SECONDARY ANTIPROTONS AND PROPAGATION OF COSMIC RAYS IN THE GALAXY AND HELIOSPHERE

IGOR V. MOSKALENKO1,2
NASA/Goddard Space Flight Center, Code 660, Greenbelt, MD 20771

ANDREW W. STRONG
Max-Planck-Institut für extraterrestrische Physik, Postfach 1603, D-85740 Garching, Germany

JONATHAN F. ORMES
NASA/Goddard Space Flight Center, Code 600, Greenbelt, MD 20771

MARIUS S. POTGIETER
Unit for Space Physics, Potchefstroom University for CHE, 2520 Potchefstroom, South Africa

June 20, 2001

ABSTRACT

High-energy collisions of cosmic-ray nuclei with interstellar gas are believed to be the mechanism producing the majority of cosmic ray antiprotons. Due to the kinematics of the process they are created with a nonzero momentum; the characteristic spectral shape with a maximum at ~ 2 GeV and a sharp decrease towards lower energies makes antiprotons a unique probe of models for particle propagation in the Galaxy and modulation in the heliosphere. On the other hand, accurate calculation of the secondary antiproton flux provides a “background” for searches for exotic signals from the annihilation of supersymmetric particles and primordial black hole evaporation. Recently new data with large statistics on both low and high energy antiproton fluxes have become available which allow such tests to be performed. We use our propagation code GALPROP to calculate interstellar cosmic-ray propagation for a variety of models. We show that there is no simple model capable of accurately describing the whole variety of data: boron/carbon and sub-iron/iron ratios, spectra of protons, helium, antiprotons, positrons, electrons, and diffuse γ-rays. We find that only a model with a break in the diffusion coefficient plus convection can reproduce measurements of cosmic-ray species, and the reproduction of primaries (p, He) can be further improved by introducing a break in the primary injection spectra. For our best-fit model we make predictions of proton and antiproton fluxes near the Earth for different modulation levels and magnetic polarity using a steady-state drift model of propagation in the heliosphere.

1. INTRODUCTION

Most of the CR antiprotons observed near the Earth are secondaries produced in collisions of energetic CR particles with interstellar gas (e.g., Mitchell et al. 1996). Due to the kinematics of this process, the spectrum of antiprotons has a unique shape distinguishing it from other cosmic-ray species. It peaks at about 2 GeV decreasing sharply towards lower energies. In addition to secondary antiprotons there are possible sources of primary antiprotons; those most often discussed are the dark matter particle annihilation and evaporation of primordial black holes (PBHs).

The nature and properties of the dark matter that constitute a significant fraction of the mass of the Universe have puzzled scientists for more than a decade (Trimble 1989; Ashman 1992). Among the favored dark matter candidates are so-called weakly-interacting massive particles (WIMPs), whose existence follows from supersymmetric models (for a review see Jungman, Kamionkowski, & Griest 1996). Such particles, if stable, could have a significant cosmological abundance and be present in our own Galaxy. A pair of stable WIMPs can annihilate into known particles and antiparticles making it possible to infer WIMPs in the Galactic halo by the products of their annihilations. PBHs may have formed in the early Universe via initial density fluctuations, phase transitions, or the collapse of cosmic strings (Hawking 1974; Carr 1985; Maki et al. 1996). Black holes can emit particles and evaporate due to quantum effects. The emission rate is generally too low to be observable, but it increases as the black hole mass decreases. The only observable PBHs are those that have a mass small enough to produce a burst of particles as they evaporate.

In recent years, new data with large statistics on both low and high energy antiproton fluxes have become available (Hof et al. 1996; Basini et al. 1999; Orito et al. 2000; Bergström et al. 2000; Maeno et al. 2001; Stochaj et al. 2001) that allow us to test models of CR propagation and heliospheric modulation. A probe to measure low energy particles in interstellar space may also become reality in

1NAS/NRC Senior Research Associate
2Also Institute for Nuclear Physics, M.V.Lomonosov Moscow State University, 119 899 Moscow, Russia
the near future (Mewaldt & Liewer 2001). Additionally, accurate calculation of the secondary antiproton flux provides a “background” for searches for exotic signals such as WIMP annihilation or PBH evaporation.

Despite numerous efforts and overall agreement on the secondary nature of the majority of CR antiprotons, published estimates of the expected flux significantly differ (see, e.g., Fig. 3 in Orito et al. 2000). Calculation of the secondary antiproton flux is a complicated task. The major sources of uncertainties are three fold: (i) incomplete knowledge of cross sections for antiproton production, annihilation, and scattering, (ii) parameters and models of particle propagation in the Galaxy, and (iii) modulation in the heliosphere. While the interstellar antiproton flux is affected only by uncertainties in the cross sections and propagation models, the final comparison with experiment can only be made after correcting for the solar modulation. Besides, the spectra of CR nucleons have been directly measured only inside the heliosphere while we need to know the spectrum outside, in interstellar space, to compute the antiproton production rate correctly. The basic features of the most recent models are summarized in Table 1.

For the antiproton production cross section two options exist: a semiphenomenological fit to the data by Tan & Ng (1983a,b) which has been used for almost two decades because of lack of new data and the Monte Carlo event generator DTUNUC (Ferrari et al. 1996; Roesler, Engel, & Ranft 1998). Both the parametrization and the DTUNUC code describe well the available data on antiproton production in pp-collisions. For interactions involving heavier nuclei there are no measurements so far. However, the DTUNUC model provides a reasonable description of hadron-nucleus and nucleus-nucleus interactions and thus it can be used for estimates of antiproton production in proton-nucleus collisions. Additionally, “tertiary” antiprotons, inelastically scattered secondaries, are the main component at low energies. This component has only been included in two most recent models.

To calculate particle propagation one must choose between the easy-to-apply but non-physical “leaky-box” model, and a variety of diffusion models. The leaky-box model reduces the problem to derivation of the path length distribution (which in turn remains the major source of uncertainty as discussed, e.g., by Simon, Molnar, & Roesler 1998). Diffusion models are theoretically more physical, but also differ by the degree to which they reflect reality. The ultimate goal is to develop a model which is consistent with many different kinds of data available: measurements of CR species, γ-rays, and synchrotron emission.

Heliospheric modulation is not yet understood in detail. The first and yet popular force-field approximation (Gleson & Axford 1968) does not work at low energies. More sophisticated drift models reflect our still incomplete current knowledge. The main problem here is that the modulation parameters are determined based on the assumed ad hoc interstellar nucleon spectrum. The antiproton/proton ratio, which is often calculated, is even more uncertain at low energies and may vary by an order of magnitude over the solar cycle (Labrador & Mewaldt 1997). It is therefore the antiproton spectrum itself which should be compared with calculations. On the other hand, a reliable calculation of the antiproton spectrum would allow the study of charge sign dependent effects in the heliosphere. That could, in turn, help to derive the low-energy part of the local interstellar (LIS) spectrum of nucleons and help to establish the heliospheric diffusion coefficients more accurately.

We have developed a numerical method and corresponding computer code GALPROP³ for the calculation of Galactic CR propagation in 3D (Strong & Moskalenko 1998). The code has been shown to reproduce simultaneously observational data of many kinds related to CR origin and propagation (for a review see Strong & Moskalenko 1999; Moskalenko & Strong 2000). The code has been validated on direct measurements of nuclei, antiprotons, electrons, and positrons, and astronomical measurements of γ-rays and synchrotron radiation. These data provide many independent constraints on model parameters.

