MONTE CARLO HAMILTONIAN: GENERALIZATION TO QUANTUM FIELD THEORY

XIANG-QIAN LUO
Department of Physics, Zhongshan University Guangzhou 510275, China

HAMZA JIRARI, HELMUT KRÖGER
Département de Physique, Université Laval, Québec, Québec G1K 7P4, Canada

KEVIN J.M. MORIARTY
Department of Mathematics, Statistics and Computer Science, Dalhousie University, Halifax, Nova Scotia B3H 3J5, Canada

Monte Carlo techniques with importance sampling have been extensively applied to lattice gauge theory in the Lagrangian formulation. Unfortunately, it is extremely difficult to compute the excited states using the conventional Monte Carlo algorithm. Our recently developed approach: the Monte Carlo Hamiltonian method, has been designed to overcome the difficulties of the conventional approach. In this paper, we extend the method to many body systems and quantum field theory. The Klein-Gordon field theory is used as a testing ground.

1 Introduction

Quantum theory is one of the most important achievements in modern science, but a lot of non-perturbative aspects are still poorly understood. There are two standard formulations in quantum theory: Hamiltonian and Lagrangian. A comparison of the conventional approaches is given in Tab.1.

The Lagrangian formulation is very suitable for applying the Monte Carlo (MC) method to systems with many degrees of freedom, and in the last two decades, it has been widely applied to lattice gauge theory. In the standard Lagrangian MC method, however, it is extremely difficult to compute the spectrum and wave function beyond the ground state. On the other hand, the standard Hamiltonian formulation is capable of doing it. If fact, some efforts have been made to solve the lattice QCD Schrödinger equation. But due to the complexity of non-Abelian gauge theory and high degrees of freedom, only the ground state and the lowest lying glueball states have been investigated. There have also been some attempts to perform numerical simulations in the Hamiltonian formulation, e.g. the quantum MC technique, MC method using a guided random walk, and the MC Green’s function method. For an review of MC methods applied to solve the quantum many-body problem see Ref.

0108026: submitted to World Scientific on August 29, 2001
Table 1. Comparison of the conventional methods in the standard formulations.

<table>
<thead>
<tr>
<th>Formulation</th>
<th>Hamiltonian</th>
<th>Lagrangian</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approach</td>
<td>Schrödinger Eq. (H</td>
<td>E_n⟩ = E_n</td>
</tr>
<tr>
<td>Algorithm</td>
<td>Series expansion, variational, Runge-Kutta ...</td>
<td>MC simulation</td>
</tr>
<tr>
<td>Advantage</td>
<td>Both the ground state, and the excited states can be computed.</td>
<td>It generates the most important configs. for the measurements.</td>
</tr>
<tr>
<td>Disadvantage</td>
<td>Analytical methods are too tedious for many body systems; Runge-Kutta works only in 1-D.</td>
<td>It is difficult to study the excited states, and finite density QCD.</td>
</tr>
</tbody>
</table>

A natural question is whether in Lagrangian MC simulations one can construct an effective Hamiltonian? If yes, the excited states can also be computed. We have recently proposed a new approach\(^{15}\) (we called it Monte Carlo Hamiltonian method) to investigate this problem. A lot of models\(^{15,16,17,18,19,20}\) in quantum mechanics (QM) have been used to test the method, as briefly reviewed in Sect. 2. In this paper, we will extend the method to many body systems and quantum field theory (QFT).

2 Algorithm

2.1 Effective Hamiltonian

The basic idea of the MC Hamiltonian method for one body quantum mechanics has been described in details in Ref.\(^{15}\). The (imaginary time) transition amplitude between an initial state at position \(x_i \), and time \(t_i \), and final state at \(x_f \) and \(t_f \) is related to the Hamiltonian \(H \) by

\[
M_{fi} = \langle x_f, t_f | x_i, t_i \rangle = \langle x_f | e^{-H(t_f-t_i)/\hbar} | x_i \rangle \\
= \sum_{n=1}^{\infty} \langle x_f | E_n \rangle e^{-E_n T/\hbar} \langle E_n | x_i \rangle, \tag{1}
\]
where \(T = t_f - t_i \). According to Feynman’s path integral formulation of QM, the transition amplitude is also related to the path integral:

\[
M_{fi} = \int \left[dx \right] \exp\left(-\frac{S[x]}{\hbar} \right) |_{x_i}^{x_f},
\]

(2)

where \(S = S_0 + S_V \) is the action for a given path, \(S_0 = \int_{t_i}^{t_f} dt \frac{m\dot{x}^2}{2} \), and \(S_V = \int_{t_i}^{t_f} dt V(x) \).

