 \text{ Å}, \) and 5235 Å. Modeling each component of the parent triplet as a simple Zeeman triplet in a field of \(B = 1.92 \text{ MG} \) indeed produces a complex with only 4 lines due to overlapping of some of the 9 components. The short-wavelength edge matches that of the data, but the splitting between lines is somewhat less than observed and thus the feature does not extend sufficiently far to the red. We take this as evidence that the linear Zeeman approximation has broken down for this ion, where the fine-structure effect is comparable to the magnetic interaction. We are aware of no computations of the behavior of Mg I in this intermediate regime.

The Ca II ion is isoelectronic with Na I, but has spin-orbit splitting which even exceeds that of the Mg I features and results in the well-known “H” (3933 Å) and “K” (3968 Å) doublet components being well-resolved even at low spectral resolution in zero field. Since the linear magnetic term in the Hamiltonian is thus comparable to the spin-orbit term, the splitting at such a low field is more complicated still. Calculations have been published by Kemic (1975). At a field strength of 1.9 MG, the 10 Zeeman components of the doublet...
group themselves into 3 features centered around λλ3925, 3954, 3987, and comprised primarily of transitions from upper levels $^2P_{3/2} \Delta M = -1$, $^2P_{3/2} \Delta M = 0$, and $^2P_{1/2} \Delta M = 0$. These are heavily blended for the observed line widths, and together result in the broad depression centered near 3957 Å. Strong absorption features due to Fe I and many other heavy elements are prominent in the spectra of late type stars shortward of 4000 Å, and may also contribute in LHS 2534. Finally, the strong neutral calcium resonance line at 4226 Å shows a complex structure, and any magnetic components are severely blended.

3. LHS 2273

The spectral energy distribution shows that this is a relatively cool DA star. The monochromatic Oke-Greenstein colors may be used as described in the previous section, except that v-i matches the hydrogen model at T_{eff} 6,000 K while g-r fits the 6,500 K model. The g flux may be depressed by the Hβ σ$^+$ feature, which would imply an even higher T_{eff} is appropriate. We adopt 6,500 K for the present calculations, but photometry at infrared and optical wavelengths would result in an improved estimate. At this temperature and correspondingly high atmospheric densities, it is expected that the higher Balmer lines are quenched (cf. Bergeron et al. 1997). Making due allowance for the signal-to-noise of our data at shorter wavelengths, the observed spectrum is consistent with this interpretation. Under such circumstances, Zeeman-split components of Hβ and Hα are the only features cleanly detected.

The Hα line is the better-measured line and more sensitive to the magnetic field. We apply the straightforward geometrical model of Latter, Schmidt & Green (1987), assuming a centered dipolar field geometry parameterized by the polar field strength B_p and the inclination angle to dipole axis θ. An arbitrary line strength is adopted since the technique does not perform a true atmosphere calculation with radiative transfer. Instead, the star is simply divided up into a dense grid of points and the Zeeman spectrum is integrated over the observable disk, weighting by the local surface area and oscillator strength. The approach gives reliable field strength estimates, but is not competitive with modern polarized radiative transfer calculations in deriving magnetic field structures. For these low-field calculations, atomic data from Kemic (1974) were used.

Best agreement with the observed Hα triplet profile in LHS 2273 is achieved with $B_p = 18.5$ MG viewed from near equator-on ($\theta = 90^\circ$). From inspection of a range of models, this estimate is probably good to ±1 MG. A complete stellar atmospheres calculation might better probe the field structure, but reliable information on field geometry is best gained from time-resolved spectroscopy and spectropolarimetry covering a full spin period.
Though only a small fraction of all white dwarfs show surface magnetic fields, nearly 20% of the more than 5 dozen magnetic examples show field strengths in the 10^{-30} MG range (e.g., Wickramasinghe & Ferrario 2000).

INR would like to thank Fred Chaffee for undertaking the Keck service observations. We are grateful to D.T. Wickramasinghe for helpful discussions. JL acknowledges the hospitality of the Institute for Theoretical Physics, U.C. Santa Barbara, at which part of this work was completed. The ITP is supported in part by the National Science Foundation grant PHY 94-07194. GDS thanks the Australian National University for hospitality and support during a sabbatical leave. Support for the study of magnetic stars and stellar systems at Steward Observatory is also provided by the NSF through grant AST 97-30792 to GDS.

REFERENCES

Kemic, S.B. 1974, JILA Rep. 113
Luyten, W.J. 1979, *The LHS Catalog*, (Univ. of Minnesota Press: Minneapolis)
Oke, J.B., Cohen, J.G., Carr, M., Cromer, J., Dingizian, A., Harris, F.H., Labreque, S.,

This preprint was prepared with the AAS \LaTeX{} macros v4.0.
Fig. 1.— The Keck II / LRIS spectrum of LHS 2534 showing strong Ca II, Ca I, Mg I and Na I lines. The clear Zeeman splitting of the latter two features is examined in the inset.
Fig. 2.— The spectrum of LHS 2273: Quenching in cool DA dwarfs results in only the lowest-level Balmer lines being detected. The inset compares the observed Hα profile and a dipole model for a polar field strength of $B_p = 18.5$ MG viewed equator-on.