Factorization in Color-Favored B-Meson Decays to Charm

Zumin Luo 2 and Jonathan L. Rosner 3

Enrico Fermi Institute and Department of Physics
University of Chicago, 5640 S. Ellis Avenue, Chicago, IL 60637

Improved B meson decay data have permitted more incisive tests of factorization predictions. A concurrent benefit is the ability to constrain the Cabibbo-Kobayashi-Maskawa matrix element $|V_{cb}|$. Using a simultaneous fit to differential distributions $d\Gamma(B^0 \rightarrow D^{(*)}l^-\bar{\nu}_l)/dq^2$ and the rates for the color-favored decays $B^0 \rightarrow D^{(*)}(\pi^-, \rho^-, a^1_-)$, we find $|V_{cb}| = 0.0415 \pm 0.0022$. The slope of the universal Isgur-Wise form factor is described by a parameter found to be $\rho^2 = 1.52 \pm 0.11$. Taking the D_s meson decay constant from the world average of direct measurements, we predict satisfactorily the branching ratios for $B^0 \rightarrow D^{(*)}D^{(*)s-}$. Ratios of helicity amplitudes for color-favored processes are also found to be in accord with predictions.

1Enrico Fermi Institute preprint EFI 01-02, hep-ph/0101089. Submitted to Physical Review D.
2zuminluo@midway.uchicago.edu
3rosner@hep.uchicago.edu
I Introduction

Semileptonic weak hadron decays provide useful information on form factors of the weak current. The lepton pair can then be replaced with a hadron, permitting the calculation of nonleptonic decays. Although this hadron can re-interact with the rest of the system, the effects of this re-interaction sometimes can be neglected or evaluated. In such cases one is employing the factorization hypothesis. An early version of this hypothesis [1] was recently justified for certain decays of hadrons containing heavy quarks [2].

In the present paper we update and test some factorization predictions first made a number of years ago [3]. We compare values of the Cabibbo-Kobayashi-Maskawa matrix element $|V_{cb}|$ and form factor shapes obtained from (1) the differential distribution $d\Gamma(\bar{B}^0 \to D^{(*)}+l^-\bar{\nu}_l)/dq^2$ [4, 5, 6, 7, 8, 9] and (2) the color-favored two-body nonleptonic decays $\bar{B}^0 \to D^{(*)}+(\pi^-, \rho^-, a_1^-)$. We find that consistency between nonleptonic and semileptonic determinations is at least as good as that among the semileptonic determinations themselves.

Using a combined fit to semileptonic and nonleptonic decays and the measured value of the D_s meson decay constant f_{D_s}, we then predict the rates for $\bar{B}^0 \to D^{(*)}+D_s^{(*)}$ and find that they are in accord with experiment. We thus find that factorization holds not only in color-favored cases in which the current produces a light meson, where it has been justified [2], but also when the current produces a heavy meson, where no such justification has been presented. The importance of such processes has recently been stressed by Lipkin [10]. We also find that new experimental ratios of helicity amplitudes for color-favored processes agree with predictions. We shall ignore small non-factorizable contributions to color-favored \bar{B}^0 decays as discussed, for example, in Ref. [11].

In Section II we review factorization predictions for the decays $\bar{B}^0 \to W^{*-}D^{(*)}$, where the virtual W^{*-} produces either a lepton pair $l^-\bar{\nu}_l$ or a hadron π^-, ρ^-, a_1^-, D_s^-, or D_s^{*-}. These processes are purely color-favored. We do not consider the corresponding B^- decays, for which the nonleptonic processes receive both color-favored and color-suppressed contributions. We then (Section III) discuss the differential distributions $d\Gamma(\bar{B}^0 \to D^{(*)}+l^-\bar{\nu}_l)/dq^2$ and the information they can provide regarding the values of $|V_{cb}|$ and the form factor slope at the normalization point. Results of fits to \bar{B}^0 two-body decays to charmed final states are presented and compared with those from semileptonic decays in Section IV. We discuss the predictions of the factorization hypothesis for decays in which the weak current produces a $D_s^{(*)}$ in Section V and for ratios of helicity amplitudes in Section VI. Section VII concludes. An Appendix summarizes parameters of error ellipses used in combining data.