The results above are standard ones in Lagrangian formulations. What is new in our method\(^{15}\) is to construct an effective Hamiltonian \(H_{\text{eff}} \) (finite \(N \times N \) matrix) through

\[
M_{fi} = \langle f | e^{-\frac{H_{\text{eff}} T}{\hbar}} | i \rangle = \sum_{n=1}^{N} \langle f | E_{n}^{\text{eff}} \rangle e^{-\frac{E_{n}^{\text{eff}} T}{\hbar}} \langle E_{n}^{\text{eff}} | i \rangle.
\]

(3)

The eigenvalues \(E_{n}^{\text{eff}} \) and wave function \(| E_{n}^{\text{eff}} \rangle \) can be obtained, by diagonalizing \(M \) using a unitary transformation \(M = U^\dagger D U \), where \(D = \text{diag}(e^{-\frac{E_{1}^{\text{eff}} T}{\hbar}}, ..., e^{-\frac{E_{N}^{\text{eff}} T}{\hbar}}) \). Once the spectrum and wave functions are available, all physical information can also be obtained.

Since the theory described by \(H \), which has an infinite basis in Hilbert space, is now approximated by a theory described by a finite matrix \(H_{\text{eff}} \), which has a finite basis, the physics of \(H \) and \(H_{\text{eff}} \) might be quite different at high energy. Therefore we expect that we can only reproduce the low energy physics of the system. This is good enough for our purpose. In Refs.\(^{15,16,17,18,19,20}\), we investigated many 1-D, 2-D and 3-D QM models (Tab.2) using this MC Hamiltonian algorithm. We computed the spectrum, wave functions and some thermodynamical observables. The results are in very good agreement with those from analytical and/or Runge-Kutta methods.

2.2 Basis in Hilbert Space

To get the correct scale for the spectrum, the position state \(| x_n \rangle \) at initial time \(t_i \) or final time \(t_f \) (Bargman states or box states) should be properly normalized. We denote a normalized basis of Hilbert states as \(| e_n \rangle \), \(n = 1, ..., N \). In position space, it can be expressed as

\[
e_{n}(x) = \begin{cases}
\frac{1}{\sqrt{\Delta x_n}}, & x \in \left[x_n, x_{n+1} \right] \\
0, & x \notin \left[x_n, x_{n+1} \right]
\end{cases}
\]

(4)

where \(\Delta x_n = x_{n+1} - x_n \).

There is some arbitrariness in choosing a basis for the initial and final states. The simplest choice is a basis with \(\Delta x_n = \text{const.} \), which is called the
Table 2. QM systems, investigated by the MC Hamiltonian method with a regular basis.

<table>
<thead>
<tr>
<th>System</th>
<th>Potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>QM in 1-D</td>
<td>$V(x) = 0$</td>
</tr>
<tr>
<td></td>
<td>$V(x) = \frac{1}{2}m\omega^2x^2$</td>
</tr>
<tr>
<td></td>
<td>$V(x) = -V_0 \text{sech}^2(x)$</td>
</tr>
<tr>
<td></td>
<td>$V(x) = \frac{1}{2}x^2 + \frac{1}{4}x^4$</td>
</tr>
<tr>
<td></td>
<td>$V(x) = \frac{1}{2}</td>
</tr>
<tr>
<td></td>
<td>$V(x) = {\infty, x < 0}$</td>
</tr>
<tr>
<td></td>
<td>$Fx, x \geq 0$</td>
</tr>
<tr>
<td>QM in 2-D</td>
<td>$V(x, y) = \frac{1}{2}m\omega_x^2x^2 + \frac{1}{2}m\omega_y^2y^2$</td>
</tr>
<tr>
<td></td>
<td>$V(x, y) = \frac{1}{2}m\omega_x^2x^2 + \frac{1}{4}m\omega_y^2y^2 + \lambda xy$</td>
</tr>
<tr>
<td>QM in 3-D</td>
<td>$V(x, y, z) = \frac{1}{2}m\omega_x^2x^2 + \frac{1}{2}m\omega_y^2y^2 + \frac{1}{4}m\omega_z^2z^2$</td>
</tr>
</tbody>
</table>

“regular basis”. In Refs.15,16,17,18, the regular basis was used. For many body systems or QFT, the regular basis will encounter problems. For example, in a system with a 1-D chain of oscillators (see later), if the number of oscillators is 30, the minimum non-trivial regular basis is $N = 2^{30} = 1073741824 \approx 10^9$, which is prohibitively large for numerical calculations of the matrix elements.

