Recently BCP Progress in Taiwan

Hsiang-Nan Li

Department of Physics, National Cheng-Kung University, Tainan, Taiwan 701,
Republic of China

Physics Division, National Center for Theoretical Sciences, Hsinchu, Taiwan 300,
Republic of China

I review theoretical progresses on B physics and CP violation which were made
in Taiwan recently. I concentrate on the approaches to exclusive B meson decays
based on factorization assumption, SU(3) symmetry, perturbative QCD factoriza-
tion theorem, QCD factorization, and light-front QCD formalism.

1 Introduction

The collaboration on B physics and CP violation (BCP) is one of the most
active groups in Taiwan. In this talk I will briefly review theoretical progresses
on BCP, which were made in Taiwan recently. For experimental review, please
refer to Dr. Wang’s talk in this workshop. I will concentrate on five approaches
to exclusive B meson decays based on factorization assumption (FA), SU(3)
symmetry, perturbative QCD (PQCD) factorization theorem, QCD factoriza-
tion (QCDF), and light-front QCD (LFQCD) formalism. Abundant results of
exclusive B meson decays have been produced and important dynamics has
been explored.

The effective Hamiltonian for b quark decays, for example, the b → s
transition, is given by

\[H_{\text{eff}} = \frac{G_F}{\sqrt{2}} \sum_{q=u,c} V_q \left[C_1(\mu)O_1^{(1)}(\mu) + C_2(\mu)O_2^{(1)}(\mu) + \sum_{i=3}^{10} C_i(\mu)O_i(\mu) \right], \]

with the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements \(V_q = V_{qs}V_{qb} \). Using the unitarity condition, the CKM matrix elements for the penguin
operators \(O_3-O_{10} \) can also be expressed as \(V_u + V_c = -V_t \). The definitions of
the operators \(O_i \) are referred to\(^1\).

According to the Wolfenstein parametrization, the CKM matrix upto
\(\mathcal{O}(\lambda^3) \) is written as

\[
\begin{pmatrix}
V_{ud} & V_{us} & V_{ub} \\
V_{cd} & V_{cs} & V_{cb} \\
V_{td} & V_{ts} & V_{tb}
\end{pmatrix}
= \begin{pmatrix}
1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\
-\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\
A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1
\end{pmatrix},
\]

(2)
with the parameters $\lambda = 0.2196 \pm 0.0023$, $A = 0.819 \pm 0.035$, and $R_0 \equiv \sqrt{\rho^2 + \eta^2} = 0.41 \pm 0.07$. The unitarity angle ϕ_3 is defined via
\[V_{ub} = |V_{ub}| \exp(i\phi_3) \, . \] (3)

One of the important missions of B factories is to determine the angles ϕ_1, ϕ_2 and ϕ_3. The angle ϕ_1 can be extracted from the CP asymmetry in the $B \to J/\psi K_S$ decays, which arises from the B-\bar{B} mixing. Due to similar mechanism of CP asymmetry, the decays $B^0 \to \pi^+\pi^-$ are appropriate for the extraction of the angle ϕ_2. However, these modes contain penguin contributions such that the extraction suffers large uncertainty. It has been proposed that the angle ϕ_3 can be determined from the decays $B \to K\pi$, $\pi\pi^3$. Contributions to these modes involve interference between penguin and tree amplitudes, and their analyses rely heavily on theoretical formulations.

2 Factorization Assumption

The conventional approach to exclusive nonleptonic B meson decays is based on FA, in which nonfactorizable and annihilation contributions are neglected and final-state-interaction (FSI) effects are assumed to be absent. Factorizable contributions are expressed as products of Wilson coefficients and hadronic form factors, which are then parametrized by models. With these approximations, the FA approach is simple and provides qualitative estimation of various decay branching ratios.

To extract the angle ϕ_3, we consider the ratios R and R_π defined by
\[R = \frac{\text{Br}(B^0_d \to K^{\pm}\pi^\mp)}{\text{Br}(B^\pm \to K^{0}\pi^{\mp})}, \quad R_\pi = \frac{\text{Br}(B^0_d \to K^{\pm}\pi^\mp)}{\text{Br}(B^0 \to \pi^{\pm}\pi^{\mp})}, \] (4)
where $\text{Br}(B^0_d \to K^{\pm}\pi^\mp)$ represents the CP average of the branching ratios $\text{Br}(B^0_d \to K^{+}\pi^-)$ and $\text{Br}(B^0_d \to K^{-}\pi^+)$, and the definition of $\text{Br}(B^\pm \to K^{0}\pi^{\mp})$ is similar. It has been shown that the data $R \sim 1$ imply $\phi_3 \sim 90^\circ$.8