The code is sufficiently general that new physical effects can be introduced as required. The basic spatial propa-

<table>
<thead>
<tr>
<th>Model</th>
<th>Sources of uncertainties</th>
<th>Parameters</th>
<th>Modulation model</th>
<th>Tertiary antiprotons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bergström et al. (1999)</td>
<td>Semi-phenomenological</td>
<td>n/y</td>
<td>force-field</td>
<td>y</td>
</tr>
<tr>
<td>Bieber et al. (1999)</td>
<td>Semi-phenomenological</td>
<td>n/n</td>
<td>steady-state</td>
<td>y</td>
</tr>
<tr>
<td>Bottino et al. (1998)</td>
<td>Semi-phenomenological</td>
<td>n/n</td>
<td>force-field</td>
<td>n</td>
</tr>
<tr>
<td>Simon et al. (1998)</td>
<td>Semi-phenomenological</td>
<td>n/n</td>
<td>steady-state</td>
<td>y</td>
</tr>
<tr>
<td>Present work</td>
<td>Semi-phenomenological</td>
<td>n/n</td>
<td>steady-state</td>
<td>y</td>
</tr>
</tbody>
</table>

³Our model including software and datasets is available at http://www.gamma.mpe-garching.mpg.de/~aws/aws.html
Reacceleration provides a mechanism to reproduce the B/C ratio without an ad-hoc form for the diffusion coefficient. Our reacceleration treatment assumes a Kolmogorov spectrum with $\delta = 1/3$ or value close to this. For the case of reacceleration the momentum-space diffusion coefficient D_{pp} is related to the spatial coefficient D_{xz} (Berezinskii et al. 1990; Seo & Ptuskin 1994) via the Alfvén speed v_A.

The convection velocity (in z-direction only) $V(z)$ is assumed to increase linearly with distance from the plane ($dV/dz > 0$ for all z). This implies a constant adiabatic energy loss; the possibility of adiabatic energy gain ($dV/dz < 0$) is not considered. The linear form for $V(z)$ is consistent with cosmic-ray driven MHD wind models (e.g., Zirakashvili et al. 1996). The velocity at $z = 0$ is a model parameter, but we consider here only $V(0) = 0$.

The interstellar hydrogen distribution uses H I and CO surveys and information on the ionized component; the helium fraction of the gas is taken as 0.11 by number. The H$_2$ and H I gas number densities in the Galactic plane are defined in the form of tables, which are interpolated linearly. The extension of the gas distribution to an arbitrary height above the plane is made using analytical approximations. The distributions of 2×H$_2$, H I, and H II are plotted on Figure 1 for $z = 0, 0.1, 0.2$ kpc. The code uses the densities averaged over the z-grid using a 0.01 kpc step. More details about the gas distribution model are given in Appendix A.

![Figure 1: Number density distributions of 2×H$_2$ (solid), H I (dashes), and H II (dots) in the Galaxy. Shown are the plots for $z = 0, 0.1, 0.2$ kpc (decreasing density). Number density of H$_2$ at $z = 0.2$ kpc from the plane is very low and is not shown in the plot.](image)
Positrons and electrons (including secondary electrons) are propagated in the same model. Positron production is computed as described in Moskalenko & Strong (1998), that paper includes a critical reevaluation of the secondary π^\pm- and K^\pm-meson decay calculations.

Gas-related γ-ray intensities are computed from the emissivities as a function of (R, z, E_γ) using the column densities of H i and H2. The interstellar radiation field (ISRF), used for calculation of the inverse Compton (IC) emission and electron energy losses, is calculated based on stellar population models and COBE results, plus the cosmic microwave background.

An overview of our previous analyses is presented in Strong & Moskalenko (1999) and Moskalenko & Strong (2000) and full results for protons, helium, positrons, and electrons in Moskalenko & Strong (1998) and Strong, Moskalenko, & Reimer (2000). The evaluations of the B/C and 10Be/9Be ratios, diffusion/convection and reacceleration models and full details of the numerical method are given in Strong & Moskalenko (1998). Antiprotons have been previously discussed in the context of the “hard interstellar nucleon spectrum” hypothesis in Moskalenko, Strong, & Moskalenko (1998). Our results for diffuse continuum γ-rays, synchrotron radiation, and a new evaluation of the ISRF are described in Strong et al. (2000).

2.1. New developments

The experience gained from the original fortran–90 code allowed us to design a new version of the model, entirely rewritten in C++, that is much more flexible. It allows essential optimizations in comparison to the older model and a full 3-dimensional spatial grid. It is now possible to explicitly solve the full nuclear reaction network on a spatially resolved grid. The code can thus serve as a complete substitute for the conventional “leaky-box” or “weighted-slab” propagation models usually employed, giving many advantages such as the correct treatment of radioactive nuclei, realistic gas and source distributions etc. It also allows stochastic SNR sources to be included. It still contains an option to switch to the fast running cylindrically symmetrical model which is sufficient for many applications such as the present one.

In the new version, we have updated the cross-section code to include the latest measurements and energy dependent fitting functions. The nuclear reaction network is built using the Nuclear Data Sheets. The isotopic cross section database consists of more than 2000 points collected from sources published in 1969–1999. This includes a critical re-evaluation of some data and cross checks. The isotopic cross sections are calculated using the author’s fits to major beryllium and boron production cross sections $p + C, N, O \rightarrow Be, B$. Other cross sections are calculated using Webber, Kish, & Schrier (1990)4 and/or Silberberg and Tsao5 phenomenological approximations renormalized to the data where it exists. The cross sections on the He target are calculated using a parametrization by Ferrand et al. (1988).

The reaction network is solved starting at the heaviest nuclei (i.e., 64Ni). The propagation equation is solved, computing all the resulting secondary source functions, and then proceeds to the nuclei with $A = 1$. The procedure is repeated down to $A = 1$. In this way all secondary, tertiary etc. reactions are automatically accounted for. This includes secondary protons, inelastically scattered primaries; their energy distribution after scattering is assumed to be the same as for antiprotons (eq. [2]). To be completely accurate for all isotopes, e.g., for some rare cases of β^--decay, the whole loop is repeated twice. Our preliminary results for all cosmic ray species $Z \leq 28$ are given in Strong & Moskalenko (2001).

For the calculation reported here, we use a cylindrically symmetrical Galactic geometry.

2.2. Antiproton cross sections

We calculate \bar{p} production and propagation using the basic formalism described in Moskalenko et al. (1998). Antiproton production in pp-collisions has been calculated using the parametrization of the invariant \bar{p}-production cross section given by Tan & Ng (1983b). This parametrization fits available data quite well. It gives an antiproton multiplicity slightly higher than the DTUNUC code just above the threshold and agrees with DTUNUC results at higher energies (Simon et al. 1998).

For the cross sections σ_{pp}^{inel} and σ_{pA}^{inel} we adapted parametrizations by Tan & Ng (1983a), Groom et al. (2000), and Letaw, Silberberg, & Tsao (1983). At low energies the total $\bar{p}p$ inelastic cross section has been calculated using a fit from Tan & Ng (1983a). At high energies it is calculated as the difference between total $\bar{p}p$ and pp cross sections which are parametrized using Regge theory (Groom et al. 2000). The \bar{p} absorption cross section on an arbitrary nuclear target has been scaled by $A^{2/3}$ using the measured \bar{p}-C,Al,Cu cross sections (Moiseev & Ormes 1997).

To this we have added \bar{p} annihilation and treated inelastically scattered \bar{p}‘s as a separate “tertiary” component. The energy distribution after scattering is assumed to be (Tan & Ng 1983a)

$$\frac{dN(E_\bar{p}, E_p)}{dE_\bar{p}} \cdot \frac{1}{T_p} = \frac{\bar{p}}{p}, \quad (2)$$

where $E_\bar{p}$ and E_p are the total \bar{p} energy before and after scattering correspondingly, and T_p is the p kinetic energy before scattering.

The \bar{p} production by nuclei with $Z \geq 2$ is calculated using effective nuclear factors by Simon et al. (1998) and scaling factors similar to Gaisser & Schaefer (1992).

4 Code WNEWTR.FOR, version 1993, as posted at http://spdsch.phys.lsu.edu/SPDSCH_Pages/Software_Pages/Cross_Section_Calcs/WebberKishSchrier.html (some minor changes have been made to make it compatible with GALPROP).

5 Code YIELDX_011000.FOR, version 2000, as posted at http://spdsch.phys.lsu.edu/SPDSCH_Pages/Software_Pages/Cross_Section_Calcs/SilberburgTsao.html (some minor changes have been made to make it compatible with GALPROP).
In the first method we use the effective factor obtained from simulations of the \(\bar{p} \) production with the Monte Carlo model DTUNUC, which appear to be more accurate than simple scaling. The use of this factor is consistent since the proton spectrum adapted in Simon et al. (1998) is close to our propagated spectrum above the \(\bar{p} \) production threshold. For convenience, we made a fit to the ratio of the total \(\bar{p} \) yield to the \(p \) yield from the \(pp \) reaction (column 3/column 2 ratio as given in Table 2 in Simon et al. 1998):

\[
\frac{\sigma_{\gamma}/\sigma_{pp}}{T_{\bar{p}}} = 0.12 (T_{\bar{p}}/\text{GeV})^{-1.67} + 1.78,
\]

where \(T_{\bar{p}} \) is the kinetic \(\bar{p} \) energy.

