Geometry of Non-expanding Horizons and Their Neighborhoods

Jerzy Lewandowski

February 1, 2001

Instytut Fizyki Teoretycznej, Uniwersytet Warszawski, ul. Hoza 69, 00-629 Warszawa, Poland

Abstract

This is a contribution to MG9 session BHT4. Certain geometrically distinguished frame on a non-expanding horizon and in its space-time neighborhood, as well as the Bondi-like coordinates are constructed. The construction provides free degrees of freedom, invariants, and the existence conditions for a Killing vector field. The reported results come from the joint works with Ashtekar and Beetle [2].

In the quasi-local theory of black holes proposed recently by Ashtekar [1] a BH in equilibrium is described by a 3-dimensional null cylinder \mathcal{H} generated in space-time by null geodesic curves intersecting orthogonally a space-like, 2-dimensional closed surface S. The standard stationarity of space-time requirement is replaced by the assumption that the cylinder has zero expansion, that is \mathcal{H} is a non-expanding horizon. This implies, upon the week and the dominant energy conditions, that the induced on \mathcal{H} (degenerate) metric tensor q is Lie dragged by a null, geodesic flow tangent to \mathcal{H}. The geometry induced on \mathcal{H} consists of the metric tensor q and the induced covariant derivative \mathcal{D}. It is enough for the mechanics of \mathcal{H} [1]. The geometry of a non-expanding horizon is characterized by local degrees of freedom. They are an arbitrary 2-geometry of the null generators space S, the rotation scalar, and certain tangential ‘radiation’ evolving along the horizon.
In the standard, Kerr-Newman case, the event horizon is equipped with a null Killing vector field. In our general non-expanding horizon case, however, a Killing vector field may not exit at all. Our first goal is a geometric condition which distinguishes a null vector field ℓ_0 tangent to \mathcal{H} and which is satisfied by the Killing vector field whenever it exists. We made extra assumptions about the stress energy tensor at \mathcal{H} that are satisfied for the Maxwell and/or scalar and/or dylaton fields. The condition distinguishing the null vector field ℓ_0 was obtained by making as many components of the tensor $[\ell, \mathcal{D}]_{bc}$ defined on \mathcal{H} as possible zero, as we vary ℓ. But here we give a more geometric definition of this choice. Due to the evolution equations of \mathcal{D} along \mathcal{H}, there is a unique extension $(\dot{\mathcal{H}}, \dot{q}, \dot{\mathcal{D}})$ of $(\mathcal{H}, q, \mathcal{D})$ in an affine parameter along the null geodesics. We claim, that generically \mathcal{H} admits a unique global crossection S_0 such that its expansion in the transversal null direction orthogonal to S_0 (this information is contained in $\dot{\mathcal{D}}$) is zero everywhere on S_0. Given the crossection S_0, there is a unique null vector field ℓ_0 vanishing identically on S_0 and such that $\mathcal{D}_\ell \ell_0 = \kappa_0 \ell_0$, $\kappa_0 \neq 0$ being a constant. Fixing some value $\kappa_0(q, \mathcal{D})$ determines ℓ_0 completely. The shear of S_0 vanishes in the null transversal direction orthogonal to \mathcal{H}, iff ℓ_0 generates a symmetry of the geometry (q, \mathcal{D}). The commutator $[\mathcal{L}_{\ell_0}, \mathcal{D}]$ represents the tangential radiation, and \mathcal{H} is not a Killing horizon unless the comutator is zero.

The rotation 1-form potential ω_0 of ℓ_0 is defined by $\mathcal{D} \ell_0 = \omega_0 \otimes \ell_0$. We define a good cut as a space-like section of \mathcal{H} such that the pullback of ω_0 thereon is a harmonic 1-form. The good cuts define a foliation of \mathcal{H} invariant with respect to the flow of ℓ_0, owing to $\mathcal{L}_{\ell_0} \omega_0 = 2 \delta \kappa_0 = 0$.

Given ℓ_0 and the good cuts foliation, we determine a null frame $(m_0, \bar{m}_0, n_0, \ell_0)$ by using another null vector n_0 orthogonmal to the lives requiring $n_0 \mu \ell_0 \nu = -1$, and $R_{\mu \nu} K_{\mu} = 0$ where K is the Gauss curvature of \mathcal{H}, generically non-constant.

In a neighborhood of \mathcal{H}, the good cuts foliation and the distinguished ℓ_0 define a unique geodesic extension of the vector field n_0. It is used to extend the foliation and frame to the neighborhood.

The applications and results of this construction are $a)$ invariants of the horizon and of the neighborhood, $b)$ invariant characterization and true degrees of freedom of a horizon and of its neighborhood in the vacuum or Maxwell and/or scalar and/or dylaton case, $c)$ classification of the symmetric isolated horizons, $d)$ necessary and sufficient conditions for the existence
of a Killing vector field, and the control on the space-times not admitting a
Killing vector field.

Acknowledgments

This research was supported in part by Albert Einstein MPI, CGPG of
Pennstate University, and the Polish Committee for Scientific Research under
grant no. 2 P03B 060 17.

References

[1] Ashtekar A., Beetle C., Dreyer O., Fairhurst S., Krishnan B.,
Lewandowski J., Wiśniewski J., Phys.Rev Let.853564(2000), gr-
quc/0006006, See the contribution by Olaf Dreyer in the same session

[2] Ashtekar A., Beetle C., Lewandowski J. Space-Time Geometry of Iso-
tated Horizons I,II, in preparation