II Notation and predictions

We review notation which is described in more detail in Ref. [3]. We consider processes in which a semileptonic \bar{B}^0 decay of the form shown in Fig. 1(a) can be related to
Figure 1: Feynman diagrams for B_0^0 decay illustrating the factorization hypothesis. A semileptonic decay (a) is related to a hadronic decay (b) by the replacement of the lepton pair of 4-momentum q with a $q\bar{q}'$ pair of effective mass q^2.

the corresponding decay with the lepton pair replaced by a quark pair, illustrated in Fig. 1(b). The matrix element for production of a pseudoscalar meson $P(q)$ of 4-momentum q from the vacuum by the axial vector current is

$$\langle P(q)|A_\mu|0\rangle = i f_P q_\mu \ ,$$

while that for production of a vector meson by the vector current is

$$\langle V(q)|V_\mu|0\rangle = \epsilon^*_\mu M_V f_V \ ,$$

and that for production of an axial vector meson by the axial vector current is

$$\langle A(q)|A_\mu|0\rangle = \epsilon^*_\mu M_A f_A \ .$$

The form factors for the $B^0(v) \to D^{(*)}(v')$ transitions are described in the heavy-quark limit by one universal function of the Lorentz-invariant variable $w \equiv v \cdot v'$, where v and v' are invariant four-velocities: $v \equiv p_B/m_B$, $v' \equiv p_{D^{(*)}}/m_{D^{(*)}}$. We take $c = 1$ and note that $q = p - p'$. Another expression for w is then

$$w = \frac{p_B \cdot p_{D^{(*)}}}{m_B m_{D^{(*)}}} = \frac{m_B^2 + m_{D^{(*)}}^2 - q^2}{2 m_B m_{D^{(*)}}} \ .$$

[A variable $(v - v')^2 = 2(1 - w)$ was called w in Ref. [3].] If ϵ denotes the polarization vector of the final D^*, we may write [1]

$$\langle D(v')|V_\mu|B(v)\rangle = \sqrt{m_D m_B} F_V(w)(v + v')_\mu \ ,$$

$$\langle D^*(v',\epsilon)|A_\mu|B(v)\rangle = \sqrt{m_D m_B} F_A(w)\epsilon^*_\mu(1 + v \cdot v') - \epsilon^* \cdot v v'_\mu \ ,$$

$$\langle D^*(v',\epsilon)|V_\mu|B(v)\rangle = -i \sqrt{m_D m_B} F_V(w)\epsilon_{\mu\alpha\beta}\epsilon^* v^\alpha v'^\beta \ .$$

We take $m_B = 5.28$ GeV and $m_D = m_{D^+} = 2.01$ GeV or $m_{D^+} = 1.87$ GeV depending on the final-state charmed meson. The maximum momentum transfer occurs when
the recoiling \(D^{(*)} \) is at rest in the \(B \) rest frame, so \(q_{\text{max}}^2 = (m_B - m_{D^{(*)}})^2 \) and hence \(w \geq 1 \). Another useful relation is

\[
y \equiv \frac{q^2}{m_B^2} = 1 - 2w\sqrt{\Delta} + \zeta^{(*)} , \quad \zeta^{(*)} \equiv \frac{m_{D^{(*)}}^2}{m_B^2} . \tag{8}
\]

The differential decay width as a function of \(w \) for \(\bar{B}^0 \to D^{(*)+}\ell^-\bar{\nu}_\ell \) can then be written as

\[
d\Gamma \over dw = \frac{G_F^2}{48\pi^3}|V_{cb}|^2 m_B^2 m_{D^{(*)}}^2 \sqrt{w^2 - 1} f^{(*)}(w)|F_{V,A}(w)|^2 , \tag{9}
\]

where for \(B \to Dl\bar{\nu}_l \)

\[
f(w) = (w^2 - 1)(1 + \sqrt{\Delta})^2 ,
\]

for \(B \to D_{\ell}^\star l\bar{\nu}_l \)

\[
f_{\ell}^*(w) = 4wy(w+1) ,
\]

and for \(B \to D_{\ell}^\star l\bar{\nu}_l \)

\[
f_{\ell}^*(w) = (1 - \sqrt{\Delta})^2(w+1)^2 .
\]

We shall take the form factors \(F_{V,A}(w) \) to be parametrized as in Ref. [12]. The form factor \(F_V(w) \) governing the process \(\bar{B}^0 \to D^+l^-\bar{\nu}_l \) can be expressed as

\[
F_V(w) = F_V(1) \times \left[1 - 8\rho_{F_V}^2 z + (51\rho_{F_V}^2 - 10) z^2 - (252\rho_{F_V}^2 - 84) z^3 \right] , \tag{10}
\]

where \(z \equiv (\sqrt{w+1} - \sqrt{2})/(\sqrt{w+1} + \sqrt{2}) \) (the corresponding variable for elastic \(B \to B \) transitions, a natural one for discussing analyticity in dispersion relations, was introduced in [13]), while the form factor \(F_A(w) \) governing \(B \to D^* l\bar{\nu}_l \) is related to the axial-vector form factor \(A_1(w) \) by

\[
\left[1 + \frac{4w}{w+1} \frac{1 - 2w\sqrt{\Delta} + \zeta^{*}}{(1 - \sqrt{\Delta})^2} \right] |F_A(w)|^2 = \left\{ \frac{2}{(1 - \sqrt{\Delta})^2} \left[1 + \frac{w-1}{w+1} R_1(w)^2 \right] + \left[1 + \frac{w-1}{1 - \sqrt{\Delta}} (1 - R_2(w)) \right] \right\} |A_1(w)|^2 . \tag{11}
\]