In the second method the cross section for \(\bar{p} \) production in proton-nucleus and nucleus-nucleus interactions has been obtained by scaling the \(pp \) invariant cross section with a factor (Gaisser & Schaefer 1992)

\[
F_{it-\bar{p}X} = 1.2 (A_i \sigma_{it}^{inel} + A_t \sigma_{ti}^{inel}) / 2 \sigma_{pp}^{inel},
\]

where \(A_i,t \) are the atomic numbers of the incident and target nuclei, \(\sigma_{it}, \sigma_{ti} \) are the \(pA_i,t \) cross sections, and a factor 1.2 is put for consistency with Simon et al. (1998) calculations. Production of low-energy antiprotons in \(po \)- and \(\alpha \)-reactions is increased over that for simple scaling. In order to account for this effect we put \(E_{\bar{p}} = E_p + 0.06 \text{ GeV} \) instead of \(E_p \) when calculating the source spectra.

Detailed results published by Simon et al. (1998) (their Figs. 2, 4, 7) allow us to test the approximation given by equation (4) and show its equivalence to DTUNUC calculations and to equation (3). For these tests we used interstellar proton and helium spectra as published by Menn et al. (2000); these spectra were used by Simon et al. (1998). The main discrepancy is \(\sim 15 - 20\% \) under-production of antiprotons in \(pp \)-collisions between \(T_{\bar{p}} \sim 5-30 \text{ GeV} \) compared to Simon et al. calculations (their Fig. 7), but this does not influence production and propagation of antiprotons at lower energies. At energies below \(\sim 5 \text{ GeV} \) the factors given by equation (3) and equation (4) are virtually equivalent. We further use equation (3) in our calculations.

The \(pp \) elastic scattering is not included. At sufficiently high energies it is dominated by the forward peak with small energy transfer while at low energies the inelastic cross section (mostly annihilation) accounts for about 70% of the total cross section (Eisenhandler et al. 1976; Brückner et al. 1986).

As we will see, the accuracy of antiproton cross sections is now a limiting factor; we therefore summarize the current status in Appendix B.

3. SOLAR MODULATION

Thanks to the Ulysses mission significant progress has been made in our understanding of the major mechanisms driving the modulation of CR in the heliosphere. The principal factors in modulation modeling are the heliospheric magnetic field (HMF), the solar wind speed, the tilt of the heliospheric current sheet, and the diffusion tensor. Here, we give a short description of the model used in this paper for modulation of galactic protons and antiprotons. More detail on the characteristics of heliospheric modulation and modulation models can be found elsewhere (e.g., Potgieter 1997; Burger et al. 2000, and references therein).

Modulation models are based on the numerical solution of the cosmic ray transport equation (Parker 1965):

\[
\frac{\partial f(r, \rho, t)}{\partial t} = - (\mathbf{V} + \langle \mathbf{V_D} \rangle) \cdot \nabla f + \nabla \cdot (\mathbf{K} \cdot \nabla f) + \frac{1}{3} (\nabla \cdot \mathbf{V}) \frac{\partial f}{\partial \ln \rho},
\]

where \(f(r, \rho, t) \) is the CR distribution function, \(\mathbf{r} \) is the position, \(\rho \) is the rigidity, and \(t \) is time. Terms on the right-hand side represent convection, gradient and curvature drifts, diffusion, and adiabatic energy losses respectively, with \(\mathbf{V} \) the solar wind velocity. The symmetric part of the tensor \(\mathbf{K} \) consists of diffusion coefficients parallel (\(K_\parallel \)) and perpendicular (\(K_\perp \)) to the average HMF. The anti-symmetric element \(K_A \) describes gradient and curvature drifts in the large scale HMF where the pitch angle averaged guiding center drift velocity for a near isotropic CR distribution is given by \(\langle \mathbf{v}_D \rangle = \nabla \times \mathbf{K}_A \mathbf{E}_B \), with \(\mathbf{e}_B = \mathbf{B}/B \), and \(B \) the magnitude of the background magnetic field. The effective radial diffusion coefficient is given by \(K_{rr} = K_\parallel \cos^2 \psi + K_\perp \sin^2 \psi \), with \(\psi \) the angle between the radial direction and the averaged magnetic field direction. We enhanced perpendicular diffusion in the polar direction by assuming \(K_\perp > K_\parallel \) in the heliospheric polar regions (see also Potgieter 2000).

Drift models predict a clear charge-sign dependence for the heliospheric modulation of positively charged particles, e.g., CR protons and positrons, and negatively charged particles, e.g., electrons and antiprotons. This is due to the different large-scale gradient, curvature and current sheet drifts that charged particles experience in the HMF. For example, antiprotons will drift inwards primarily through the polar regions of the heliosphere during \(A < 0 \) polarity cycles, when the HMF is directed towards the Sun in the northern hemisphere. Protons, on the other hand, will then drift inwards primarily through the equatorial regions of the heliosphere, encountering the wavy heliospheric current sheet in the process. During the \(A > 0 \) polarity cycles the drift directions for the two species reverse, so that a clear 22-year cycle is caused (e.g., Burger & Potgieter 1999).

We use a steady-state two-dimensional model that simulates the effect of a wavy current sheet (Hattingh & Burger 1995) by using an averaged drift field with only \(r \)- and \(\theta \)-components for the three-dimensional drift pattern in the region swept out by the wavy current sheet. The solar wind speed is \(400 \text{ km/s} \) in the equatorial plane and increases to \(800 \text{ km/s} \) in the polar regions (for details see Burger et al. 2000). A modified HMF is used (Jokipii & Kóta 1989). The outer boundary is assumed to be at 120 AU.

The diffusion tensor is described in detail by Burger et al. (2000), who used the same models for turbulence (Zank, Matthaeus, & Smith 1996), but have adapted the coefficients to reflect some of the results from the numerical simulations (Giacalone & Jokipii 1999; Giacalone, Jokipii, & Kóta 1999).

The model here gives latitudinal gradients in excellent agreement with Ulysses observations, for both its value and its rigidity dependence (Burger et al. 2000). The model also gives realistic radial dependence for CR protons during consecutive solar minima, with the radial gra-
gradients distinctly smaller in the $A > 0$ than in the $A < 0$

cycles. Detailed fits to Pioneer and Voyager observations require that different diffusion coefficients must be used

for consecutive solar minimum periods (Potgieter 2000).

The maximum extent of the HCS (tilt angle) has been

used in modulation models as a proxy for solar activity

since the 1970’s, when it was realized that drifts were

important. Figure 2 shows the tilt angle\(^6\), which is used

as input in our modulation calculations, for two of Hoek-

sema’s models (classic “L-model” and a newer “R-model”)

vs. time. The upper and lower curves represent his old and

new model correspondingly (e.g., Hoeksema 1992; Zhao &

Hoeksema 1995). The difference between the models illus-

trates the error in the tilt angles one has to consider when

used in any modulation modeling.

\[\rho = \frac{1}{\eta} \]

\[m^2 \propto \rho^2 (\beta^{-2} - 1), \]

The statistical precision in these first measurements was

poor (Yoshimura et al. 2001).

An annihilation technique (Buffington, Schindler, &

Pennybacker 1981) was used to make the first alleged mea-

surement of lower energy antiprotons (< 1 GeV). This

technique was designed to stop the antiprotons in a vis-

ualization device. Antiprotons were identified by limiting

their intrinsic kinetic energy (< 500 MeV) and finding

their rest energy (~ 2 GeV) from the number of anni-

hilation prongs and large energy release. We now know

that this experiment must also have been plagued by a

high background of interacting particles because the flux

of ~ 200 MeV antiprotons found exceeds that of more re-

cent measurements by more than an order of magnitude.

