It is demonstrated that monopole condensation in the confined phase of SU(2) and SU(3) gauge theories is independent of the specific Abelian projection used to define the monopoles. Hence the dual excitations which condense in the vacuum to produce confinement must have magnetic U(1) charge in all the Abelian projections. Some physical implications of this result are discussed.

PACS numbers: 11.15.Ha, 12.38.Aw, 14.80.Hv, 64.60.Cn

I. INTRODUCTION

This paper is the third of a series, in which we study the dual superconductivity of the QCD vacuum [1–3] as a mechanism for confinement of color. In the first two papers [4,5] we have detected condensation of monopoles in the confining phase by means of a disorder parameter (μ), which is the vacuum expectation value of a magnetically charged operator, μ. (μ) was determined by simulating the theory on a lattice: it is non zero in the confining phase, and tends to zero at the deconfining transition, above which it vanishes.

The connection of (μ) to confinement was proved by a quantitative determination of the critical indices and of the critical coupling. In [4], SU(2) gauge theory was studied, while [5] was devoted to SU(3) with similar results.

Magnetic charges in gauge theories are defined by a procedure known as Abelian projection [2]: to every local field Φ belonging to the adjoint representation (Nc − 1) U(1) fields can be associated, and to each of them a conserved magnetic charge. In fact there exists a functional infinity of monopole species, Nc − 1 for each field Φ, which in principle can condense in the vacuum and confine the corresponding U(1) electric charge by the dual Meissner effect. It is not known a priori if monopole condensations in different Abelian projections are independent phenomena.

The indication obtained in [4,5] by analysis of a number of different choices of Φ was that all of them show the same behaviour, so that they are equivalent to each other.

The possibility that in some way all the Abelian projections could be physically equivalent was first advocated in Ref. [2]. In this paper we add strong evidence for that equivalence.

In order to explain what we do, let us first recall how magnetic charges are associated to any field Φ in the adjoint representation. We shall do it for SU(2) to simplify notations; extension to SU(N) only adds formal complications.

Let Φ(x) be a field in the adjoint representation (color vector), and let Φ(x) be its color orientation,

\[\Phi(x) = \frac{\Phi(x)}{|\Phi(x)|}. \]

(1)

Φ(x) is well defined, except at zeros of Φ(x).

Define a gauge invariant field strength \(F_{\mu \nu}(x) \) [6]

\[F_{\mu \nu} = \Phi \cdot \bar{G}_{\mu \nu} - \frac{1}{g} \left(D_\mu \Phi \wedge D_\nu \Phi \right) \cdot \Phi \]

(2)

where \(\bar{G}_{\mu \nu} = \partial_\mu \bar{A}_\nu - \partial_\nu \bar{A}_\mu + g \bar{A}_\mu \wedge \bar{A}_\nu \) is the gauge field strength and \(D_\mu \Phi = (\partial_\mu + g A_\mu \wedge \Phi) \Phi \) is the covariant derivative of \(\Phi \).

Both terms in the right-hand side of eq. (2) are separately gauge invariant and color singlets: their combination is chosen in such a way that bilinear terms \(\bar{G}_{\mu \nu} \Phi \bar{A}_\mu \bar{A}_\nu \Phi \) and \(A_\mu \Phi \bar{A}_\mu \Phi \) cancel. Actually, by simple algebra,

\[F_{\mu \nu} = \bar{\Phi} \cdot \left(\partial_\mu \bar{A}_\nu - \partial_\nu \bar{A}_\mu - \frac{1}{g} \left(\partial_\mu \Phi \wedge \partial_\nu \Phi \right) \right) \cdot \Phi \]

(3)

If we transform to a gauge in which \(\Phi(x) = \text{constant} \) in space-time, the last term cancels and

\[F_{\mu \nu} = \partial_\mu (\Phi \cdot \bar{A}_\nu) - \partial_\nu (\Phi \cdot \bar{A}_\mu) \]

(4)

is an Abelian field strength. Such a gauge transformation is called an Abelian projection. It is in general a singular transformation which exposes monopoles at the sites where \(\Phi(x) = 0 \).