\(A_1(w) \) can similarly be parametrized as

\[
A_1(w) = A_1(1) \times \left[1 - 8\rho_{A_1}^2 z + (53\rho_{A_1}^2 - 15) z^2 - (231\rho_{A_1}^2 - 91) z^3 \right] . \tag{12}
\]

These forms are motivated by dispersion relations [12, 13, 14]. \(R_1(w) \) and \(R_2(w) \) are given by

\[
\begin{align*}
R_1(w) &= R_1(1) - 0.12(w-1) + 0.05(w-1)^2 , \\
R_2(w) &= R_2(1) + 0.11(w-1) - 0.06(w-1)^2 .
\end{align*} \tag{13}
\]

In this paper we use the CLEO experimental results for \(R_1(1) \) and \(R_2(1) \) [4]:

\[
\begin{align*}
R_1(1) &= 1.18 \pm 0.30 \pm 0.12 , \tag{14} \\
R_2(1) &= 0.71 \pm 0.22 \pm 0.07 . \tag{15}
\end{align*}
\]
As we know, $\rho_{F_V}^2$ and $\rho_{A_1}^2$ are the slope parameters for the form factors $F_V(w)$ and $A_1(w)$ at zero recoil, respectively. The difference between $\rho_{A_1}^2$ and $\rho_{F_A}^2$, the slope parameter for $F_A(w)$ at $w = 1$, is predicted to be $\rho_{F_A}^2 - \rho_{A_1}^2 = 0.21$ [12]. Recall that $\rho_{F_V}^2$ and $\rho_{F_A}^2$ are actually the same in the single pole model. To make a connection between $F_{V,A}(w)$ and the single pole form factor [3]:

$$F_{V,A}(w) = F_{V,A}(1)/[1 - 2(1 - w)/w_0(V,A)],$$ \hspace{1cm} (16)

we assume $\rho_{F_V}^2 = \rho_{A_1}^2 = 0.21$. From now on we will simplify $\rho_{A_1}^2$ as ρ^2. This parameter describes the slope of the Isgur-Wise [15] form factor at the zero-recoil point: $\rho^2 = [dF_{A_1}(w)/dw]_{w=1}$ (see, e.g., [16]).

At $w = 1$, the vector and axial vector form factors are expected to behave as

$$F_V(1) = \eta_V(1 + \delta_{1/m_b}), \quad F_A(1) = \eta_A(1 + \delta_{1/m_b^2}).$$

Here $\eta_V = 1.022 \pm 0.004$ and $\eta_A = 0.960 \pm 0.007$ are QCD corrections [17]. The terms δ_{1/m_b} and δ_{1/m_b^2} are non-perturbative in origin, and correspond physically to the excitation of states other than D and D^*. Lacking a reliable method for estimating the term δ_{1/m_b} in $F_V(1)$ [18], we set it equal to zero. The absence of a δ_{1/m_b} term in $F_A(1)$ is the subject of Luke’s theorem [19]. We take $\delta_{1/m_b^2} = -0.05 \pm 0.035$ [20, 21], with the product $F_A(1) = 0.913 \pm 0.042$ as used in Ref. [4]. Eq. (9) can then be integrated with respect to w to yield predicted decay rates as functions of the two parameters ρ^2 and $|V_{cb}|$.