However, these papers stimulated the realization that

antiprotons could be produced by exotic processes such as

the annihilation of primordial black holes or dark matter

in the galactic halo (e.g., Carr 1985; Maki et al. 1996; Sz-

abelski, Wdowczyk, & Wolfendale 1980; Kiraly et al. 1981;

Silk & Srednicki 1984; Rudaz & Stecker 1988; Ellis et al.

1988; Stecker & Tylka 1989; Jungman & Kamionkowski

1994; Chardonnet et al. 1996).

During the past 5 years, the BESS (Balloon-borne Ex-

periments with a Super-conducting Solenoid) Collabora-

tion (Yamamoto et al. 1993) has made a set of accurate

new measurements that motivated this attempt to make a

more accurate model calculation. This impressive payload

now has data that extend from about 200 MeV (at the

top of the atmosphere) to 4 GeV. Importantly, this covers

the energy range of the expected peak in the antiproton

distribution at 2 GeV where the flux is highest. The first

reported mass resolved measurements (Ahlen et al. 1988;

Salamon et al. 1990; Yoshimura et al. 1995; Mitchell et al.

1994; Chardonnet et al. 1996) of antiprotons were made at lower energies where

determining both the momentum per unit charge (rigid-

ity) and velocity was easier. As can be seen from equation

(6) both are needed to determine the mass:

\[\frac{(\Delta m)^2}{m^2} = \frac{(\Delta \rho)^2}{\rho^2} + \frac{(\Delta \beta)^2}{\beta^2 (1 - \beta^2)} \]

\[\rho = \frac{1}{\eta} \]

\[m^2 \propto \rho^2 (\beta^{-2} - 1), \]

The statistical precision in these first measurements was

poor (Yoshimura et al. 2001).

In BESS the charge sign and rigidity are determined

by track measuring drift chambers located in the uniform

magnetic field inside the bore of their superconducting

magnet. Extending to higher energy has required the use

of not only the most precise time of flight measurement but

also the addition of aerogel Cherenkov detectors for mea-

suring velocity. The BESS team, through a series of an-

nual balloon campaigns in Lynn Lake, Manitoba, Canada,

has continuously improved the time resolution and in 1997

they added an aerogel counter, extending the energy cov-

erage beyond 2 GeV. In addition, the data handling capa-

city has continuously improved to decrease dead time and

increase precision.

In this paper we use mainly BESS data collected in 1995

and 1997 (Orito et al. 2000). However in one plot (§ 6, Fig.

6See URL http://quake.stanford.edu/~wso/
11), we have combined the data from those BESS flights with their 1998 data (Maeno et al. 2001) after correcting it for increased solar modulation level. The flights in 1995 and 1997 took place in near solar minimum conditions while the 1998 flight was just after solar modulation minimum (Fig. 2). The flights of 1997 and 1998 are the only BESS flights that have data reaching the 2 GeV peak. The statistical precision with which the flux at 2 GeV is known is now better than 10% (1σ). The data are now good enough to detect solar modulation effects at this energy at about the same magnitude.

The BESS group has carried out an extensive calibration of their instrument to check for ways to reduce sources of systematic error. They report systematic uncertainty in the antiproton flux measurements to be about 5% (Asaoka et al. 2001).

Data at energies above 4 GeV on the steeply falling part of the antiproton spectrum are more difficult to obtain. We have used the results reported by the MASS group (Hof et al. 1996; Basini et al. 1999) from a flight in 1991 based on the original Golden et al. (1979) payload but with an improved gas Cherenkov detector; we have used their most recent analysis (Stochaj et al. 2001). These data have error bars that extend up and down by a factor of ~2. We can say that they are consistent with antiprotons being of secondary origin but are not precise enough to place constraints on the model presented here.

5. NEW CALCULATIONS

5.1. Local proton and helium spectra

Secondary antiprotons are produced in collisions of energetic protons and helium nuclei with interstellar gas, so the interstellar spectra of these nuclei is fundamental to calculating antiproton spectra expected at Earth. A major problem in determination of the LIS CR spectrum is the effect of heliospheric modulation that has been discussed in detail in §3. Inverting equation (5) is not well-defined making the accurate derivation of the LIS spectrum a complicated task. However at energies above the antiproton production threshold, at 10–30 GeV/nucleon, the heliospheric modulation is weak. We thus try to get an approximate LIS spectrum using the force-field approximation (Gleeson & Axford 1968). The appropriate modulation potential (Φ) has been chosen using CLIMAX neutron monitor data (Badhwar & O’Neill 1996).

Spectra given in the literature are quoted in different ways, sometimes as power laws in kinetic energy, sometimes rigidity or total energy. Also different measurements have different systematic uncertainties in flux. In order to best determine the asymptotic slope of the locally observed spectrum we have summarized all recent measurements and fitted them assuming a LIS spectrum which is a power-law in kinetic energy. (We note that fitting to a power-law in rigidity yields the spectrum which is too steep to agree with high energy data by Sokol and JACEE.)

To get an idea of which part of the nucleon spectrum contributes most to antiproton production, we have made runs in which we cut the nucleon spectrum at different energies. Our analysis shows that ~97% of all antiprotons below 6 GeV are produced by nucleons below ~200 GeV/nucleon. The nucleons at ≤20 GeV/nucleon yield about 1/3 of all antiprotons ≤1 GeV, nucleons of ≤50 GeV/nucleon yield about 80% of all antiprotons ≤2 GeV, and 90% of antiprotons ≤4 GeV are produced by nucleons of ≤100 GeV/nucleon. Therefore the spectra at moderate energies, up to ~200 GeV/nucleon, are of most importance.

Tables 2 and 3 show our fits to recent measurements of CR protons and helium. (The power-law in kinetic energy has been modulated with appropriate modulation potential and then fitted to the data.) From the parameters fitted to each individual set of measurements we calculate the weighted averages. The reduced χ² (χ² per the degree of freedom) shows the quality of the fits.

The fitted parameters are not unique since the modulation potential is not well determined, and on account of the systematic and statistical errors. We therefore use also representative high energy data, above ~100 GeV/nucleon, where the modulation has no effect, for a cross check. In particular, our composite proton spectrum, 1.60 × 10⁴E⁻².⁷⁵ m⁻² s⁻¹ sr⁻¹ GeV⁻¹ (Fig. 4), passes through Sokol (Ivanenko et al. 1993) and JACEE data points (Asakimori et al. 1998). The index agrees well with that determined by Ryan, Ormes, & Balasubramanyan (1972), 2.75±0.03, and HEGRA below the knee (Arqueros et al. 2000), 2.72±0.02±0.07. The derived LIS proton spec-

Table 2

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Fitting interval E_{kin}, GeV</th>
<th>Normalization, (m² s sr GeV⁻¹)</th>
<th>Power-law index</th>
<th>Modulation potential, MV</th>
<th>Fit quantity, χ²/n</th>
<th>Flight date, Data</th>
<th>Data reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEAP</td>
<td>20–100</td>
<td>2.69 ± 0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MASS2</td>
<td>20–100</td>
<td>(1.93 ± 0.15) × 10⁴</td>
<td>2.82 ± 0.03</td>
<td>1200</td>
<td>0.53</td>
<td>910923</td>
<td>2</td>
</tr>
<tr>
<td>IMAX</td>
<td>20–200</td>
<td>(1.08 ± 0.15) × 10⁴</td>
<td>2.66 ± 0.04</td>
<td>750</td>
<td>0.26</td>
<td>920716-17</td>
<td>3</td>
</tr>
<tr>
<td>CAPRICE</td>
<td>20–200</td>
<td>(1.55 ± 0.19) × 10⁴</td>
<td>2.80 ± 0.03</td>
<td>600</td>
<td>2.54</td>
<td>940808-09</td>
<td>4</td>
</tr>
<tr>
<td>AMS</td>
<td>20–200</td>
<td>(1.82 ± 0.21) × 10⁴</td>
<td>2.79 ± 0.03</td>
<td>550</td>
<td>0.13</td>
<td>9806</td>
<td>5</td>
</tr>
<tr>
<td>BESS</td>
<td>20–120</td>
<td>(1.61 ± 0.13) × 10⁴</td>
<td>2.75 ± 0.03</td>
<td>550</td>
<td>0.05</td>
<td>980729-30</td>
<td>6</td>
</tr>
<tr>
<td>Weighted average</td>
<td>(1.58 ± 0.08) × 10⁴</td>
<td>2.76 ± 0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

aAssuming power-law in kinetic energy LIS spectrum.

