The axial vector and tensor charge, defined as the first moments of the forward nucleon matrix elements of corresponding quark currents, are essential for characterizing the spin structure of the nucleon. However, the transversity distribution and thus the tensor charge decouple at leading twist in deep inelastic scattering, making them hard to measure. Additionally, the non-conservation of the tensor charge makes it difficult to predict. There are no definitive theoretical predictions for the tensor charge, aside from several model dependent calculations. We present a new approach that exploits the approximate mass degeneracy of the light axial vector mesons (a1(1260), h0(1235) and h1(1170)) and uses pole dominance to calculate the tensor charge. The result is simple in form. It depends on the decay constants of the axial vector mesons and their couplings to the nucleons, along with the average transverse momentum of the quarks in the nucleon.

The spin composition of the nucleon has been intensely studied and has produced important and surprising insights, beginning with the revelation that the majority of its spin is carried by quark and gluonic orbital angular momenta and gluon spin rather than by quark helicity [1, 2]. Considerable effort has gone into understanding, predicting and measuring the corresponding transversity distributions for the nucleon constituents (see [3] and references therein). The leading twist transversity structure function, h1(x), is as fundamental to understanding the nature of the non-perturbative QCD regime of hadronic physics as is the longitudinal function g1(x), which in principle can be measured in hard scattering processes. Yet, the transversity distribution is suppressed at leading twist in deep inelastic lepton scattering since it is chiral odd. The same comparison applies to the various quark spin dependent helicity ∆qα(x) and transversity δqα(x) (for flavor index α) distributions.

In their systematic study of the chiral odd distributions, Jaffe and Ji [4] related the first moment of the transversity distribution to the flavor contributions to the nucleon tensor charge:

$$\int_0^1 (\delta q^a(x) - \delta q^\ell(x)) \, dx = \delta q^a. \tag{1}$$

Because there must be a helicity flip of the struck quark in order to probe the transverse spin polarization of the nucleon, the transversity distribution (and thus the tensor charge) decouples at leading twist in deep inelastic scattering. No such suppression appears in Drell-Yan scattering where Ralston and Soper [5] first encountered the transversity distribution entering the corresponding transverse spin (both the beam’s and target’s spin being transversely polarized to the incident beam direction) asymmetries. Consequently, the charge is difficult to measure and its non-conservation [6] makes it difficult to predict. While bounds placed on the leading twist quark distributions through positivity constraints suggest that they satisfy the inequality of Soffer [7];

$$|2\delta q^a(x)| \leq q^a(x) + \Delta q^a(x), \tag{2}$$

(where q^a denotes the unpolarized quark distribution), model calculations yield a range of theoretical predictions [3].

Like the isoscalar and isovector axial vector charges defined from the forward nucleon matrix element of the axial vector current, the nucleon tensor charge is defined from the corresponding forward matrix element of the tensor current,

$$\langle P, S_T | \bar{\psi}\sigma^{\mu\nu}\gamma_5 \frac{\lambda^a}{2} \psi | P, S_T \rangle = 2\delta q^a(\mu^2)(P^\mu S_T^\ell - P^\ell S_T^\mu), \tag{3}$$

where $S_T^Q \sim (|+\rangle \pm |-> \rangle)$ for the moving nucleon is the transversity [8]. Unlike the axial vector isovector charge, no sum rule has been written that enables a clear relation between the tensor charge and a low energy measurable quantity. So, aside from model calculations, there are no definitive theoretical predictions of...
The SU mass degeneracy by decay. It is natural to represent this phenomenological parameters, arising in the expressions for the tensor charge by using axial vector dominance and an approximate phenomenological mass symmetry among the lowest lying axial vector mesons – the isoscalar $h_1(1260)$ and the isovector $b_1(1235)$. To analyze this expression in the limit $k^2 \to 0$ we require the vertex functions for the nucleon coupling to the h_1 and b_1 meson and the corresponding matrix elements of the meson decay amplitudes which are related to the meson to vacuum matrix element via the quark tensor current. The former yield the nucleon coupling constants g_{MNN} defined from the matrix element

$$\langle MP|P = i g_{MNN} \pi (P, ST) \sigma^{\mu \nu} u (P, ST) \varepsilon_\mu P_\nu, \quad (5)$$

where P_μ is the nucleon momentum, and the latter yield the meson decay constant, f_M

$$f_M \langle [\bar{\psi} \sigma^{\mu \nu} \gamma_5 \frac{\lambda^a}{2} \psi] | M \rangle = i f_M^a (\varepsilon_\mu k_\nu - \varepsilon_\nu k_\mu), \quad (6)$$

where the k_μ and ε_ν are the meson momentum and polarization respectively. For transverse polarized Dirac particles, $S^a = (0, ST)$ we project out the tensor charge using the constraint on the vector meson, $k \cdot \varepsilon_M = 0$