The decay widths of some nonleptonic modes may be obtained under the assumption of factorization. For simplicity we assume all $\bar{B}^0 \to D^+ M^-$ transitions to involve $F_V(w_M)$ and all $\bar{B}^0 \to D^{*+} M^-$ transitions to involve $F_A(w_M^*)$, where

$$w_M \equiv (m_B^2 + m_D^2 - m_M^2)/(2m_B m_D), \quad w_M^* \equiv (m_B^2 + m_D^* - m_M^2)/(2m_B m_{D^*})$$ \hspace{1cm} (17)

We then find

$$\Gamma(\bar{B}^0 \to D^+ \pi^-) = \frac{G_F^2}{32\pi}|V_{cb}|^2|V_{ud}|^2m_B^2f_\pi^2|a_1|^2|F_V(w_\pi)|^2(1 - \sqrt{\zeta})^2$$

$$\times \lambda^{1/2}(1, \zeta, \zeta_\pi) \frac{[(1 + \sqrt{\zeta})^2 - \zeta_\pi]^2}{4\sqrt{\zeta}}$$ \hspace{1cm} (18)

$$\Gamma(\bar{B}^0 \to D^{*+} \pi^-) = \frac{G_F^2}{32\pi}|V_{cb}|^2|V_{ud}|^2m_B^2f_\pi^2|a_1|^2|F_A(w_\pi^*)|^2(1 + \sqrt{\zeta'})^2$$

$$\times \lambda^{1/2}(1, \zeta', \zeta_\pi) \frac{\lambda(1, \zeta', \zeta_\rho)}{4\sqrt{\zeta'}}$$ \hspace{1cm} (19)

$$\Gamma(\bar{B}^0 \to D^+ \rho^-) = \frac{G_F^2}{32\pi}|V_{cb}|^2|V_{ud}|^2m_B^2f_\rho^2|a_1|^2|F_V(w_\rho)|^2(1 + \sqrt{\zeta})^2$$

$$\times \lambda^{1/2}(1, \zeta, \zeta_\rho) \frac{\lambda(1, \zeta, \zeta_\rho)}{4\sqrt{\zeta}}$$ \hspace{1cm} (20)

$$\Gamma(\bar{B}^0 \to D^{*+} \rho^-) = \frac{G_F^2}{32\pi}|V_{cb}|^2|V_{ud}|^2m_B^2f_\rho^2|a_1|^2|F_A(w_\rho^*)|^2N(\zeta', \zeta_\rho)$$

$$\times \lambda^{1/2}(1, \zeta', \zeta_\rho) \frac{(1 + \sqrt{\zeta'})^2 - \zeta_\rho}{4\sqrt{\zeta'}}$$ \hspace{1cm} (21)

$$\Gamma(\bar{B}^0 \to D^+ a_1^-) = \frac{G_F^2}{32\pi}|V_{cb}|^2|V_{ud}|^2m_B^2f_{a_1}^2|a_1|^2|F_V(w_{a_1})|^2(1 + \sqrt{\zeta})^2$$

$$\times \lambda^{1/2}(1, \zeta, \zeta_{a_1}) \frac{\lambda(1, \zeta, \zeta_{a_1})}{4\sqrt{\zeta_{a_1}}}$$ \hspace{1cm} (22)
allowing (as in the fit to semileptonic spectra) for variation of w_a.

We fit rates for nonleptonic two-body decays [Eqs. (18–23)] to experimental averages, allowing (as in the fit to semileptonic spectra) for variation of $|V_{cb}|$ and ρ^2. We use the averages of Ref. [22] except for modes for which new values have been presented.
Figure 2: Error ellipses corresponding to $\Delta \chi^2 = 1$ for fits to $B^0 \rightarrow D^{*+} l^- \bar{\nu}_l$ spectra. Dot-dashed lines correspond to fits to individual experiments, not including theoretical error in $F_A(1)$. Fit to combined semileptonic data without (with) error in $F_A(1)$ is shown by the dashed (solid) ellipse. The errors we quote on each variable in Table I correspond to $\pm 1\sigma$ extremes in which the other variable is also permitted to vary. The plotted points (+ for individual experiments, × for combined data) correspond to χ^2 minima.
Table I: Values of $|V_{cb}|$ and ρ^2 obtained from fits to individual spectra in $\bar{B}^0 \to D^{(*)} l^- \bar{\nu}_l$ decays.

| Experiment | $|V_{cb}|$ | ρ^2 |
|---------------|----------------------|---------|
| CLEO [4] | 0.0461 ± 0.0036 | 1.58 ± 0.27 |
| ALEPH [5] | 0.0361 ± 0.0029 | 0.74 ± 0.50 |
| DELPHI [6] | 0.0378 ± 0.0031 | 1.22 ± 0.41 |
| OPAL [7] | 0.0414 ± 0.0023 | 1.44 ± 0.32 |
| Combined (a) | 0.0399 ± 0.0023 | 1.27 ± 0.26 |

(a) Errors include common theoretical error on $F_A(1)$.