Guided by the idea of importance sampling, in Refs.19,20, we proposed to select a basis from the Boltzmann weight proportional to the transition amplitude between $x_i' = 0 \text{ at } t_i' = 0 \text{ and } x_f' = x_n$ at some t_f'. In a free particle or harmonic oscillator case, the distribution is just a Gaussian

$$P_{\text{basis}}[x_n] = \frac{1}{\sqrt{2\pi}\sigma} \exp \left(-\frac{x_n^2}{2\sigma^2} \right),$$

where $\sigma = \sqrt{\hbar T/m}$ for the free case and $\sigma = \sqrt{\hbar \sinh(\omega T)/(m\omega)}$ for the harmonic oscillator. We call such a basis the “stochastic basis”, to be used as states at initial time t_i or final time t_f. For more complicated models, one may still use the Gaussian distribution, but with an adjustable parameter σ.

2.3 Matrix elements

As explained above, the calculation of the transition matrix elements is an essential ingredient of our method. The matrix element in the normalized basis is related to $\langle e_{n'}, t_f | e_n, t_i \rangle$ by

$$M_{n'n} = \langle e_{n'}, t_f | e_n, t_i \rangle = \int_{x_n}^{x_{n'+1}} dx' \int_{x_{n'}}^{x_{n'+1}} dx'' \frac{\langle x', t_f | x', t_i \rangle}{\sqrt{\Delta x_n'\Delta x_n}}$$
Figure 1. Config. 0 stands for the classical path. Config. 1, Config. 2 and Config. 3 stand the paths generated by MC. Here $N_t = 20$ (there are 19 time slices between t_i and t_f).

\[\approx \sqrt{\Delta x_n \Delta x_n} \langle x_{n'}, t_f | x_n, t_i \rangle, \]

where for the regular basis, $\Delta x_n = \text{const.}$, and for a stochastic basis, $\Delta x_n = 1/(P_{\text{basis}}[x_n] N)$. $\langle x_{n'}, t_f | x_n, t_i \rangle$ can be calculated by MC as follows.

(a) Discretize the continuous time with time interval $\Delta t = T/N_t$.

(b) Generate free configurations $[x]$ between $t \in (t_i, t_f)$ obeying the Boltzmann distribution

\[P_0[x] = \frac{\exp(-S_0[x]/\hbar)}{\int [dx] \exp(-S_0[x]/\hbar)|_{x_{n', t_f}}} P_{\text{basis}}[x_n]. \]

Figure 1 shows a sample of free configurations generated by MC method with importance sampling.

(c) Measure

\[\langle O_V \rangle = \int [dx] \exp(-S_V(x)/\hbar)|_{x_{n', t_f}} P_0[x]. \]

0108026: submitted to World Scientific on August 29, 2001
The path integral in Eq. (6) is then
\[
\langle x_{n'}, t_f | x_n, t_i \rangle = \langle O_V \rangle \sqrt{\frac{m}{2\pi \hbar T}} \exp \left[-\frac{m}{2\hbar T} (x_{n'} - x_n)^2 \right].
\] (9)

3 Quantum Field Theory

3.1 The Klein-Gordon model

The main purpose of the algorithm is to study many-body systems and QFT. As an example, we consider a free scalar field theory: the Klein-Gordon model in 1+1 dimensions, which has the Hamiltonian
\[
H = \int dx \frac{1}{2} \left(\pi^2 + \nu^2 \left(\frac{\partial \phi}{\partial x} \right)^2 + \Omega^2 \phi^2 \right).
\] (10)