If \(F_{\mu \nu} = \frac{1}{2} \varepsilon_{\mu \nu \rho \sigma} F^{\rho \sigma} \) is the dual field to \(F_{\mu \nu} \), one can define a magnetic current

\[j_\mu = \partial_\nu F^{\nu \mu} \]

(5)

\(j_\mu \) is zero if Bianchi identities hold, but can be non zero in compact formulations in terms of parallel transport,
like lattice formulation [7]. In any case it follows from the antisymmetry of $F_{\mu\nu}^a$ that

$$\partial^{\mu}j_\mu = 0 .$$

In the dual superconductor view of color confinement the symmetry (6) is expected to be realized a la Wigner in the deconfined phase, and to be broken a la Higgs in the confined phase. An operator μ which carries magnetic charge can provide a disorder parameter to discriminate between the two possibilities. Such an operator was developed and tested in Refs [8–10,4,5].

What was found in [4,5] was that there is indeed dual superconductivity in a number of Abelian projections. As explained in detail in Sect. II, the full identification of the projected gauge requires to go to the gauge in which $\Phi(x) \cdot \lambda$ is diagonal in color indices (λ are the generators in the fundamental representation), with a fixed order of the eigenvalues.

One can diagonalize $\Phi(x) \cdot \lambda$ up to the ordering of the eigenvalues, choosing it randomly, and still define an operator μ which creates a magnetic charge in that Abelian projection. We show in this paper that the corresponding disorder parameter behaves exactly in the same way as the one with ordered eigenvalues.

We can even define a completely random Abelian projection, in which we do not diagonalize any operator Φ, but we take, e.g. for $SU(2)$, $\Phi = \sigma_3$, the nominal 3 axis used in the simulation, and define the corresponding μ. Again we find that μ defined in this way behaves exactly in the same way as those defined in Refs. [4,5] and scales with the same critical indices.

The above Abelian projections are kind of an average over a continuous infinity of Abelian projections, and the result demonstrates, beyond any doubt, the complete independence of dual superconductivity from the choice of the Abelian projection.

Our results are compatible with Ref. [11], where our disorder parameter in the random gauge was computed by Schroedinger functional techniques.

There has been in the literature in the last years the idea that monopoles defined by a particular Abelian projection (the maximal Abelian projection) are more relevant than others to confinement [12,13]. We will discuss this issue in Sect. V, where we draw conclusions from our results.

In Sect. II the construction of the disorder parameter $\langle \mu \rangle$ will be recalled, to define the Abelian Projection with Random Ordering (APRO) and the Random Abelian Projection (RAP). In Sect. III the numerical algorithms used will be discussed. The results will be described in Sect. IV. Sect. V will close the paper with conclusions.

\section*{II. DISORDER PARAMETER}

In this Section we recall the definition of the disorder parameter for confinement.

Let \mathcal{O} be an operator which transforms in the adjoint representation of the gauge group, i.e.

$$\mathcal{O} = \sum \lambda^a \mathcal{O}^a ,$$

with λ^a the generators in the fundamental representation. The Abelian projection technique [2] prescribes to fix the gauge by a gauge transformation in such a way that

$$\mathcal{O}^a_{gf} = G^aG = \text{diag}(o_1, ..., o_N) \quad \text{with } o_1 < o_2 < ... < o_N .$$

After Abelian projection, there is still a $U(1)^{N-1}$ gauge freedom left, since a transformation of the form

$$\Omega = \text{diag}(e^{i\omega_1}, ..., e^{i\omega_N}) , \quad \sum \omega_i = 0$$

does not change the gauge fixing condition, Eq. (8).

After Abelian projection, the gauge variables of $SU(N)$ are divided in two sets: the photons (the $N-1$ neutral fields under the residual $U(1)^{N-1}$) and the gluons (charged fields with respect to the residual symmetry). Abelian monopole magnetic charges can arise at points where two eigenvalues of \mathcal{O} are degenerate [2].