Table II: Branching ratios for \bar{B}^0 decays averaged for our fits, in units of 10^{-3}.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Value</th>
<th>Value</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D^{\ast+} \pi^-$</td>
<td>2.76 ± 0.21 [22]</td>
<td>2.9 ± 0.3 ± 0.3 [23]</td>
<td>2.79 ± 0.19</td>
</tr>
<tr>
<td>$D^{\ast+} \rho^-$</td>
<td>6.8 ± 3.4 [22]</td>
<td>11.2 ± 1.1 ± 2.5 [23]</td>
<td>9.5 ± 2.1</td>
</tr>
<tr>
<td>$D^{\ast} l^- \bar{\nu}_l$</td>
<td>11.0 ± 1.8 ± 1.0 ± 2.8 [24]</td>
<td>7.1 ± 2.4 ± 2.5 ± 1.8 [25]</td>
<td>10.0 ± 3.1</td>
</tr>
<tr>
<td>$D^{\ast+} D^{\ast-} l^- \bar{\nu}_l$</td>
<td>18.2 ± 3.7 ± 2.4 ± 4.6 [24]</td>
<td>25.4 ± 3.8 ± 5.3 ± 6.4 [25]</td>
<td>20.5 ± 6.3</td>
</tr>
</tbody>
</table>

These are summarized and averaged in Table II. For the decays involving $D^{(*)}_s$ (to be discussed in the next Section) the last errors in the second and third columns of Table II refer to a common systematic error in D_s branching ratios, which are based on $\mathcal{B}(D^{(*)}_s \to \phi \pi^+) = (3.6 \pm 0.9)\%$, and are combined accordingly. In our fits we use $|V_{ud}| = 0.974$, $\tau_B = 1.548$ ps, and $f_\pi = 131$ MeV. f_ρ and f_{a_1} are determined to be 209 MeV and 229 MeV [2], respectively, from the branching ratios for $\tau \to \rho \nu$ and $\tau \to a_1 \nu$.

The fit to two-body nonleptonic decays alone gives rise to a different correlation between $|V_{cb}|$ and ρ^2 than that to the $\bar{B}^0 \to D^{(*)} l^- \bar{\nu}_l$ spectra, since the decay rates are dominated by low q^2 and hence high w. Contours of $\Delta \chi^2 = 1$ (1σ) for nonleptonic decays are shown along with the $\Delta \chi^2 = 1$ contours for $\bar{B}^0 \to D^{(*)} l^- \bar{\nu}_l$ spectra in Fig. 3. Also shown are the $\Delta \chi^2 = 1$ contours for the combined fit without and with common theoretical errors. We find $|V_{cb}| = 0.0415 ± 0.0022$ and $\rho^2 = 1.52 ± 0.11$. The results are summarized in Table III. The error on $|V_{cb}|$ is dominated by the theoretical uncertainty on the form factors at $w = 1$, which we take to have the same fractional value ($0.042/0.913$) for vector and axial form factors.

The fitted branching ratios are compared with experimental data in Table IV. We also show the predictions of a recent investigation based on a more detailed application of the factorization hypothesis [2]. The quality of the fit is acceptable except for a slight excess in the predicted branching ratio for $\bar{B}^0 \to D^{\ast+} \pi^-$. It is interesting to compare the form factors based on Eqs. (10) and (11) with the simple pole model (16) [3], where $m_B w_{0(V,A)}$ has the interpretation of the mass
Figure 3: Right-hand pair of dash-dotted curves: Contours of $\Delta \chi^2 = 1 \ (1\sigma)$ for fit to nonleptonic two-body decays $\bar{B}^0 \rightarrow D^{(*)+}(\pi^-, \rho^-, a_1^-)$. Upper dash-dotted ellipse: Contour of $\Delta \chi^2 = 1 \ (1\sigma)$ for fit to $\bar{B}^0 \rightarrow D^+ l^- \bar{\nu}_l$ spectrum. Lower dash-dotted ellipse: Combined fit to semileptonic $\bar{B}^0 \rightarrow D^{*+} l^- \bar{\nu}_l$ decays. All these fits are performed assuming $F_A(1) = 0.913$ and $F_V(1) = 1.022$. Contour of $\Delta \chi^2 = 1 \ (1\sigma)$ for fit to combined semileptonic and nonleptonic data without (with) common theoretical error in form factor normalization is shown by the dashed (solid) ellipse. χ^2 minima are indicated by + for nonleptonic and $\bar{B}^0 \rightarrow D^{(*)+} l^- \bar{\nu}_l$ decays and by \times for combination of all data.
Table III: Values of $|V_{cb}|$ and ρ^2 obtained from fits to nonleptonic two-body $B^0 \to D^{(*)}(\pi^-, \rho^-, a^-_1)$ decays and $B^0 \to D^{(*)} l^- \bar{\nu}_l$ decays.