To explain the data of $R_\pi \sim 4$, a large angle $\phi_3 \sim 130^\circ$ must be postulated.8 It is easy to observe from Eqs. (2) and (3) that the products of the CKM matrix elements $V_{us}^* V_{ub}$ and $V_{td}^* V_{tb}$ have the same weak phase, and that the real parts of $V_{us}^* V_{ub}$ and $V_{td}^* V_{tb}$ are opposite in sign. That is, the tree-penguin interference in the decays $B \to K\pi$ and $B \to \pi\pi$ is anti-correlated. A $\phi_3 > 90^\circ$ then leads to constructive interference between the tree and penguin contributions in $B \to K\pi$, and a large R_π. The determination $\phi_3 \sim 114^\circ$ from the global fit to charmless B meson decays, located between the two extreme cases 90° and 130°, is then understood. On the other hand, a large $B \to \rho$ form factor $A_0^{B\rho} \sim 0.48$ has been extracted, which
accounts for the large $B \to \rho\pi$ branching ratios. In the modified FA approach with an effective number of colors N_e, a large unitarity angle $\phi_3 \sim 105^\circ$ is also concluded.9

The above ϕ_3, located in the second quadrant, contradict the extraction from other measurements, such as B_s-mixing. The best fit to experimental data of semileptonic B meson decays, B-\bar{B} mixing, and ϵ_K indicates that ϕ_3 is located in the first quadrant. An improvement of FA has been considered, in which possible strong phases produced via FSI are introduced as arbitrary parameters. Performing the best fit to data, a large ϕ_3 is still required and strong phases are found to be large, which generate significant CP asymmetries in $K\pi$ and $\pi\pi$ modes.

3 SU(3) Symmetry

The model-dependent determination of the angle ϕ_3 from FA seems not to be satisfactory. A more model-independent approach based on SU(3) symmetry has been proposed, in which the light quarks u, d and s form a SU(3) triplet, while the heavy quarks c, b, and t form SU(3) singlets. According to the above assumption, the B mesons B_u, B_d, and B_s form a SU(3) triplet at the hadronic level. Pseudo-scalar mesons P and vector mesons V also possess definite SU(3) structures,

$$M_j^i = \begin{pmatrix} \frac{\pi^0}{\sqrt{2}} - \frac{\pi^-}{\sqrt{3}} + \frac{\pi^+}{\sqrt{6}} & \frac{\pi^-}{\sqrt{2}} - \frac{\pi^0}{\sqrt{3}} + \frac{\pi^+}{\sqrt{6}} & K^- \\ K^+ & K^0 & -\frac{2\pi^0}{\sqrt{6}} + \frac{\pi^+}{\sqrt{6}} \end{pmatrix}, \tag{5}$$

$$V_j^i = \begin{pmatrix} \frac{\rho^+}{\sqrt{2}} + \frac{\rho^-}{\sqrt{2}} & \frac{\rho^-}{\sqrt{2}} - \frac{\rho^+}{\sqrt{2}} & K_{*0}^- \\ K_{*0}^+ & K_{*0}^0 & \phi \end{pmatrix}. \tag{6}$$

Similarly, the four-fermion operators in the weak Hamiltonian can be decomposed into operators with definite SU(3) structures. For example, the penguin operators O_{3-6} are labelled as 3 states,

$$q\bar{b}(\bar{u}u + \bar{d}d + \bar{s}s) \leftrightarrow 3, \tag{7}$$

since $q\bar{b}$ forms a triplet 3 and $\bar{u}u + \bar{d}d + \bar{s}s$ froms a singlet. The operators $O_{1,2}$ are written as

$$q\bar{u}b \leftrightarrow 3 \times 3 \times 3 \times 3 = 3 + \bar{3} + 6 + 15. \tag{8}$$

Following Eqs. (7) and (8), the effective Hamiltonian in Eq. (1) is decomposed into operators carrying different SU(3) structures, such as $H(3)$, $H(6)$ and
Employing the above results, we formulate various decay amplitudes of the tree and annihilation topologies for $B \to PP$ modes. For example, the parameter C_3 associated with the contraction $B_iM^i_kM^k_jH(3)^j$ represents a tree amplitude. The parameter A_3 associated with the contraction $B_iH(3)^jM^k_iM^j_k$ represents an annihilation amplitude. Collecting all expressions for the branching ratios and the CP asymmetries of the $B \to \pi\pi$, $K\pi$ and KK modes, there are totally 13 free parameters. This number is too big for a global analysis of currently available data. As an approximation, annihilation contributions are neglected. 8 parameters, the absolute values of C_T^3, C_P^6, C_T^6 and C_T^{15}, the phases δ_T^6, δ_P^6, and δ_T^{15}, and the CKM phase ϕ_3, are then left, where T (P) denotes the tree operators $O_{1,2}$ (the penguin operators O_{3-10}).