Condensation of Abelian monopoles defined by Abelian projection has been demonstrated numerically in Ref. [4] for $SU(2)$ and in Ref. [5] for $SU(3)$. This has been done by constructing an operator magnetically charged in a given Abelian projection and by studying the behaviour of the vacuum expectation value of that operator across the phase transition at finite temperature. In the language of Statistical Mechanics we call that operator a disorder operator and its vev a disorder parameter, the terminology being that the weak coupling (deconfined) phase is the ordered phase. The construction can be done in different Abelian projections: in Refs. [4,5] a number of Abelian projections have been studied, and for all of them it was found that indeed monopoles condense at low temperature, while the corresponding magnetic symmetry is implemented a la Wigner at high temperature. Moreover, the disorder parameter scales with the correct critical indices in the critical region and is independent of the choice of the Abelian projection. These results suggest that the observed behaviour of the disorder parameter is generally independent of the Abelian projection and of the Abelian operator chosen.

Let us review the construction of the disorder parameter. We introduce a time-independent external field

$$\Phi_\mathbb{T}(\vec{n}, \vec{y}) = Ge^{-i T b_\mathbb{T}(\vec{n}, \vec{y})} G^\dagger ,$$

where G is the gauge transformation that diagonalizes the operator \mathcal{O} according to Eq. (8), \vec{b} is the discretised
the path ordered product at time zero, as follows:

\[U_{\mu}(x) = U_{\mu}(x)U_{\nu}(x + \hat{\nu})(U_{\mu}(x + \hat{\nu}))^{-1}(U_{\nu}(x))^{-1}, \]

(11)

where \(x = (\vec{n}, t) \). We introduce a shift \(U_{\mu}(\vec{n}, 0) \rightarrow U_{\mu}(\vec{n}, 0)\) by inserting the external field \(\Phi_i(\vec{n} + i, \vec{y}) \) in the path ordered product at time zero, as follows:

\[\tilde{U}_{\mu}(\vec{n}, 0) = U_i(\vec{n}, 0)\Phi_i(\vec{n} + i, \vec{y})U_0(\vec{n} + i, 0) \]

(12)

and we define \(\tilde{U}_{\mu}(x) = U_{\mu}(x) \) elsewhere.

The Wilson action for \(SU(N) \) gauge theory is

\[S = \beta \sum_{\mu x} \left(1 - \frac{1}{2N} \left(U_{\mu}(x) + (U_{\mu}(x))^{-1} \right) \right), \]

(13)

where the sum extends over all the lattice points and directions.

By replacing in the previous equation the standard plaquette with the modified plaquette \(\tilde{U}_{\mu}(i) \) we obtain the "monopole" action

\[S_{\text{M}}(\vec{y}, 0) = \beta \sum_{\mu x} \left(1 - \frac{1}{2N} \left(\tilde{U}_{\mu}(x) + (\tilde{U}_{\mu}(x))^{-1} \right) \right). \]

(14)

The disorder parameter introduced in [4,5] is given by

\[\langle \mu(\vec{y}_0, 0) \rangle = \frac{\int (DU) e^{-S_{\text{M}}(\vec{y}_0, 0)} \int (DU) e^{-S}}{\int (DU) e^{-S}}, \]

(15)

where the functional integral of \(e^{-S} \) is taken with periodic boundary conditions and the integral of \(e^{-S_{\text{M}}} \) with \(C^* \)-periodic boundary conditions [14,15],

\[U_i(\vec{n}, t = N_t) = U^*_i(\vec{n}, t = 0), \]

(16)

\(N_t \) being the temporal extension of the lattice and \(U^*_i \) being the complex conjugate of \(U_i \).

To study more in detail the dependence on the projecting operator, we will modify the definition of \(\Phi \) as follows:

1. **We choose a projecting operator and we diagonalise it but without fixing the order of the eigenvalues, or better with the order of the eigenvalues randomly chosen:**

\[\Phi_i(\vec{n}, \vec{y}) = GP e^{iTb_i(\vec{n} - i, \vec{y})} PG^i, \]

(17)

where \(P \) is a random \(N \times N \) permutation matrix. This corresponds to a sort of average of \(\mu \) over the class of operators differing from \(O \) on each point by the order of the eigenvalues. We refer to this case as Abelian Projection with Random Ordering (APRO).

2. **We do not perform the Abelian projection, i.e. we take**

\[\Phi_i(\vec{n}, \vec{y}) = e^{iTb_i(\vec{n} - i, \vec{y})}. \]

(18)

This is equivalent to a sort of average of \(\mu \) over all the possible Abelian projections. We refer to this case as Random Abelian Projection (RAP).