| Decays | $|V_{cb}|$ | ρ^2 |
|--|---------------------|--------------|
| Nonleptonic | 0.0450 (a) | 1.69 (a) |
| $B^0 \to D^{(*)} l^- \bar{\nu}_l$ spectra | 0.0399 ± 0.0023 | 1.27 ± 0.26 |
| $B^0 \to D^{(*)} l^- \bar{\nu}_l$ spectrum | 0.0459$^{+0.0053}_{-0.0044}$ (a) | 1.33$^{+0.21}_{-0.25}$ (a) |
| Combined (b) | 0.0415 ± 0.0022 | 1.52 ± 0.11 |

(a) Large correlated errors; see Fig. 3.
(b) Errors include common theoretical error of $\delta F_A(1)/F_A(1) = 4.6\%$.

Table IV: Branching ratios in units of 10^{-3}: comparison between data and predictions.

<table>
<thead>
<tr>
<th>Decay mode</th>
<th>Data</th>
<th>Ref. [2] (a)</th>
<th>Our fit</th>
<th>χ^2 contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B^0 \to D^+ \pi^-$</td>
<td>3.0 ± 0.4</td>
<td>3.27</td>
<td>3.19</td>
<td>0.22</td>
</tr>
<tr>
<td>$B^0 \to D^{*+} \pi^-$</td>
<td>2.79 ± 0.19</td>
<td>3.05</td>
<td>3.10</td>
<td>2.70</td>
</tr>
<tr>
<td>$B^0 \to D^+ \rho^-$</td>
<td>7.9 ± 1.4</td>
<td>7.64</td>
<td>7.92</td>
<td>0.00</td>
</tr>
<tr>
<td>$B^0 \to D^{*+} \rho^-$</td>
<td>9.5 ± 2.1</td>
<td>7.59</td>
<td>8.78</td>
<td>0.12</td>
</tr>
<tr>
<td>$B^0 \to D^+ a^-_1$</td>
<td>6.0 ± 3.3</td>
<td>7.76</td>
<td>9.10</td>
<td>0.88</td>
</tr>
<tr>
<td>$B^0 \to D^{*+} a^-_1$</td>
<td>13.0 ± 2.7</td>
<td>8.53</td>
<td>12.2</td>
<td>0.09</td>
</tr>
</tbody>
</table>

(a) For preferred values of form factors and $|a_1| = 1.05$.

of a pole in the weak $b \to c$ (V,A) current. The axial form factor for $\rho^2_{A_1} = 1.52$ is compared with a pole model with $w_{0A} = 1.17$ in Fig. 4. Also shown are CLEO [4] and DELPHI [6] data points. The pole-model form factor is almost indistinguishable from that [12] motivated by dispersion relations. The value $w_{0A} = 1.12 \pm 0.17$, found in Ref. [3], is consistent with the present determination $w_{0A} = 1.17 \pm 0.08$.

The vector form factor (10) is characterized by a slope parameter $\rho^2_{F_V} = \rho^2_{A_1} - 0.21$ [12] and hence $\rho^2_{F_V} = 1.31$. It is compared to a pole form factor with $w_{0V} = 1.14$ and to the CLEO data [9] in Fig. 5. Thus, a nearly universal pole position characterizes the vector and axial form factors, as in Ref. [3]. The CLEO data lie slightly above the predicted form factor but have the same w dependence, as one can also see in Fig. 3. It should be recalled that, in contrast to the case of the axial-vector form factor, theoretical estimates of the $O(1/m_b)$ correction to the vector form factor are lacking [18]. The normalization of the CLEO data may reflect our ignorance of this correction.
Figure 4: Form factors (11) (solid curve) for $\rho_{A_1}^2 = 1.52$ and pole-model (16) (dashed curve) for $w_{0A} = 1.17$. Data points are from CLEO (crosses) and DELPHI (diamonds).
Figure 5: Form factors (10) (solid curve) for $\rho_{F_{\nu}}^2 = 1.31$ and pole-model (16) (dashed curve) for $w_{0_{\nu}} = 1.14$ compared with CLEO data (plotted points).
Table V: Comparison of predictions for branching ratios (in units of 10^{-3}) involving \(D_s^{(*)} \) production by the weak current in \(B^0 \) decays.