Discretizing the theory on a finite string with N_{osc} sites and lattice spacing \(a \), and making the replacement \(x \rightarrow x_j = ja, \pi(x) \rightarrow a^{-1/2} \Pi(x_j), \phi(x) \rightarrow a^{-1/2} \phi(x_j) \), \(\int \rightarrow a \sum_{j=1}^{N_{osc}} \) and \(\nu \rightarrow a \Omega \), the Hamiltonian becomes
\[
H = \sum_{j=1}^{N_{osc}} \frac{1}{2} \left(\Pi^2(x_j) + \Omega^2 (\phi(x_j) - \phi(x_{j+1}))^2 + \Omega_0^2 \phi^2(x_j) \right),
\] (11)
which describes a chain of \(N_{osc} \) coupled oscillators with \(m = 1 \) in 1 spatial dimension. The field \(\phi(x_j) \) and its conjugate momentum \(\Pi(x_j) = \dot{\phi}(x_j) \) at the \(j \)-th site correspond respectively to the displacement and velocity of the \(j \)-th oscillator.

In QFT, the initial and final states are defined by
\[
| \Phi_i, t_i \rangle = | \phi(x_1, t_i), ..., \phi(x_{N_{osc}}, t_i) \rangle,
\]
\[
| \Phi_f, t_f \rangle = | \phi(x_1, t_f), ..., \phi(x_{N_{osc}}, t_f) \rangle.
\] (12)

The transition amplitude between them is
\[
M_{fi} = \langle \Phi_f, t_f | \Phi_i, t_i \rangle = \langle \Phi_f | e^{-H(t_f-t_i)/\hbar} | \Phi_i \rangle
\]
\[
= \int [d\phi] \exp (-S[\phi]/\hbar) \delta_{\phi, \hat{\phi}}^{t_f, t_i}
\]
\[
= \lim_{N_i \to \infty} \int \prod_{k=1}^{N_i-1} \prod_{j=1}^{N_{osc}} \left(\sqrt{\frac{1}{2\pi \hbar \Delta t}} d\phi(x_j, t_k) \right) \exp (-S[\phi]/\hbar),
\] (13)
where the Euclidean action is
\[
S = \frac{\Delta t}{2} \sum_{k=1}^{N_t-1} \sum_{j=1}^{N_{osc}} \left[\frac{(\phi(x_j, t_{k+1}) - \phi(x_j, t_k))^2}{(\Delta t)^2} + \Omega^2 (\phi(x_j, t_k) - \phi(x_{j+1}, t_k))^2 + \Omega_0^2 \phi^2(x_j, t_k) \right].
\]
(14)

For a finite \(N_{osc}\) and non-zero \(\Omega\), one has to introduce a boundary condition for \(\phi(x_{N_{osc}+1})\). We implement the periodic boundary condition \(\phi(x_{N_{osc}+1}) = \phi(x_1)\). The spectrum is analytically known\(^{21}\):
\[
E_n = \sum_{n_{lj}} \left(n_{lj} + \frac{1}{2} \right) \hbar \omega_l,
\]
(15)
where \(\omega_l = \sqrt{\Omega_0^2 + 4 \Omega^2 \sin^2(p_l \Delta x/2)}\), and \(n_1, ..., n_{N_{osc}} = 0, 1, \ldots\). We can also compute the transition amplitude analytically, using the discrete Fourier transformation
\[
\phi(x_j, t) = \sum_l \frac{\Delta p}{\sqrt{2\pi}} \exp(ip_l x_j) \tilde{\phi}(p_l, t),
\]
\[
\tilde{\phi}(p_l, t) = \sum_j \frac{\Delta x}{\sqrt{2\pi}} \exp(-ip_l x_j) \phi(x_j, t),
\]
(16)
where \(\Delta x = a, \Delta p = 2\pi/(N_{osc} \Delta x), x_j = -(N_{osc} - 1)/2 + (j - 1)\Delta x, p_l = -(N_{osc} - 1)/2 + (l - 1)\Delta p, \) and \(j, l = 1, \ldots, N_{osc}\). The result is
\[
M_{fi} = \prod_{l=1}^{N_{osc}} \sqrt{\frac{m \omega_l}{2\pi \hbar \sinh(\omega_i T)}} \exp \left[-\frac{\omega_l \Delta p/\Delta x}{2\hbar \sinh(\omega_i T)} \right] \times \left(\left| \tilde{\phi}(p_l, t_f) \right|^2 + \left| \tilde{\phi}(p_l, t_i) \right|^2 \right) \cosh(\omega_i T) - 2\text{Re} \left(\tilde{\phi}(p_l, t_f) \tilde{\phi}^*(p_l, t_i) \right).
\]
(17)