References. — (1) Seo et al. (1991); (2) Belotti et al. (1999); (3) Menn et al. (2000); (4) Boezio et al. (1999); (5) Alcaraz et al. (2000a); (6) Sanuki et al. (2000).
The propagated helium spectrum with an appropriate normalization matches after modulation the data better than the averaged LIS spectrum from Table 3. The latter is somewhat too low when compared with high-energy data by Sokol and JACEE.

5.2. Propagation models and parameters

To investigate the range of interstellar spectra and propagation parameters we have run a large number of models. Here we consider four basic cases (see Table 4).

The injection spectrum was chosen to reproduce the local CR measurements (see § 5.1). The source abundances of all isotopes $Z \leq 28$ are given in Strong & Moskalenko (2001). The propagation parameters have been fixed using the B/C ratio. Because of the cross section fits to the main Be and B production channels and renormalization to the data where it exists, the propagation parameters show only weak dependence ($\sim 10\%$ change in the diffusion coefficient) on the cross section parametrization (Webber et al. 1990, Silberberg & Tsao). We thus use Webber et al. cross section code in our calculations.

The propagation calculations yield LIS spectra which can not be described by a single power-law, the estimates together with data will serve as useful guidelines.

The propagated helium spectrum with an appropriate normalization matches after modulation the data better than the averaged LIS spectrum from Table 3. The latter is somewhat too low when compared with high-energy data by Sokol and JACEE.

5.2. Propagation models and parameters

To investigate the range of interstellar spectra and propagation parameters we have run a large number of models. Here we consider four basic cases (see Table 4).

The injection spectrum was chosen to reproduce the local CR measurements (see § 5.1). The source abundances of all isotopes $Z \leq 28$ are given in Strong & Moskalenko (2001). The propagation parameters have been fixed using the B/C ratio. Because of the cross section fits to the main Be and B production channels and renormalization to the data where it exists, the propagation parameters show only weak dependence ($\sim 10\%$ change in the diffusion coefficient) on the cross section parametrization (Webber et al. 1990, Silberberg & Tsao). We thus use Webber et al. cross section code in our calculations.

In all cases the halo size has been set to $z_h = 4$ kpc, which is within the range $z_h = 3 - 7$ kpc derived using the GALRPOP code and the combined measurements of radioactive isotope abundances, 10Be, 26Al, 36Cl, and 54Mn.

Table 3

Parameters of the LIS helium spectrum as derived in present paper.

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Fitting interval E_{kin} GeV/n</th>
<th>Normalization, $(m^2 s sr GeV/n)^{-1}$</th>
<th>Power-law index</th>
<th>Modulation potential, MV</th>
<th>Fit quality, χ^2_n</th>
<th>Flight date, yymmdd</th>
<th>Data reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEAP</td>
<td>10–100</td>
<td>—</td>
<td>2.69 ± 0.09</td>
<td>550</td>
<td>—</td>
<td>870821</td>
<td>1</td>
</tr>
<tr>
<td>MASS2</td>
<td>10–50</td>
<td>686 ± 130</td>
<td>2.79 ± 0.07</td>
<td>1200</td>
<td>0.44</td>
<td>910923</td>
<td>2</td>
</tr>
<tr>
<td>IMAX</td>
<td>10–125</td>
<td>600 ± 120</td>
<td>2.70 ± 0.07</td>
<td>750</td>
<td>0.69</td>
<td>920716-17</td>
<td>3</td>
</tr>
<tr>
<td>CAPRICE</td>
<td>10–100</td>
<td>590 ± 124</td>
<td>2.73 ± 0.07</td>
<td>600</td>
<td>0.66</td>
<td>940808-09</td>
<td>4</td>
</tr>
<tr>
<td>AMS</td>
<td>10–100</td>
<td>653 ± 56</td>
<td>2.72 ± 0.03</td>
<td>550</td>
<td>0.39</td>
<td>9806</td>
<td>5</td>
</tr>
<tr>
<td>BESS</td>
<td>10–50</td>
<td>640 ± 139</td>
<td>2.67 ± 0.07</td>
<td>550</td>
<td>0.14</td>
<td>980729-30</td>
<td>6</td>
</tr>
<tr>
<td>Weighted average</td>
<td></td>
<td>641 ± 53</td>
<td>2.72 ± 0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Assuming power-law in kinetic energy per nucleon LIS spectrum.

References. — (1) Seo et al. (1991); (2) Belotti et al. (1999); (3) Menn et al. (2000); (4) Boezio et al. (1999); (5) Alcaraz et al. (2000b); (6) Sanuki et al. (2000).

Table 4

Propagation parameter sets.

<table>
<thead>
<tr>
<th>Model</th>
<th>Injection index, γ</th>
<th>Diffusion coefficient<sup>a</sup> D_0, cm2 s$^{-1}$</th>
<th>Index, δ</th>
<th>Reacceleration<sup>b</sup>/Convection $v_A/w^{1/2}$, km s$^{-1}$</th>
<th>dV/dz, km s$^{-1}$ kpc$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diffusive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reacceleration (DR)</td>
<td>2.43</td>
<td>6.10 × 10<sup>28</sup></td>
<td>0.33</td>
<td>30</td>
<td>—</td>
</tr>
<tr>
<td>Minimal Reacceleration plus Convection (MRC)</td>
<td>2.43</td>
<td>4.30 × 10<sup>28</sup></td>
<td>0.33</td>
<td>17</td>
<td>10</td>
</tr>
<tr>
<td>Plain Diffusion (PD)</td>
<td>2.16</td>
<td>3.10 × 10<sup>28</sup></td>
<td>0.60</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Diffusion plus Convection (DC)</td>
<td>2.46/2.16<sup>d</sup></td>
<td>2.50 × 10<sup>28</sup></td>
<td>0/0.60<sup>a</sup></td>
<td>—</td>
<td>10</td>
</tr>
</tbody>
</table>

Note. — Adopted halo size $z_h = 4$ kpc.

^a$\rho_0 = 4$ GV, index δ is shown below/above ρ_0.

^bv_A is the Alfvén speed, and w is defined as the ratio of MHD wave energy density to magnetic field energy density.

^cFor a power-law in rigidity, $\propto \rho^{-\gamma}$.

^dIndex below/above rigidity 20 GV.
Our results are plotted in Figures 3–7. The upper curve is always the LIS spectrum, except in the B/C ratio plot (Fig. 3) where the lower curves are the LIS ratio. The modulation on these plots has been done using the force-field approximation. For the B/C ratio (Fig. 3) in the DC model the result of modulation in the drift model is also shown though the difference (force-field approximation vs. drift model) is small.

The “tertiary” antiprotons (inelastically scattered secondaries), significant at the lowest energies, are important in interstellar space, but make no difference when compared with measurements in the heliosphere (Fig. 7). The model with the diffusive reacceleration (DR) reproduces the sharp peak in secondary to primary nuclei ratios in a physically understandable way without breaks in the diffusion coefficient and/or the injection spectrum (Strong & Moskalenko 1998, 2001). However, this model produces a bump in proton and He spectra at ~2 GeV/nucleon that is not observed.\(^7\) This bump can be removed by choosing an injection spectrum that is flatter at low energies (see, e.g., Jones et al. 2001). There are however some problems with secondaries such as positrons and antiprotons which are difficult to manage. A similar bump appears in the positron spectrum at ~1 GeV, and the model underproduces antiprotons at 2 GeV by more than 30\%. Taken together they provide an evidence against “strong” reacceleration\(^8\) in the ISM.

Another model combining reduced reacceleration and convection (MRC) also produces too few antiprotons. Using a plain diffusion model (PD) we can get good agreement with B/C above few GeV/nucleon, with nucleon spectra and positrons, but this model overproduces antiprotons at 2 GeV by ~20\% and contradicts the secondary/primary nuclei ratio (B/C) below 1 GeV/nucleon.