$$\delta q^a = \frac{f_M^a g_{MNN} (ST \cdot k)^2}{2 M_N M_M^2} \quad (7)$$

In order to evaluate the tensor charge at the scale dictated by the axial vector meson dominance model we must determine the isoscalar and isovector meson coupling constants. Taking a hint from the valence interpretation of the tensor charge, we exploit the phenomenological mass symmetry among the lowest lying axial vector mesons that couple to the tensor charge; we adopt the spin-flavor symmetry characterized by an $SU(6) \otimes O(3)$ [21,22] multiplet structure. Thus, the 1^{++} h_1 and b_1 mesons fall into a $(35 \otimes L = 1)$ multiplet that contains $J^{PC} = 1^{++}, 0^{++}, 1^{++}, 2^{++}$ states. This analysis enables us to relate the a_1 meson decay constant measured in $\tau^- \to a_1^- + \nu$ decay [23]

$$f_{a_1} = (0.19 \pm 0.03) \text{GeV}^2, \quad (8)$$

and the a_1NN coupling constant

$$g_{a_1NN} = 7.49 \pm 1.0, \quad (9)$$

(as determined from a_1 axial vector dominance for longitudinal charge as derived by Birkel and Fritzsch [24] but using $g_A/g_V = 1.267$ [25]) to the meson decay constants, f_{b_1}, f_{b_2} and coupling constants, g_{b_1NN} and g_{b_2NN}. We find

$$f_{b_1} = \frac{\sqrt{2}}{M_{b_1}} f_{a_1}, \quad g_{b_1NN} = \frac{5}{3 \sqrt{2}} g_{a_1NN}, \quad (10)$$

where the $5/3$ appears from the $SU(6)$ factor $(1 + F/D)$ and the $\sqrt{2}$ arises from the $L = 1$ relation between the 1^{++} and 1^{++} states. Our resulting value of $f_{b_1} \approx 0.21 \pm 0.03$ agrees well with a summary determination of 0.18 ± 0.03 [11,26]. The b_1 couplings are related to the b_1 couplings via $SU(3)$ and the $SU(6)$ F/D value,
\[f_{h_1} = \sqrt{3} f_{h_1}, \quad g_{h_1NN} = \frac{5}{\sqrt{3}} g_{h_1NN}. \] (11)

These, in turn, enable us to determine the isovector and isoscalar parts of the tensor charge,

\[\delta q^v = \frac{f_{h_1} g_{h_1NN} (k_{1}^2)}{\sqrt{2} M_N M_{h_1}}, \quad \delta q^s = \frac{f_{h_1} g_{h_1NN} (k_{1}^2)}{\sqrt{2} M_N M_{h_1}}, \] (12)

respectively (where, \(\delta q^v = (\delta u - \delta d) \), and \(\delta q^s = (\delta u + \delta d) \)). Transverse momentum appears in these expressions because the tensor couplings involve helicity flips that carry kinematic factors of momentum transfer. The intrinsic \(k_\perp \) of the quarks in the nucleon is non-zero, as determined from Drell-Yan and heavy vector boson production processes. Using a Gaussian momentum distribution, and letting \(\langle k_{1}^2 \rangle \) range from \((0.58 \text{ to } 1.0 \text{ GeV}^2)\) [27] results in the \(u \) and \(d \) quark transversity ranging from

\[\delta u (\mu^2) = (0.43 \text{ to } 0.74) \pm 0.20, \]
\[\delta d (\mu^2) = (0.26 \text{ to } 0.47) \pm 0.20. \] (13)

These values for the \(u \)-quark tensor charge lie slightly lower than most other estimates while the \(d \)-quark charge is negative and of a comparable magnitude. These results, with their uncertainty, are consistent with the Soffer inequality [7] applied to the charges, \(q + \Delta q \geq 2|\delta q| \), although near the equality. Note that many predictions have the ratio \(\delta d/\delta u \) near \(-1/4 \text{ or } (1-\sqrt{3})/(1+\sqrt{3})\), the value resulting from an \(SU(3) \) degeneracy between the \(\pi^0 \) and the \(\eta(8) \) octet elements in their coupling to the \(u \)-quark and the \(d \)-quark, i.e. the isoscalar coupling to \(u \) and \(d \)-quarks is \(\sqrt{3} \) times the isovector. In our calculation the isoscalar and isovector axial vector couplings to the nucleon also enter as factors in the expressions for the charges, with the \(D/F \) ratio being \(3/2 \) in exact \(SU(6) \). Loosening the \(SU(6) \) constraint and incorporating mixing of the \(h_1(1170) \) with the \(h_1(1380) \) will alter the \(u \) to \(d \) ratio.