As discussed in Ref. [4,5], a direct computation of \(\langle \mu \rangle \) with Monte Carlo techniques is problematic, because this quantity has large fluctuations, being the exponential of a sum over the physical volume. A more convenient quantity to study in numerical simulations is [8,4,5]

\[\rho = \frac{\partial}{\partial \beta} \log \langle \mu \rangle = \langle S \rangle_S - \langle S_{\text{M}} \rangle_{S_{\text{M}}}. \]

(19)

\(\rho \) is the difference of two average actions, the Wilson action and the modified action \(S_{\text{M}} \) (the latter being averaged with the modified measure \(\langle (DU) e^{-S_{\text{M}}} \rangle / \langle (DU) e^{-S} \rangle \)). \(\rho \) has smaller fluctuations and contains all relevant information. The value of \(\langle \mu \rangle \) is related to \(\rho \) by the relationship

\[\langle \mu \rangle = \exp \left(\int_0^\beta \rho(\beta')d\beta' \right). \]

(20)

III. GAUGE FIXING AND SIMULATION ALGORITHMS

We have determined the temperature dependence of \(\rho \) for \(SU(2) \) and \(SU(3) \) pure Yang-Mills theories, for both definitions (17) and (18) of \(\Phi \) on an asymmetric lattice \(N_3 \times N_t \) with \(N_t \ll N_3 \).

For both definitions of \(\Phi \), the simulation of the Wilson term, \(\langle S \rangle_S \), has been performed on a lattice with periodic b.c., by using a standard mixture of heatbath and overrelaxed algorithms.

As for the APRO case, we have chosen the Polyakov line as the operator to identify the Abelian projection, following the definition in Eq. (31) of [4] and Eq. (19) of [5], with the only difference that at each spatial point the ordering of the eigenvalues is selected randomly among the possible different permutations \(n_p \) (\(n_p = 2 \) \((S) \) for \(SU(2) \) (\(SU(3) \) pure gauge theory)). This effectively corresponds to averaging over \(n_p \) different definitions of the Abelian projection. The Abelian generator \(F^8 \) (\(F^8 = \lambda^8 \) for pure Yang-Mills, with \(\lambda \) the Gell-Mann matrices), has been chosen to define the monopole field for the \(SU(3) \) case. We use \(C^* \) boundary conditions in time to compute \(\langle S_{\text{M}} \rangle_{S_{\text{M}}} \) in Eq. (19). In this case, as explained in Ref. [4], it is not possible to use a standard heatbath or overrelaxed algorithm to simulate the modified action, since, e.g. in the case of Polyakov projection, the change of any
IV. NUMERICAL RESULTS

The phase transition is known to be second order for SU(2), weak first order for SU(3) [17]. As usual we shall speak of critical indices in both cases, meaning for SU(3) effective critical indices at small values of \((1 - T/T_c)\), but not too small.

In Refs. [4,5] it was shown that the critical indices of the confinement transitions for SU(2) and SU(3) did not depend on the particular type of Abelian projection used to define the monopole condensation. Here we will show numerically that the critical exponents, and also the value of the critical coupling, are the same even for the RAP case.

The quality of the scaling, Eq. (24), for SU(2) in the RAP case can be seen in Fig. 1. Here we used the known values of \(\beta_C = 2.2986\) and \(\nu = 0.63\) [16]. The curve in the figure corresponds to the best fit to Eq. (28). We get \(\delta = 0.19(5)\), with a \(\chi^2/d.o.f. \sim 1.5\), in good agreement with the value obtained in the plaquette and Polyakov gauges in Ref. [4], \(\delta = 0.20(8)\).

We will use the known values of \(\beta_C\) and \(\nu\) of SU(2) and SU(3) pure gauge theories to see that scaling holds with the present data. In order to obtain the critical exponent \(\delta\), we use an expression equivalent to Eq. (23),

\[
\langle \mu \rangle = (\beta_c - \beta)^{\delta} F(x).
\]

From here we get

\[
\frac{\rho}{N_s^{1/\nu}} = -\frac{\delta}{x} - \frac{F'(x)}{F(x)}. \tag{27}
\]

To obtain \(\delta\) we need additional assumptions on the unknown scaling function \(F(x)\). We will see that fits of good quality are obtained with the simple parametrization

\[
\frac{\rho}{N_s^{1/\nu}} = -\frac{\delta}{x} - C, \tag{28}
\]

where \(C\) is a constant term. This form is suggested by the fact that when \(x \to 0\), both \(F(x)\) and its derivative should go to a constant.