The best fit to data gives

$$
\phi_3 = 70^\circ, \quad \rho = 0.17, \quad \eta = 0.37, \\
C_T^3 = 0.28, \quad C_P^6 = 0.14, \quad C_T^6 = 0.33, \quad C_T^{15} = 0.14, \\
\delta_T^6 = 12^\circ, \quad \delta_P^6 = 6^\circ, \quad \delta_T^{15} = 74^\circ.
$$

If the $SU(3)$ symmetry breaking effect from $f_K/f_\pi \neq 1$ is taken into account, f_K (f_π) being the kaon (pion) decay constant, the results are shifted only a bit. Hence, there is no indication that ϕ_3 should be located in the second quadrant. Certainly, the allowed range of the above parameters is still large.

4 Perturbative QCD

It has been shown that the decay amplitudes and strong phases discussed in the previous sections can be evaluated in the PQCD framework, and that it is possible to extract ϕ_3 from the $B \to K\pi$ data12. According to PQCD factorization theorem, a B meson decay amplitude is expressed as convolution of a hard b quark decay amplitude with meson wave functions. A meson wave function, absorbing nonperturbative dynamics of a QCD process, is not calculable, while a hard amplitude is.

In perturbation theory nonperturbative dynamics is reflected by infrared divergences in radiative corrections. It has been proved to all orders that these infrared divergences can be separated and absorbed into meson wave functions13. A formal definition of wave functions as matrix elements of nonlocal operators has been constructed, which, if evaluated perturbatively, reproduces the infrared divergences. The gauge invariance of the above factorization has been proved in14. A meson wave function must be determined by
nonperturbative means, such as lattice gauge theory and QCD sum rules, or extracted from experimental data. A salient feature of PQCD factorization theorem is the universality of nonperturbative wave functions. Because of universality, a B meson wave function extracted from some decay modes can be employed to make predictions for other modes. This is the reason PQCD factorization theorem possesses a predictive power.

In the practical calculation small parton transverse momenta k_T are included15, which are essential for smearing the end-point singularities from small momentum fractions12. Because of the inclusion of k_T, double logarithms $\ln^2(Pb)$ are generated from the overlap of collinear and soft enhancements in radiative corrections to meson wave functions, where P denotes the dominant light-cone component of a meson momentum and b is a variable conjugate to k_T. The resummation of these double logarithms leads to a Sudakov form factor $\exp[-s(P;b)]$16,17, which suppresses the long-distance contributions in the large b region, and vanishes as $b = 1/\Lambda$, $\Lambda \equiv \Lambda_{\text{QCD}}$ being the QCD scale. This suppression guarantees the applicability of PQCD to exclusive decays around the energy scale of the b quark mass18.

The hard amplitude contains all possible Feynman diagrams19,20, such as factorizable diagrams, where hard gluons attach the valence quarks in the same meson, and nonfactorizable diagrams, where hard gluons attach the valence quarks in different mesons. The annihilation topology is also included, and classified into factorizable or nonfactorizable one. Therefore, FA for two-body B meson decays is not necessary. It has been shown that factorizable annihilation contributions are in fact important, and give large strong phases in PQCD12.

We emphasize that the hard amplitude is characterized by the virtuality of internal particles, $t \sim \sqrt{\Lambda M_B} \sim 1.5$ GeV, $\Lambda \equiv M_B - m_b$. The RG evolution of the Wilson coefficients $C_{4,6}(t)$ dramatically increase as $t < M_B/2$, such that penguin contributions are enhanced12,21. With this penguin enhancement, the observed branching ratios of the $B \to K\pi$ and $B \to \pi\pi$ decays can be explained in PQCD using a smaller angle $\phi_3 = 90^\circ$. That is, the data of R_π do not demand large ϕ_3. Such a dynamical enhancement of penguin contributions does not exist in the FA approach.

Our predictions for the branching ratio of each $K\pi$ mode corresponding to $\phi_3 = 90^\circ$12,

\begin{align*}
 \text{Br}(B^+ \to K^0\pi^+) & = 21.72 \times 10^{-6}, & \text{Br}(B^- \to \bar{K}^0\pi^-) & = 21.25 \times 10^{-6}, \\
 \text{Br}(B_d^+ \to K^+\pi^-) & = 24.19 \times 10^{-6}, & \text{Br}(B_d^0 \to K^-\pi^+) & = 16.84 \times 10^{-6}, \\
 \text{Br}(B^+ \to K^+\pi^0) & = 14.44 \times 10^{-6}, & \text{Br}(B^- \to \bar{K}^-\pi^0) & = 10.65 \times 10^{-6}, \\
 \text{Br}(B_d^0 \to K^0\pi^0) & = 11.23 \times 10^{-6}, & \text{Br}(\bar{B}_d^0 \to \bar{K}^0\pi^0) & = 11.84 \times 10^{-6},
\end{align*}