In relating the \(b_1(1235) \) and \(h_1(1170) \) couplings in Eq. (11) we assumed that the latter isoscalar was a pure octet element, \(h_1(8) \). Experimentally, the higher mass \(h_1(1380) \) was seen in the \(K^+K^-\pi^+\pi^- \) decay channel [25,28] while the \(h_1(1170) \) was detected in the multi-pion channel [25,29]. This decay pattern indicates that the higher mass state is strangeonium and decouples from the lighter quarks – the well known mixing pattern of the vector meson nonet elements \(\omega \) and \(\phi \). If the \(h_1 \) states are mixed states of the \(SU(3) \) octet \(h_1(8) \) and singlet \(h_1(1) \) analogously, then

\[h_1(1170) = \sqrt{\frac{2}{3}} h_1(8) - \frac{1}{\sqrt{3}} h_1(1), \]
\[h_1(1380) = \frac{1}{\sqrt{3}} h_1(8) + \sqrt{\frac{2}{3}} h_1(1), \] (14)

from which it follows that

\[f_{h_1(1170)} = f_{h_1}, \quad \text{and} \quad g_{h_1(1170)NN} = \frac{3}{\sqrt{5}} g_{h_1NN}, \] (15)

with the \(h_1(1380) \) not coupling to the nucleon (for \(g_{h_1(1380)NN} = \sqrt{2} g_{h_1(8)NN} \)). These symmetry relations alter the results in Eq. (13) to

\[\delta u (\mu^2) = (0.58 \text{ to } 1.01) \pm 0.20, \]
\[\delta d (\mu^2) = (0.11 \text{ to } 0.20) \pm 0.20. \] (16)

The values in Eq. (16) are closer to several other model calculations including: tensor charges on the lattice [12]; QCD sum rules [9], the bag model [30,9] and a numerically similar Melosh Transform approach [13]; the chiral quark model with Goldstone boson effects [31]; and quark soliton models [32–34].

The calculation has been carried out at the scale \(\mu \approx 1 \text{ GeV} \), which is set by the nucleon mass as well as being the mean mass of the axial vector meson multiplet. The appropriate evolution to higher scales (wherein the Drell-Yan processes are studied) is determined by the anomalous dimensions of the tensor charge [6] which is straightforward but slowly varying.

It is interesting to observe that the symmetry relations that connect the \(b_1 \) couplings to the \(a_1 \) couplings in Eq. (10) can be used to relate directly the isovector tensor charge to the axial vector coupling \(g_A \). This is accomplished through the \(a_1 \) dominance expression for the isovector longitudinal charges derived by Birkel and Fritzsch [24],

\[\Delta u - \Delta d = \frac{g_A}{g_V} = \frac{\sqrt{2} f_{h_1} g_{h_1NN}}{M_{a_1}^2}. \] (17)

Hence for \(\delta q^v \) we have

\[\delta u - \delta d = \frac{5}{6} \frac{g_A}{M_{a_1}} \frac{M_N^2}{M_{h_1}} \langle k_{1}^2 \rangle, \] (18)

a remarkable relation that appears more fundamental than its derivation. It is important to realize that this relation can hold at the scale wherein the couplings were specified, the meson masses, but will be altered at higher scales (logarithmically) by the different evolution equations for the \(\Delta q \) and \(\delta q \) charges. To write an analogous expression for the isoscalar charges \((\Delta u + \Delta d) \) would involve the singlet mixing terms and gluon contributions, as Ref. [24] considers. However, given that the tensor charge does not involve gluon contributions (and anomalies), it may be expected that the relation between the \(h_1 \) and \(b_1 \) couplings in the same \(SU(3) \) multiplet will lead to a more direct result

\[\delta u + \delta d = \frac{3}{\sqrt{5}} \frac{M_{a_1}^2}{M_{b_1}^2} \delta q^v, \] (19)

for the ideally mixed singlet-octet \(h_1(1170) \). These are also remarkable relations that are quite distinct from other predictions.
In conclusion, our axial vector dominance model with \(SU(6)_W \otimes O(3) \) coupling relations provide simple formulae for the tensor charges. This simplicity belies the considerable subtlety of the (non-perturbative) hadronic physics that is summarized in those formulae. We obtain the same order of magnitude as most other calculation schemes. These results support the view that the underlying hadronic physics, while quite difficult to formulate from first principles, is essentially a \(1^\pm \) meson exchange process. Forthcoming experiments will begin to test this notion.

ACKNOWLEDGMENTS

G.R.G. thanks X. Ji for a useful discussion and R. L. Jaffe for bringing the tensor charge problem to his attention. L. G. thanks H. Reinhardt and H. Weigel of the Theoretical Physics Institute, University of T¨ubingen for their hospitality where part of this work was completed. This work is supported in part by a grant from the U.S. Department of Energy # DE-FG02-92ER40702.