A diffusion model with convection (DC) is our “best fitting model”. It reproduces all the particle data “on average”, although it has still some problem with reproduction of the sharp peak in the B/C ratio. In this model a flattening of the diffusion coefficient (\(\delta = 0\)) below 4 GV is required to match the B/C ratio at low energies. A possible physical origin for the behaviour of the diffusion coefficient is discussed in §5.3.

To better match primaries (\(p, \text{He}\)) in the DC model, we introduced a steeper injection spectrum below 20 GV which compensates for some energy losses during propagation; such a break, however, has almost no effect on secondaries (\(\bar{p}, e^\pm\)). The existence of a sharp upturn below few GeV/nucleon is in fact predicted from SNR shock acceleration theory (Ellison et al. 2001); this is a transition region between thermal and non-thermal particle populations in the shock. Our model does not require a large break (0.3 in index is enough, see Table 4). More discussion is given in §5.3 and §7.

The drift model has been used for heliospheric modulation of all spectra obtained in DC model (\(p, \text{He}, B/C, e^\pm, \bar{p}\)). The same modulation parameter set has been applied to all the species and the agreement is good. The B/C ratio (Fig. 3) is virtually insensitive to the modulation level, it remains the same for a wide variety of tilt angles.

5.3. Discussion

Our “best-fit” model (DC) with a constant diffusion coefficient below 4 GV suggests some change in the propagation mode. Propagation and scattering of the high energy particles on magnetic turbulence is described by the diffusion with the diffusion coefficient increasing with energy. The growth of the diffusion coefficient depends on the adopted spectrum of magnetic turbulence and is typically in the range 0.3 – 0.6. However, at low energies particles could propagate following the magnetic field lines rather than scatter on magnetic turbulences. This change in the propagation mode may affect the diffusion coefficient making it less dependent on energy. Since the magnetic field lines are essentially tangled such a process can still behave like diffusion (Berezinskii et al. 1990).

One more unknown variable is the CR spectrum in the distant regions of the Galaxy. The LIS nucleon spectrum

\(^7\)A similar bump is produced also in the electron spectrum at 1 GeV.

\(^8\)We define that the reacceleration is “strong” if the model is able to match the B/C ratio without invoking other mechanisms such as convection and/or breaks in the diffusion coefficient.
Fig. 4.— Calculated proton interstellar spectrum (LIS) and modulated spectrum (force field, $\Phi = 550$ MV). The lines are coded as in Figure 3. Data: IMAX (Menn et al. 2000), CAPRICE (Boezio et al. 1999), AMS (Alcaraz et al. 2000a), BESS (Sanuki et al. 2000), Sokol (Ivanenko et al. 1993), and JACEE (Asakimori et al. 1998).

Fig. 5.— Calculated He interstellar spectrum (LIS) and modulated spectrum (force field, $\Phi = 550$ MV). The lines are coded as in Figure 3. Data: IMAX (Menn et al. 2000), CAPRICE (Boezio et al. 1999), AMS (Alcaraz et al. 2000b), BESS (Sanuki et al. 2000), Sokol (Ivanenko et al. 1993), and JACEE (Asakimori et al. 1998).
is studied quite well by direct measurements at high energies where solar modulation effects are minimal. Meanwhile the ambient CR proton spectrum on the large scale remains unknown. The most direct test is provided by diffuse γ-rays. However there is the well known puzzle of the GeV excess in the EGRET diffuse γ-ray spectrum (Hunter et al. 1997) which makes a direct interpretation in terms of protons problematic, and possibly inverse-Compton emission from a hard electron spectrum is responsible (Strong et al. 2000); for this reason we do not consider γ-rays further here.

6. VARIATIONS OF PROTON AND ANTIPROTON SPECTRA OVER THE SOLAR CYCLES

We use the DC model to calculate the LIS spectra of protons and antiprotons and then use the drift model to determine their modulated spectra and ratio over the solar cycles with positive ($A > 0$) and negative ($A < 0$) polarity (Figs. 8–10). The variations shown depend on the tilt angle. When combined with Figure 2 this allows us to estimate the near-Earth spectra for arbitrary epochs in the past as well as make some predictions for the future. It may be also used to test the theory of heliospheric modulation.

The \bar{p}/p ratio is supposed to be more accurately measured than the flux. Interestingly, the \bar{p}/p ratio appears largely insensitive to the modulation level during the $A > 0$ cycle (Fig. 10, left). This agrees within the error bars with BESS \bar{p}/p measurements made in 1993, 1995, 1997, and 1998 (Maeno et al. 2001), and thus allows us to constrain the proton spectrum at low energies, in the heliosphere above ~ 0.1 GeV and the LIS spectrum above ~ 0.7 GeV. In the new cycle ($A < 0$), on the contrary, this ratio is predicted to vary by over an order of magnitude (Fig. 10, right), which will allow us to validate the calculations of heliospheric modulation including charge sign effects.

Now we use the predicted variations over the solar cycle to combine BESS data collected in 1995, 1997 during the solar minimum with BESS data collected in 1998, when the solar activity was moderate (the tilt angle about 25°). The correction was calculated using the energy-dependent factor, $F(E)_{5/25} = \psi_{5}/\psi_{25}$, the ratio of modulated antiproton spectra with tilt angles 5° and 25°. The data of 1998 and their error bars have been multiplied by this factor. The spectrum obtained in such a way has been further combined with BESS data collected in 1995, 1997. The combined spectrum agrees very well with calculations for tilt angle 5° and $A > 0$ (Fig. 11).

The combined spectrum, however, is not sensitive to the exact value of the tilt angle at the epoch of BESS-98 flight. It looks very similar for tilt angles 15° and 35°. The reason is that the error bars of the data collected in 1998 are large, so that their relative weight is small.

7. CONCLUSIONS

In this paper, we have studied four basic propagation models. Table 5 summarizes the results this study. First, we applied a propagation model with reacceleration. It reproduces nuclear secondary/primary ratios rather well.
Fig. 8.— Calculated proton LIS and modulated spectra for the two magnetic polarity dependent modulation epochs, $A > 0$ (left) and $A < 0$ (right). Tilt angle from top to bottom: $5^\circ, 15^\circ, 25^\circ, 35^\circ, 45^\circ, 55^\circ, 65^\circ, 75^\circ$. The tilt angle corresponding to BESS and AMS data is $\sim 5^\circ - 15^\circ$ ($A > 0$) depending on the coronal field model. On the right panel, $A < 0$, the data are shown only for guidance. Data references as in Figure 4.

Fig. 9.— Calculated antiproton LIS and modulated spectra for the two magnetic polarity dependent modulation epochs, $A > 0$ (left) and $A < 0$ (right). Tilt angle from top to bottom: $5^\circ, 15^\circ, 25^\circ, 35^\circ, 45^\circ, 55^\circ, 65^\circ, 75^\circ$. The tilt angle corresponding to BESS data is $\sim 5^\circ - 15^\circ$ ($A > 0$) depending on the coronal field model. On the right panel, $A < 0$, the data are shown only for guidance. Data references as in Figure 4.
but has some difficulties with reproduction of primary proton and He spectra, and, more important with secondary positrons and antiprotons. Another model with reduced reacceleration strength and convection also produces too few antiprotons. A plain diffusion model (no reacceleration, no convection) reproduces the high energy part of nuclear secondary/primary ratios, protons, and positrons, but it has a problem with the low energy part of nuclear secondary/primary ratios and overestimates the antiproton flux. A model with convection and flattening of the diffusion coefficient at low energies and a break in the injection spectrum is our “best-fit” model. It reproduces well all particle data “on average”. The spectrum of diffuse γ-rays calculated for this model, cannot explain the EGRET GeV excess (Hunter et al. 1997), but this could originate in other ways.

During the last decade there have been a number of space and balloon experiments with improved sensitivity and statistics. They impose stricter constraints on the CR propagation models. It has become clear that currently there is no simple model that is able to simultaneously reproduce all data related to CR origin and propagation. This conclusion is thus mainly the result of the increased precision of the CR experimental data, but also the improved reliability of the calculations of interstellar and heliospheric propagation.

