
MILSECOND OSCILLATIONS AND PHOTOSPHERIC RADIUS EXPANSION IN THE PHENOMENON OF MILLISECOND OSCILLATIONS

1. INTRODUCTION

We are now in the midst of a new era of high-resolution astrophysics, with the rapid development of new observational techniques and theoretical models. The ability to observe and study individual stars with unprecedented accuracy has opened up new avenues for understanding the fundamental properties of stars and their evolution.

1.1 Observational Overview

Modern observational techniques have made it possible to study the details of stellar photospheres and atmospheres with unprecedented accuracy. These techniques include high-resolution spectroscopy, interferometry, and imaging, which have been used to study a wide range of stars, from the Sun to distant, luminous giant stars.

1.2 The Search for Oscillations

One of the most significant advances in astrophysics in recent years has been the discovery of millisecond oscillations in the photospheres of certain stars. These oscillations are characterized by periods of 1-10 milliseconds, and they are thought to be related to the rotation of the star and the presence of magnetic fields.

2. OBSERVATIONAL PROPERTIES

We have conducted a series of observations of a sample of stars, focusing on the properties of oscillations in the photosphere. Our results have been consistent with the predictions of the theory, and they suggest that oscillations are a common phenomenon in the photospheres of stars.

3. THEORETICAL FRAMEWORK

Theoretical models of the photosphere have been developed to explain the observed properties of oscillations. These models are based on a combination of fluid dynamics, magnetohydrodynamics, and astrophysical processes, and they provide a framework for understanding the behavior of oscillations in the photosphere.

4. CONCLUSIONS

Our results suggest that millisecond oscillations are a common phenomenon in the photospheres of stars. These oscillations provide a new window into the internal structure and dynamics of stars, and they have important implications for our understanding of stellar evolution.

References

Keywords: millisecond oscillations, photospheric radius expansion, astrophysics.
In order to characterize the persistent emission, we calculated average soft (3.7–5.1 keV/2.3–3.7 keV) and hard (8.7–18 keV/5.1–8.7 keV) X-ray colors for 206 s intervals using background-subtracted light curves. Location on an X-ray color-color diagram is a good tracer of the accretion rate \dot{M} (see van der Klis 1995 and references therein). KS 1731–260 (Muno et al. 2000) and 4U 1728–34 (Franco 2001; van Straaten et al. 2001) exhibit bursts over the widest range of \dot{M}, while cursory checks of the color-color diagrams for the other sources suggest that bursts were only observed at high accretion rates because few or no observations were made during low \dot{M} intervals.

To search for oscillations, we created twice-oversampled power spectra for 2 s intervals of data every 0.25 s for the duration of each burst. If oscillations are detected within ± 3 Hz of the expected frequency and within 10 seconds after the start of a burst with a probability $< 2 \times 10^{-5}$ that the signal is due to Poisson noise in a single trial, we consider the oscillation to be a detection. We also used this technique to search all of the bursts for oscillations at the first three harmonics of the slow oscillations, and at 0.5, 1.5, and 2.0 times the frequency of the fast oscillations. We found no evidence for oscillations at these frequencies in any of the bursts. Using power spectra of 1 s intervals, we can place upper limits on the fractional RMS amplitude of oscillations at these frequencies of 5–15% during a burst. These are not very stringent upper limits, so application of more sensitive search techniques such as those described in Miller (1999), Muno et al. (2000), and Strohmayer (2001) will be useful for more detailed studies.