A. SU(2) gauge theory

1. The Random Abelian Projection

The quality of the scaling, Eq. (24), for SU(2) in the RAP case can be seen in Fig. 1. Here we used the known values of \(\beta_C = 2.2986\) and \(\nu = 0.63\) [16]. The curve in the figure corresponds to the best fit to Eq. (28). We get \(\delta = 0.19(5)\), with a \(\chi^2/d.o.f. \sim 1.5\), in good agreement with the value obtained in the plaquette and Polyakov gauges in Ref. [4], \(\delta = 0.20(8)\).
Results obtained in the APRO case are shown in Fig. 2, where again known values of β_C and ν have been used. The curve in the figure corresponds to the best fit to Eq. (28), which gives $\delta = 0.20(6)$, with a χ^2/d.o.f. ~ 1.1. The agreement with the results obtained in the RAP case and in the plaquette and Polyakov gauges in Ref. [4] is very good.

2. The Abelian Projection with Random Ordering

The confinements transition in pure $SU(3)$ gauge theory is a first order transition [17]. One therefore expects a pseudocritical behaviour, with $\nu = 1/3$, that is, the inverse of the number of spatial dimensions. As it was remarked in Ref. [5], the scaling relation, Eq. (24), has to be modified in this case to include finite size violations to scaling,

$$\frac{\rho}{N_s^{1/\nu}} = f \left[N_s^{1/\nu} (\beta_C - \beta) \right] + \Psi(N_s),$$

(29)

where $\Psi(N_s)$ parametrizes these effects. A simple assumption is

$$\Psi(N_s) = \frac{a}{N_s^3}.$$

(30)

valid up to $O(1/N_s^6)$.

B. $SU(3)$ gauge theory

$\beta_C(N_t = 4) = 5.6925$ and $\nu = 1/3$ [18]. The curve in the figure corresponds to a best fit to Eq. (28), modified by including the term $\Psi(N_s)$, which gives the value $\delta = 0.50(3)$, with a χ^2/d.o.f. $= 3.2$.

Then the value of δ remains the same, while χ^2/d.o.f. $= 0.7$. This demonstrates the importance of the finite size effects in $SU(3)$ gauge theory. The fit is shown in Fig. 4.
In the APRO case we have obtained a good scaling behaviour as well, as shown in Fig. 5. However in this case a fit to Eq. (29) with the function (30) has a very bad χ^2/d.o.f. (of order 16).

Also in this case the use of the expression (31) is essential: the best fit, shown in the figure, gives $\delta = 0.43(3)$ with χ^2/d.o.f. ~ 1.4. The value of δ is nearly compatible with the one obtained in the RAP case, $\delta = 0.54(4)$.

V. CONCLUSIONS

We have produced further and compelling evidence that monopole condensation is independent of the Abelian projection used to define the monopoles.

If the idea of duality is correct, the non-local excitations which are expected to be the fields of the dual description of QCD and weakly interacting in the confined phase, should have non zero magnetic charge in all the Abelian projections. This is a very important symmetry property, which can help in identifying them.

There has been a number of papers in the literature of the past years, claiming that the fundamental fields of the dual description are the monopoles defined by the maximal Abelian projection. The claim that monopoles defined by the maximal Abelian projection could be the dual excitations does not look in good shape after the quantitative attempts to construct the dual theory, which go beyond the initial empirical observation of Abelian dominance [19]. If it were true maximal Abelian monopoles should be magnetically charged in all Abelian projections. This does not seem to be plausible, since one single Abelian projection does not confine the $U(1)$ neutral particles belonging to the adjoint representation, which would instead be confined in other Abelian projections.

Analysis of the Z_N vortices could give some hints and investigation has been started in that direction [20]. We think that the problem is still open.

ACKNOWLEDGEMENTS

This work is partially supported by EU contract FMRX-CT97-0122 and by MURST. BL thanks PPARC for a postdoctoral fellowship.