Fig. 10.— Calculated \bar{p}/p ratio in the interstellar medium (LIS) and modulated for the two magnetic polarity dependent modulation epochs, $A > 0$ (left) and $A < 0$ (right). Left: Tilt angle from top to bottom (solid lines): $5^\circ, 15^\circ, 25^\circ, 35^\circ$; from top to bottom (dotted lines): $75^\circ, 65^\circ, 55^\circ, 45^\circ$. (Lines almost coincide for the tilt angles $35^\circ, 45^\circ$ and $25^\circ, 55^\circ$, and very close for $15^\circ, 65^\circ$.) Right: Tilt angle from bottom to top (solid lines): $5^\circ, 15^\circ, 25^\circ, 35^\circ, 45^\circ$; from bottom to top (dotted lines): $75^\circ, 65^\circ, 55^\circ$. (Lines are very close for the tilt angles $35^\circ, 65^\circ$ and $45^\circ, 55^\circ$.) Data: BESS (Orito et al. 2000; Maeno et al. 2001), MASS91 (Hof et al. 1996; Stochaj et al. 2001), and CAPRICE98 (Bergström et al. 2000).

Fig. 11.— BESS 1995-97 data and the data combined with “corrected” BESS 1998 measurements. Shown also are the calculated antiproton interstellar (LIS) and modulated spectrum for a tilt angle 5° ($A > 0$). Data references as in Figure 7.
What could be the origin of this failure (to find a simple model), apart from the propagation models? Concerning the accuracy of the experimental data, the spectra of protons and helium are measured almost simultaneously and quite precisely by BESS and AMS and the agreement is impressive. They also agree with earlier experiments, such as LEAP, IMAX, CAPRICE, within the error bars. The most accurate measurements of nuclei at low energies are made by Voyager, Ulysses, and ACE, and the agreement is good. At higher energies the data obtained by HEAO-3 are the most accurate and generally agree with earlier measurements. Electron flux measurements made by HEAT, CAPRICE, and at Sanriku balloon facility all agree. Positron data, though with large error bars, are in agreement as well. The possibility that BESS antiproton data have systematic errors as large as +20% looks improbable. They have carried out calibrations which demonstrate that the error must be ≤5% (Asaoka et al. 2001). However, additional measurements are desirable.

Nuclear cross section errors are one of the main concerns. Fitting (matching) the measured B/C ratio is a standard procedure to derive the propagation parameters. The calculated ratio, in turn, depends on many cross sections, such as the total interaction and isotope production cross sections. The latter appear to have quite large uncertainties, typically about 20%, and sometimes they can even be wrong by an order of magnitude (see, e.g., Moskalenko, Mashniki, & Strong 2001a). This is reflected in the value of the diffusion coefficient, the Alfvén velocity (parameterizing reacceleration) and/or convection velocity; and thus influences the calculated spectra of CR species. Our cross section calculations make use of the fits to the cross sections p + C, N, O → Be, B, that produce most of the Be and B. Other channels are calculated using the Webber et al. or Silberberg & Tsao cross section codes renormalized to data where it exists. We thus can rule out a possibility of large errors in the calculated B/C ratio.

Solar modulation for antiprotons is different from that of protons, the effect known as charge sign dependence. Over the last years Ulysses made its measurements at different heliolatitudes so we know more about the solar magnetic field configuration and the solar wind velocity distribution. On the other hand, the two Voyagers, the most distant spacecraft, provide us with measurements of particle fluxes made close to the heliospheric boundary. There is thus a small chance of a serious error, e.g., that the antiproton flux during the last solar minimum was modulated much more weakly than estimated.

The underproduction of antiprotons in the reacceleration model may be connected with a contribution of primary antiprotons, but this suggestion conflicts with other CR data. A strong secondary antiproton signal would be accompanied by the positron signal and an excess in γ-rays (EGRET GeV excess ?). However, the positron flux calculated in the DR model already shows an excess rather than deficit. Besides, only few SUSY dark matter candidates are able to produce a signal large enough to be detected and even in this case primary antiprotons contribute mostly to low energies (see discussions in Bottino et al. 1998; Bergström et al. 1999).

Considering reacceleration models, there is the possibility that the injection spectra of protons and nuclei might be different. For instance, spectra of nuclei Z > 2 are well reproduced by a reacceleration model with a power-law (in rigidity) injection spectrum, while protons, helium, and electrons require some spectral flattening at low energies to avoid developing a bump in the spectrum. This is in agreement with conclusions made by other authors (Jones et al. 2001). The difficulty is to get the right positron and antiproton fluxes in the reacceleration model. On the other hand, non-reacceleration models require some spectral steepening at low energies (compensation for energy losses) to get good agreement with the spectra of primaries. Such steepening may be a consequence of SNR shock acceleration (Ellison et al. 2001).

If we assume that the problem is in propagation models, we have shown that it is possible to construct a model (DC) that fits all these data, by postulating a significant flattening of the diffusion coefficient below 4 GV together with convection (and possibly with some reacceleration) and a break in the injection spectrum. The break in the diffusion coefficient is reminiscent of the standard procedure in “leaky-box” models where the escape time is set to a constant below a few GeV. This has always appeared a completely ad hoc device without physical justification, but the present analysis suggest it may be forced on us by the data. Therefore, possibilities for its physical origin should be studied.

Where do we go from here? New measurements of CR species that cover the range 0.5 – 1000 GeV/nucleon are necessary to distinguish between reacceleration and non-reacceleration models. The new experiment PAMELA scheduled for launch in 2002 should improve accuracy of positron (0.1–200 GeV) and electron (0.1–300 GeV) measurements while allowing for simultaneous measurements of ¯p and nuclei from H to C in the energy range 0.1–200 GeV/nucleon (The PAMELA Coll. 1999). The puzzling excess in the diffuse γ-rays above 1 GeV in EGRET data

<table>
<thead>
<tr>
<th>Model</th>
<th>B/C</th>
<th>Primaries</th>
<th>Secondaries</th>
</tr>
</thead>
<tbody>
<tr>
<td>DR a</td>
<td>Good</td>
<td>LE bump/Good</td>
<td>Too few LE bump</td>
</tr>
<tr>
<td>MRC b</td>
<td>Fair</td>
<td>LE bump/Good</td>
<td>Too few LE bump</td>
</tr>
<tr>
<td>PD</td>
<td>Too large at LE</td>
<td>Good</td>
<td>Too many</td>
</tr>
<tr>
<td>DC</td>
<td>Fair</td>
<td>Good</td>
<td>Good</td>
</tr>
</tbody>
</table>

aThe reproduction of spectra of primaries can be improved by choice of the injection spectrum.
A. THE INTERSTELLAR GAS DENSITY DISTRIBUTION IN THE CYLINDRICALLY SYMMETRICAL MODEL

The H₂ number density in mols. cm⁻³ is calculated from

\[n_{H₂}(R, z) = 3.24 \times 10^{-22} X_0(R) e^{-\ln 2} (z-z_0)^2/z_0^2, \]

(A1)

where \(X_0(R) \) (K km s⁻¹ kpc⁻¹) is the CO volume emissivity, \(z_0(R) \) and \(z_h(R) \) are the height scale and width defined by a table (Bronfman et al. 1988), and \(X \equiv n_{H₂}/\epsilon_{CO} = 1.9 \times 10^{20} \) mols. cm⁻²/(K km s⁻¹) is the conversion factor (Strong & Mattox 1996).

The H I (atom cm⁻³) relative distribution is taken from Gordon & Burton (1976), but renormalized to agree with Dickey & Lockman (1990), since they give their best model for the \(z \)-distribution in the range \(R = 4 - 8 \) kpc and state the total integral perpendicular to the plane is \(6.2 \times 10^{20} \) cm⁻²:

\[n_{HI}(R, z) = \frac{1}{n_{GB}} Y(R) \left\{ \begin{array}{ll}
\sum_{i=1,2} A_i e^{-\ln 2} z^2/z_i^2 + A_3 e^{-|z|/z_3}, & R \leq 8 \text{kpc} \\
\text{interpolated,} & 8 < R \leq 10 \text{kpc} \\
\text{DL exp}(-z^2 e^{-0.22R/z_i^2}), & R \geq 10 \text{kpc}
\end{array} \right. \]

(A2)

Here \(Y(R) \) is the distribution from Gordon & Burton (1976) (\(R < 16 \) kpc), \(n_{GB} = 0.33 \) cm⁻³ and \(n_{DL} = 0.57 \) cm⁻³ are the disk densities in the range \(4 < R < 8 \) kpc in models by Gordon & Burton (1976) and Dickey & Lockman (1990), correspondingly. The \(z \)-dependence is calculated using the approximation by Dickey & Lockman (1990) for \(R < 8 \) kpc, using the approximation by Cox, Krügel, & Mezger (1986) for \(R > 10 \) kpc, and interpolated in between, and the parameter values are \(A_1 = 0.395, A_2 = 0.107, A_3 = 0.064, z_1 = 0.106, z_2 = 0.265, z_3 = 0.403, z_4 = 0.0523. \) For \(R > 16 \) kpc an exponential tail is assumed with scale length 3 kpc.