We produced energy spectra for each 0.25 s interval from each burst using available combinations of data modes which provide at least 32 energy channels. We subtracted spectra from 15 s of emission from before the burst to account for background, and fit each spectrum between 2.5–20 keV with a model consisting of a blackbody multiplied by a constant interstellar absorption (determined from the mean value from fits using variable absorption). The model provides an apparent temperature (T_{app}) and a normalization equal to the square of the apparent radius (R_{app}) of the burst emission surface, and allows us to estimate the bolometric flux as a function of time. The peak flux of bursts from a given source can vary by a factor of 5–10. In many bursts, photospheric radius expansion is evident at the start of the burst, during which R_{app} increases and T_{app} decreases such that the bolometric flux remains constant, presumably at the Eddington limit (see Lewin et al. 1995). Our definition of radius expansion includes bursts which exhibit a second increase in radius immediately after the minimum which follows the expansion phase. We find several such bursts from 4U 1728–34 (see also van Straaten et al. 2001), and one such burst from both 4U 1916–053 and 4U 1608–52.

3. Results

A summary of our results for the nine burst oscillation sources is given in Table 1. There is a tight connection between the presence of oscillations and of radius expansion in fast (≥ 600 Hz) sources from every perspective. Fast oscillations occur predominantly during bursts with radius expansion, and almost all bursts with radius expansion exhibit oscillations. At the same time most of the bursts without fast oscillations also lack radius expansion. In slow (≥ 300 Hz) sources, there is no preference for whether bursts with or without radius expansion exhibit oscillations. This suggests that the frequencies of burst oscillations and the properties of bursts are connected.

Although the sample of bursts from an individual source is in some cases quite small, the correlations for fast and slow sources as groups are quite significant. In order to quantify the significance of our results, we hypothesize that radius expansion occurs in bursts with a fixed probability, f. Given a sample of m bursts, the probability of observing a number n of bursts with radius expansion is

$$P(n|m, f) = f^n(1 - f)^{m - n} \frac{m!}{n!(m - n)!}.$$

We can then compute the probability density for f given n radius expansion bursts in a sample of m bursts, $p(f|m, n)$. We have plotted these probability densities in Figure 1 for fast and slow sources, considering as our sample population either all observed bursts (dashed line) and only those bursts which exhibit oscillations (solid line). Although fast and slow sources exhibit radius expansion in about equal fractions of bursts in general, fast sources exhibit radius expansion during bursts with oscillations far more often (88% of the time) than slow sources (31% of the time). The trends for individual sources are interesting in that they follow the behavior expected from considering the sources as groups (Figure 2). On the other hand, slow sources are more likely to show radius expansion during bursts without oscillations (53%) than fast sources (20%).

We can rule out some observational selection effects as causes for these correlations. For example, we are not systematically missing oscillations from weak bursts, as might occur if all oscillations had the same fractional amplitude. We observe oscillations in some of the weakest bursts from KS 1731–260, 4U 1636–53, 4U 1916–053, and 4U 1728–34, while no oscillations are detected during some of the stronger bursts from these sources. Therefore, our correlations are based upon genuine variations in the strengths of the oscillations.

However, since bursts were observed from only two sources at low \dot{M} (KS 1731–260 and 4U 1728–34), there is a remote chance that these correlations are an artifact of the higher \dot{M} at which the remaining sources were observed. For instance, the bursts with the longest time scales take place at low fluxes in 4U 1608–52 (Murakami et al. 1980) and at low inferred \dot{M} in 4U 1636–53 (van der Klis et al. 1990). It is reasonable to believe that these long bursts do not exhibit radius expansion (as in KS 1731–260; see for example Muno et al. 2000), so there would be no strict relationship between radius expansion and fast oscillations if these bursts exhibit oscillations. However, we would consider this a surprise given the absence of oscillations at low accretion rates in KS 1731–260 and 4U 1728–34. On the other hand, the time scales of bursts from the slow oscillators 4U 1916–053 (Swank, Taam, & White 1984) and 4U 1792–429 (Makishima et al. 1982) have not been observed to vary systematically with the persistent flux, so we cannot predict how observing bursts at low \dot{M} in slow sources would affect our correlations.
4. Discussion

We have found that oscillations from the 6 fast burst oscillation sources are tightly connected to photospheric radius expansion, whereas oscillations from the 3 slow sources are about equally likely to be found in bursts both with and without radius expansion. What drives this correlation remains to be determined: is it the burst properties themselves, the oscillation frequencies, or some unseen third parameter?

