Photons, neutrinos, and optical activity
Ali Abbasabadi
Department of Physical Sciences, Ferris State University, Big Rapids, Michigan 49307, USA
Wayne W. Repko
Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA

abstract
We compute the one-loop helicity amplitudes for low-energy $\nu \gamma \rightarrow \nu \gamma$ scattering and its crossed channels in the standard model with massless neutrinos. In the center of mass, with $\sqrt{s} = 2\omega \ll 2m_e$, the cross sections for these $2 \rightarrow 2$ channels grow roughly as ω^6. The scattered photons in the elastic channel are circularly polarized and the net value of the polarization is non-zero. We also present a discussion of the optical activity of a sea of neutrinos and estimate the values of its index of refraction and rotary power.
$\nu\gamma \rightarrow \nu\gamma$

$\sqrt{s} = m_e$

$d\sigma/dz \text{ (pb)}$

$z = \cos\theta$
$\nu\gamma \rightarrow \nu\gamma$

Graph showing the relationship between $\sigma (10^{-30} \text{pb})$ and \sqrt{s}/m_e.
\(\gamma \gamma \rightarrow \nu \bar{\nu} \)

\[\sqrt{s} = m_e \]

\[d\sigma/dz \ (\text{pb}) \]

\[z = \cos \theta \]
\(\gamma \gamma \rightarrow \nu \bar{\nu} \)
$P(z)$

$\sqrt{s} = m_e$

$\sqrt{s} = 20 \text{ GeV}$

$z = \cos \theta$