<table>
<thead>
<tr>
<th>Decay mode</th>
<th>Data</th>
<th>Prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D^+D_s^-)</td>
<td>8.0 ± 3.0</td>
<td>14.9 ± 4.1</td>
</tr>
<tr>
<td>(D^+D_s^-)</td>
<td>10.0 ± 3.1</td>
<td>8.6 ± 2.4</td>
</tr>
<tr>
<td>(D^+D_s^-)</td>
<td>10.0 ± 5.0</td>
<td>10.0 ± 2.8</td>
</tr>
<tr>
<td>(D^+D_s^-)</td>
<td>20.5 ± 6.3</td>
<td>24.0 ± 6.7</td>
</tr>
</tbody>
</table>

V \(D_s^{(*)} \) production by the weak current

When the \(q\bar{q}' \) meson in Fig. 1(b) is a \(D_s^- \) or \(D_s^{*-} \), Eqs. (18–23) can be used for the respective predictions for \(\Gamma(\bar{B}^0 \to D^+D_s^-) \), \(\Gamma(\bar{B}^0 \to D^{*+}D_s^-) \), \(\Gamma(\bar{B}^0 \to D^{*+}D_s^-) \), and \(\Gamma(\bar{B}_s^0 \to D^{*+}D_s^-) \) by replacing \(f_\pi \to f_{D_s}, f_\rho \to f_{D_s^*}, \zeta_\pi \to \zeta_{D_s} \equiv m_{D_s}^2/m_B^2, \zeta_\rho \to \zeta_{D_s^*} \equiv m_{D_s^*}^2/m_B^2 \), and other corresponding substitutions of kinematic variables \(w \) and \(N \). We shall assume \(f_{D_s} = f_{D_s} = 270 ± 16 ± 34 \) MeV based on an experimental average of rates for \(D_s \to \mu \nu \) and \(D_s \to \tau \nu \) [26]; the latter error is the common systematic error associated with a 25% uncertainty in the branching ratio for \(D_s^+ \to \phi \pi^+ \). (For comparison, the value of 259 ± 74 MeV was found in Ref. [3] by utilizing the observed branching ratios of processes in which the weak current produced a \(D_s \) or \(D_s^{*} \).

We then predict the branching ratios for \(D_s^{(*)} \) production by the weak current shown in Table V. Experimental values are from Ref. [22] (\(D^+D_s^{(*)-} \)) or Table II (\(D^{*+}D_s^{(*)-} \)). The predictions have an overall 25% uncertainty associated with all \(D_s \) branching ratios. They are as well obeyed as those for the light mesons.

An additional prediction involving heavy meson production by the weak current [3] is that \(B(\bar{B}^0 \to D^{*+}D_s^-)/B(\bar{B}^0 \to D^{*+}D_s^-) = 0.13(f_D/f_{D_s})^2 \simeq 0.09 \), where \(f_D \) and \(f_{D_s} \) are the decay constants for the nonstrange and strange \(D \) mesons. The experimental value for this ratio [27] is 0.06^{+0.04}_{-0.03}.

VI Ratios of helicity amplitudes

The decays of spinless particles to two vector mesons are describable [28] by amplitudes \(A_0 \) (longitudinal polarization), \(A_\parallel \) (linear parallel polarization) and \(A_\perp \) (linear perpendicular polarization), normalized such that \(|A_0|^2 + |A_\parallel|^2 + |A_\perp|^2 = 1 \). Factorization predicts \((|A_0|^2, |A_\parallel|^2, |A_\perp|^2) = (88, 10, 2)\% \) for \(\bar{B}^0 \to D^{*+}D_s^- \) and \((55, 39.6)\% \) for \(\bar{B}^0 \to D^{*+}\rho^- \). Experimental values are only quoted for \(|A_0|^2 \): (87.8 ± 3.4 ± 3.0)\% for \(\bar{B}^0 \to D^{*+}D_s^- \) [27] and \((50.6 ± 13.9 ± 3.6)\% \) for \(\bar{B}^0 \to D^{*+}\rho^- \) [29]. These agree with the predictions, as does the intermediate case of \(\rho'(1418) \) production [30].
VII Conclusions

New data on B meson decays have improved the precision of tests of some early factorization predictions [3], and yield a value $|V_{cb}| = 0.0415 \pm 0.0022$ when CLEO and LEP data on $B^0 \to D^{(*)+}l^- \bar{\nu}_l$ spectra are combined with two-body nonleptonic decays $B^0 \to D^{(*)+}(\pi^-, \rho^-, a_1^-)$. The slope of the universal Isgur-Wise form factor at the normalization point $w = 1$ is found to be described by the parameter $\rho^2 = 1.52 \pm 0.11$. These values are only slightly different from those based on $B^0 \to D^{(*)+}l^- \bar{\nu}_l$ spectra alone, indicating that factorization for color-favored decays and universality of $B \to D^{(*)}$ form factors are reasonable approximations. Consistency between nonleptonic and semileptonic determinations is at least as good as that among the semileptonic processes themselves. Our neglect of $O(1/m_b)$ corrections to the vector form factor may underestimate the rate for $B^0 \to D^{(*)+}l^- \bar{\nu}_l$ slightly.