According to the beat frequency model of kHz QPOs, the fact that \(\nu_{\text{burst}} \approx \Delta \nu_{\text{kHz}} \) for the “slow” sources whereas \(\nu_{\text{burst}} \approx 2 \Delta \nu_{\text{kHz}} \) for the “fast” ones can be accounted for if one or two anipodal hot spots on the surface of the rotating neutron star are visible to the observer (Miller et al. 1998). One possibility is that the distinction between fast and slow oscillations is due to a difference in the orientation of the hot spots and the observer with respect to the rotation axis of the star. This seems unlikely. Radius expansion is observed with similar likelihood from both fast and slow sources, and therefore is unlikely to depend on the viewing angle. We would not expect oscillations to be associated with radius expansion bursts only in the fast sources if viewing angle effects determine whether one or two spots are observed.

It also does not appear that the strengths of the bursts determine the oscillation frequencies by ignoring either one or two hot spots. If this were the case, one would expect to detect slow oscillations during weak bursts without radius expansion from the fast sources, and fast oscillations during strong bursts from the slow sources. Out of the 125 bursts we observed from sources of burst oscillations, we find no evidence for harmonic or half-frequency signals with powers comparable to the signals at the frequencies in Table 1.

If the distinction between slow and fast oscillators is equivalent to a division between slow and fast rotators, \(\nu_{\text{spin}} \) (or some related quantity, e.g. the effective surface gravity) could determine which bursts show oscillations. However, that option is not free of complications, as the transition between the burst properties for sources that exhibit fast and slow oscillations must be very sharp, since the two populations are not at all well separated in frequency (see Table 1). When comparing the observed distribution of \(\Delta \nu_{\text{burst}} \) to a uniform distribution of frequencies between 250–650 Hz, a Kolmogorov-Smirnov test (e.g., Eadie et al. 1971) can exclude a uniform distribution at only the 1.3σ (81%) confidence level. It is interesting to note that the recent report of a possible \(400 \) Hz burst oscillation from the 401 Hz pulsar SAX J1808.4-3558 (in ’t Zand et al. 2001) would make the \(\nu_{\text{burst}} \) distribution even more consistent with a uniform distribution (excluded at only the 0.9σ or 64% confidence level), so the putative transition would have to be correspondingly sharper.

We have listed a few additional properties of these LMXBs in Table 1. Neither the activity level nor the long-term average accretion rate \(\dot{M} \), as determined from nearly 5 years of data from the RXTE All-Sky Monitor (Levine et al. 1996), appears to be correlated with the frequencies of the burst oscillations. Fast oscillations are observed in both transient (4U 1608–52 and Aql X-1) and persistent (e.g., 4U 1636–53) sources, as well as from both low \(\dot{M} \) and high \(\dot{M} \) sources. Orbital periods are measured for only 4 of the 9 sources, and range from 0.81 to 19 hours. It is apparent that these burst oscillation sources are an inhomogeneous group, which makes measurements of oscillations from other sources highly desirable.

We feel that the most likely explanation for the observed correlations is that the burst properties change differently as a function of \(M \) in fast and slow sources. X-ray burst theory predicts that radius expansion should occur only at low \(M \) (Fujimoto, Hanawa, & Miyaji 1981; Ayashi & Joss 1982). This agrees with observations of the slow oscillator 4U 1728–34 (Franco 2000; van Straaten et al. 2000), but does not appear to hold true for the fast oscillators KS 1731–260 (Muno et al. 2000), 4U 1608–52 (Murakami et al. 1980), and 4U 1636–53 (van der Klis et al. 1990). If oscillations only appear at high \(M \) (as suggested by Franco 2001), then they would indeed be associated with radius expansion in the fast sources, but not the slow sources. Furthermore, Bildsten (2000) has suggested that some mechanism acts in these latter sources to confine the accreted material such that the local \(M \) can decrease even as the global \(M \) increases. If this is true, such confinement is somehow related to the higher frequency of the fast burst oscillations.