The ionized component H II (atom cm⁻³) is calculated using a cylindrically symmetrical model (Cordes et al. 1991):

\[n_{HI}(R, z) = \sum_{i=1,2} n_i e^{-|z|/h_i, -(R-R_i)^2/a_i^2}, \]

(A3)

where \(n_1 = 0.025, n_2 = 0.200, h_1 = 1 \) kpc, \(h_2 = 0.15 \) kpc, \(R_1 = 0, R_2 = 4 \) kpc, \(a_1 = 20 \) kpc, \(a_2 = 2 \) kpc.

B. PROTON AND ANTIPROTON CROSS SECTIONS

The energy and momentum units are GeV and GeV/c correspondingly. All cross section given are in mb and plotted in Figure B12 (except for the production cross section). An asterisk marks the center-of-mass system (CMS) variables.

The inclusive antiproton production cross section (mb GeV⁻² c⁶) in pp-reaction is given by (Tan & Ng 1983b):

\[E_p \frac{d^3\sigma}{dp^3} = \delta(x_t) f(x_t) \exp\{ -A(x_t)p_t + B(x_t)p_t^2 \}, \]

(B1)

\[f = 1.05 \times 10^{-4} \exp\{ -10.1x_t \theta(0.5 - x_t) + 3.15(1 - x_t)^7, \]

\[A = 0.465 \exp\{ -0.037x_t \} + 2.31 \exp\{ 0.014x_t \}, \]

\[B = 0.0302 \exp\{ -3.19(x_t + 0.399) \} (x_t + 0.399)^{8.39}, \]

\[x_t = E_p^*/E_p^{\text{max}}, \]
where $\theta(x)$ is the Heaviside step function ($\theta(x > 0) = 1$, otherwise $=0$), p_t is the transverse momentum of the antiproton, $E_\bar{p}^*$ is the total CMS energy of the antiproton, $E_{\bar{p}}^{* \text{ max}}$ is the maximal value of $E_\bar{p}^*$ for the given inclusive reaction, and $\delta(x_t)$ is the low energy correction, $\delta = 1$ at $s^{1/2} > 10$ GeV. At $s^{1/2} \leq 10$ GeV it is given by:

\[
\delta^{-1} = 1 - \exp \left\{ - \exp \left[c(x_t)Q - d(x_t) \right] \left(1 - \exp \left[-a(x_t)Q^b(x_t) \right] \right) \right\},
\]

\[
a = 0.306 \exp\{-0.12x_t\}, \quad b = 0.0552 \exp\{2.72x_t\}, \quad c = 0.758 - 0.68x_t + 1.54x_t^2, \quad d = 0.594 \exp\{2.87x_t\},
\]

\[
Q = s^{1/2} - 4M_p,
\]

\[
x_t = \frac{E_\bar{p} - M_p}{T_{\bar{p}}^*},
\]

$s = 2M_p(E_\bar{p} + M_p) = \text{inv}$ is the square of the total CMS energy of colliding particles, M_p is the proton rest mass, $T_{\bar{p}}^*$ is the kinetic CMS energy of antiproton, and $T_{\bar{p}}^{* \text{ max}}$ is the maximal value of $T_{\bar{p}}^*$ for the given inclusive reaction.

Proton-proton inelastic cross section (Tan & Ng 1983a):

\[
\sigma_{pp}^{\text{ inel}} = 32.2 \left[1 + 0.0273U + 0.01U^2\theta(U) \right] \begin{cases} 0, & T_p < 0.3; \\ 1, & (1 + 2.62 \times 10^{-3}T_p - C)^{-1}, & 0.3 \leq T_p < 3; \\ & T_p \geq 3; \end{cases}
\]

\[
U = \ln(E_p/200), \quad C = 17.9 + 13.8 \ln T_p + 4.41 \ln^2 T_p,
\]

where $\theta(U)$ is the Heaviside step function, E_p and T_p are the total and kinetic energy of proton, correspondingly.

Nucleus-proton inelastic cross section (Letaw et al. 1983):

\[
\sigma_{pA}^{\text{ inel}} = 45.4A^{0.7}\delta(T_p) \left[1 + 0.016 \sin(5.3 - 2.63 \ln A) \right] \begin{cases} 1 - 0.62e^{-T_p/0.2} \sin \left(\frac{10.9}{10^3 T_p^{0.2}} \right), & T_p \leq 3; \\ 1, & T_p > 3; \end{cases}
\]

\[
\delta = \begin{cases} 1 + 0.75 \exp\{-T_p/0.075\}, & \text{for beryllium}; \\ 1, & \text{otherwise}; \end{cases}
\]

where A is the atomic number. In the case of $p\text{He}$ inelastic cross section equation (B3) is known to be not very accurate, while the $p-{^4}\text{He}$ cross section is the most important after the pp cross section. We thus made our own fit to the data in the range 0.02 – 50 GeV:

\[
\sigma_{p\text{He}}^{\text{ inel}} = 111 \left\{ 1 - \exp[-3.84(T_p - 0.1)] \left(1 - \sin[9.72 \log^{0.319}(10^3 T_p) - 4.14] \right) \right\},
\]

![Fig. B12.— Proton and antiproton cross sections.](image)
\[\sigma_{pp}^\text{tot} = \begin{cases} 24.7 \left(1 + 0.584 T_p^{-0.115} + 0.856 T_p^{-0.566} \right), & T_p \leq 14; \\ \sigma_{pp}^\text{inel} + \sigma_{pp}^\text{tot}, & T_p > 14. \end{cases} \] (B5)

where \(T_p \) is the square of the total CMS energy of colliding particles as defined in equation (B2). Annihilation is of minor importance at high energies.

The antiproton-proton inelastic cross section is taken equal to proton-nucleus inelastic cross section, \(\sigma_{pp}^\text{inel} \).

The parametrization of the \(\bar{p} \) total inelastic cross section on an arbitrary nuclear target has been obtained in Moiseev \\& Ormes (1997) using a parametrization by Kuzichev, Lepikhin, \\& Smirnitsky (1994) and has been tested against the data available on \(\bar{p} \) cross sections on C, Al, and Cu targets:

\[\sigma_{\bar{p}A}^\text{tot} = A^{1/3} \left[48.2 + 19 T_p^{-0.55} + (0.1 - 0.18 T_p^{-1.2}) Z + 0.0012 T_p^{-1.5} Z^2 \right], \] (B6)

where \(Z \) is the nucleus charge. The second term in square brackets has been modified from its original form \((T_p - 0.02)^{-0.55} \) to better match the slope below \(\sim 100 \) MeV. This modification does not affect agreement with data at higher energies. Another modification, in the case of \(^4 \)He, is to use \(A = 3.3 \) to scale the value down slightly to be consistent with cross section data both at low and high energies (Allaby et al. 1971; Balestra et al. 1985).

The \(\bar{p}A \) annihilation cross section is calculated from \(\sigma_{\bar{p}A} = \sigma_{\bar{p}A}^\text{tot} - \sigma_{\bar{p}A}^\text{non} \), where \(\sigma_{\bar{p}A}^\text{non} = \sigma_{pA}^\text{inel} \). This is quite accurate provided that the He abundance is about 10\% that of H.

REFERENCES

Brückner, W. et al., 1986, Phys. Lett. B, 166, 113
Carr, B. J. 1985, in Observational and Theoretical Aspects of Relativistic Astrophysics and Cosmology, ed. J. L. Sanz \\& L. J. Goicoechea (Singapore: World Scientific), 1