Satisfactory rates for processes involving $D^{(*)}_{s}$ production by the weak current are obtained when the world average of direct measurements for $f_{D_{s}}$ is used, and when it is assumed that $f_{D_{s}^{(*)}} = f_{D_{s}}$. Ratios of helicity amplitudes for color-favored processes are also found to be in accord with predictions.

Acknowledgments

We thank Elisabetta Barberio, Karl Ecklund, Roger Forty, Richard Hawkings, Jon Thaler, and Alan Weinstein for discussions. This work was supported in part by the United States Department of Energy through Grant No. DE FG02 90ER40560, and in part by the U. S. – Israel Binational Science Foundation through Grant No. 98-00237.

Appendix: Parametrization of error ellipses

In order to combine results of fits to semileptonic decays in the absence of the ALEPH and DELPHI raw spectra, we have parametrized their fits in terms of error ellipses corresponding to $\Delta \chi^2 = 1$, and generated corresponding ellipses for our own fits to CLEO and DELPHI data. The equations describing these ellipses are given below. Also shown are the contributions to $\Delta \chi^2$ for each set of $B^0 \to D^{(*)+}l^- \bar{\nu}_l$ data when $x \equiv \rho^2$ and $y \equiv |V_{cb}|$ are taken to equal their values $x = 1.52$ and $y = 0.0415$ in the global fit. The corresponding $\Delta \chi^2$ value is 4.02 for the sum of the nonleptonic modes listed in Table IV, which, when combined with the $\Delta \chi^2$ values for the semileptonic spectra, leads to a total of $\Delta \chi^2 = 23.2$ for the fit to five semileptonic spectra and six nonleptonic decay rates. The largest source of this $\Delta \chi^2$ (10.3) is the higher overall scale of the $B^0 \to D^{(*)+}l^- \bar{\nu}_l$ spectrum measured by CLEO, with some contribution also from the disparity between the CLEO and ALEPH fits. In comparison with these disagreements among purely semileptonic processes, the fits to nonleptonic decays do not fare badly at all.
CLEO:

$$41.8814(x - x_c)^2 - 5174.3(x - x_c)(y - y_c) + 238793(y - y_c)^2 = 1;$$

$$x_c = 1.58; \quad y_c = 0.0461; \quad \Delta \chi^2 = 3.78;$$

ALEPH:

$$9.6816(x - x_a)^2 - 2554.0(x - x_a)(y - y_a) + 287560(y - y_a)^2 = 1;$$

$$x_a = 0.74; \quad y_a = 0.0361; \quad \Delta \chi^2 = 3.52;$$

OPAL:

$$19.4601(x - x_o)^2 - 3771.3(x - x_o)(y - y_o) + 379980(y - y_o)^2 = 1;$$

$$x_o = 1.44; \quad y_o = 0.0414; \quad \Delta \chi^2 = 0.10;$$

DELPHI:

$$14.1777(x - x_d)^2 - 2856.4(x - x_d)(y - y_d) + 246120(y - y_d)^2 = 1;$$

$$x_d = 1.22; \quad y_d = 0.0378; \quad \Delta \chi^2 = 1.47;$$

CLEO+ALEPH+OPAL+DELPHI (without common theoretical normalization error; divide all coefficients by 2.850 for ellipse with this error):

$$85.2008(x - \bar{x})^2 - 14356(x - \bar{x})(y - \bar{y}) + 1152453(y - \bar{y})^2 = 1;$$

$$\bar{x} = 1.27; \quad \bar{y} = 0.0399;$$

CLEO+ALEPH+OPAL+DELPHI+DECAYS (without common theoretical normalization error; divide all coefficients by 3.514 for ellipse with this error):

$$1059.7(x - \tilde{x})^2 - 86781(x - \tilde{x})(y - \tilde{y}) + 2524400(y - \tilde{y})^2 = 1;$$

$$\tilde{x} = 1.52; \quad \tilde{y} = 0.0415;$$

References

[23] BaBar Collaboration, B. Aubert et al., BaBar report BaBar-CONF-00/06, hep-ex/0008051, submitted to the Osaka Conf. [4].

[30] CLEO Collaboration, M. Artuso et al., CLEO report CLEO CONF 00-01, ICHEP00-78, hep-ex/0006018, presented at Osaka Conf. [4].