(10)

101145: submitted to World Scientific on February 1, 2001
are consistent with the CLEO data,

\[
\begin{align*}
\text{Br}(B^\pm \to K^0\pi^\pm) &= (18.2_{-4.0}^{+4.6} \pm 1.6) \times 10^{-6}, \\
\text{Br}(B_d^0 \to K^\pm\pi^\mp) &= (17.2_{-2.4}^{+2.5} \pm 1.2) \times 10^{-6}, \\
\text{Br}(B^\pm \to K^\mp\pi^0) &= (11.6_{-2.7}^{+3.0} \pm 1.4) \times 10^{-6}, \\
\text{Br}(B_d^0 \to K^0\pi^0) &= (14.6_{-5.1}^{+5.9} \pm 2.4) \times 10^{-6}, \\
A_{\text{CP}}(B_d^0 \to K^\pm\pi^\mp) &= -0.04 \pm 0.16, \\
A_{\text{CP}}(B^\pm \to K^0\pi^\pm) &= 0.17 \pm 0.24.
\end{align*}
\]

In the above expressions \(B(B_d^0 \to K^\pm\pi^\mp) \) represents the CP average of the branching ratios \(B(B_d^0 \to K^+\pi^-) \) and \(B(B_d^0 \to K^-\pi^+) \).

5 QCD Factorization

Recently, Beneke, Buchalla, Neubert, and Sachrajda proposed the QCDF formalism for two-body nonleptonic \(B \) meson decays. They claimed that factorizable contributions, for example, the form factor \(F_B \) in the \(B \to \pi\pi \) decays, are not calculable in PQCD, but nonfactorizable contributions are in the heavy quark limit. Hence, the former are treated in the same way as \(F_A \), and expressed as products of Wilson coefficients and \(F_B \). The latter, calculated as in the PQCD approach, are written as the convolutions of hard amplitudes with three \((B,\pi,\pi)\) meson wave functions. Annihilation diagrams are neglected as in \(F_A \), but can be included as \(1/M_B \) correction. Values of form factors at maximal recoil and nonperturbative meson wave functions are treated as free parameters.

Here I mention some essential differences between the QCDF and PQCD approaches. For more detailed comparisions, refer to\(^{24}\). Because of the neglect of annihilation diagrams in QCDF, strong phases and CP asymmetries are much smaller than those predicted in PQCD. In QCDF the leading-order diagrams are those that contain vertex corrections to the four-fermion operators. These diagrams, however, appear at the next-to-leading order in PQCD. This difference implies different characteristic scales in the two approaches: the former is characterized by the \(b \) quark mass \(m_b \), while the latter is characterized by the virtuality \(t \) of internal particles, which leads to the penguin enhancement emphasized above. Without penguin enhancement, a large \(\phi_3 \) is still necessary to account for the large ratio \(R_{\pi} \).\(^{25}\)

The \(B \to \phi K \) decays have been analyzed in the QCDF formalism\(^{26,27}\), and branching ratios much smaller than experimental data have been obtained. Since these modes are dominated by penguin contributions, the penguin en-
hancement may be crucial for explaining the data.

6 Light-front QCD

The evaluation of a form factor is simple in the LFQCD formalism, which is written as an overlap integral of initial- and final-state meson wave functions\(^2\). Various form factors have been computed, such as the \(B \to \pi, \rho, K\) and \(K^*\) form factors\(^2\) and the \(\Lambda_b \to \Lambda\) form factors\(^1\). The results have been employed to predict the decay spectra of the \(B \to K\mu\mu(\tau\tau)\) and \(\Lambda_b \to \Lambda\mu\mu(\tau\tau)\) modes. This formalism has been also applied to the radiative leptonic \(B\) meson decays \(B \to l^+l^-\gamma\). These predictions can be compared with data in the future.

7 Conclusion

In this talk I have briefly summarized the theoretical progresses on exclusive \(B\) meson decays, which were made by Taiwan BCP community recently. With the active collaboration, more progresses are expected in the near future.

Acknowledgments

This work was supported in part by the National Science Council of R.O.C. under the Grant No. NSC-89-2112-M-006-033, and in part by Grant-in Aid for Special Project Research (Physics of CP Violation) and by Grant-in Aid for Scientific Exchange from Ministry of Education, Science and Culture of Japan.

References

22. CLEO Coll., Y. Kwon et al., hep-ex/9908039.