We are grateful to Dimitrios Psaltis for providing many helpful suggestions and ideas, and to the referee for many comments which improved the tone and presentation of this paper. It is also a pleasure to thank Lars Bildsten, Andrew Cumming, Fred Lamb, and Cole Miller for useful discussions. This work was supported by the NASA Long-Term Space Astrophysics program under grant NAG 5-9184, as well as by NASA contract NAS 5-30612.

REFERENCES

Eadie, W. T., Drijard, D., James, F. E., Roos, M., & Sadorlet, B. 1971, Statistical Methods in Experimental Physics, (Amsterdam: North-Holland)
Table 1

<table>
<thead>
<tr>
<th>Source Name</th>
<th>α_{burst} (Hz)</th>
<th>Total Bursts</th>
<th>Number (Percentage) of Bursts</th>
<th>F_{XTE} (erg cm$^{-2}$ s$^{-1}$)</th>
<th>D (kpc)</th>
<th>P_{orb} (hr)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4U 1608-52</td>
<td>620</td>
<td>6</td>
<td>2 (33%)</td>
<td>0</td>
<td>0</td>
<td>4 (67%)</td>
<td>3.86</td>
</tr>
<tr>
<td>M 1720-34</td>
<td>580</td>
<td>3</td>
<td>3 (100%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4U 1608-53</td>
<td>581</td>
<td>16</td>
<td>12 (75%)</td>
<td>0</td>
<td>2</td>
<td>2 (12%)</td>
<td>14.55</td>
</tr>
<tr>
<td>4U 1608-298</td>
<td>587</td>
<td>15</td>
<td>6 (33%)</td>
<td>1 (7%)</td>
<td>4 (27%)</td>
<td>0.74</td>
<td>10$^{1.1}$</td>
</tr>
<tr>
<td>Aql X-1</td>
<td>550</td>
<td>10</td>
<td>3 (33%)</td>
<td>1 (10%)</td>
<td>0</td>
<td>6 (60%)</td>
<td>2.79</td>
</tr>
<tr>
<td>K4 1731-660</td>
<td>521</td>
<td>13</td>
<td>4 (31%)</td>
<td>0</td>
<td>1 (4%)</td>
<td>8 (62%)</td>
<td>10.12</td>
</tr>
<tr>
<td>Total Fast</td>
<td></td>
<td>60</td>
<td>26 (43%$^{\pm}$)</td>
<td>6 (10%$^{\pm}$)</td>
<td>4 (67%$^{\pm}$)</td>
<td>24 (38%$^{\pm}$)</td>
<td></td>
</tr>
</tbody>
</table>

Fast Oscillators

4U 1720-34	363	49	11 (22%)	11 (22%)	16 (33%)	11 (22%)	6.58
4U 1720-429	330	8	5 (50%)	0	7 (87%)	1 (13%)	3.50
4U 1714-353	379	8	5 (50%)	0	5 (63%)	3 (30%)	1.21
Total Slow		65	11 (17%$^{\pm}$)	16 (25%$^{\pm}$)	24 (37%$^{\pm}$)	14 (22%$^{\pm}$)	

Slow Oscillators

aMean $1.5-12$ keV count rate observed with RXTE/ASM.

bDistance was derived assuming the peak flux from the brightest burst observed with RXTE represents the Eddington luminosity for pure helium.

c1-σ uncertainties derived assuming a binomial distribution (see text).

FIG. 1.—The probability that radius expansion bursts occur in a given fraction of all bursts (dashed line) and of bursts in which oscillations are observed (solid line), assuming that the number of radius expansion bursts out of a sample population is distributed according to a binomial distribution.

FIG. 2.—The fraction of bursts with oscillations that are also radius expansion bursts, plotted as a function of source oscillation frequency. Open circles denote slow ($n = 1$) oscillation sources, while solid circles denote fast ($n = 2$) oscillation sources. The size of the circle indicates the number of bursts with oscillations observed for each source.