3.2 Stochastic basis

In QFT, a stochastic basis has to be used for the initial and final states, because in the thermodynamical limit, \(N_{osc} \to \infty\). Although the variables \(\phi\) are coupled in position space, we may still use a stochastic basis \([\Phi_n]\), \(n = 1, \ldots, N\) according to the distribution with an adjustable parameter \(\sigma\)
\[
P_{\text{basis}}[\Phi_n] = \prod_{j=1}^{N_{osc}} \frac{1}{\sqrt{2\pi \sigma}} \exp \left(-\frac{\phi_n^2(x_j)}{2\sigma^2} \right).
\]
(18)
The matrix element between the normalized initial and final states is
\[M_{n'n} = \langle e_{n'}, t_f | e_{n}, t_i \rangle \approx \sqrt{\Delta \Phi_{n'}} \Delta \Phi_n \langle \Phi_{n'}, t_f | \Phi_n, t_i \rangle, \] (19)
where the infinitesimal volumes for the initial and final states are
\[\Delta \Phi_n = d\phi_n(x_1) \ldots d\phi_n(x_{N_{osc}}) = \frac{1}{P_{\text{basis}}[\Phi_n]^N}, \]
\[\Delta \Phi_n' = d\phi_n'(x_1) \ldots d\phi_n'(x_{N_{osc}}) = \frac{1}{P_{\text{basis}}[\Phi_n']^N}. \] (20)

4 Results

We consider \(N_{osc} = 9, \ a = 1, \ \Omega = 1, \ \Omega_0 = 2, \ m = 1, \ \hbar = 1, \ \text{and} \ T = 2. \) For the adjustable parameter \(\sigma \) in the stochastic basis, we choose \(\sigma = \sqrt{\hbar \sinh(\Omega_0 T')/(m \Omega_0)} \) with \(T' = T \) for simplicity. After the stochastic basis with \(N = 1000 \) is generated, we obtain the matrix elements \(M_{n'n} \) using Eqs. (17), (19) and (20). (In the future work, we will calculate \(\langle \Phi_{n'}, t_f | \Phi_n, t_i \rangle \) directly by MC). Then we compute the eigenvalues and eigenvectors using the method described in Sect. 2.1.

Table 3 gives a comparison between the spectrum from the effective Hamiltonian with the stochastic basis and the analytical formular Eq. (15) for the first 20 states. They agree very well. This means that an arbitrary choice of Gaussian distribution for the stochastic basis is good enough. (Of course, one should study systematically the dependence of the results on \(\sigma \)).

We have also computed thermodynamical quantities such as the partition function \(Z \), average energy \(\overline{E} \) and specific heat \(C \). The analytical results are
\[Z(\beta) = \text{Tr}(e^{-\beta H}) = \prod_{l=1}^{N_{osc}} \frac{1}{2 \sinh (\beta \hbar \omega_l/2)}, \]
\[\overline{E}(\beta) = \frac{1}{Z} \text{Tr}(H e^{-\beta H}) = \frac{-\partial \log Z}{\partial \beta} = \sum_{l=1}^{N_{osc}} \frac{\hbar \omega_l}{2} \coth (\beta \hbar \omega_l/2), \]
\[C(\beta) = k_B \frac{\partial \overline{E}}{\partial T} = -k_B \beta^2 \frac{\partial^2 \overline{E}}{\partial \beta^2} = k_B \sum_{l=1}^{N_{osc}} \left(\frac{\beta \hbar \omega_l/2}{2 \sinh (\beta \hbar \omega_l/2)} \right)^2, \] (21)
where \(\beta = T/\hbar \), the temperature \(T = 1/(\beta k_B) \), and \(k_B \) is the Boltzmann constant. Since we have approximated \(H \) by \(H_{\text{eff}} \), we can express those thermodynamical observables via the eigenvalues of the effective Hamiltonian
\[Z_{\text{eff}}(\beta) = \sum_{n=1}^{N} e^{-\beta E_{n}}, \]
Table 3. Comparison of the spectrum of the Klein-Gordon model on the lattice, between the MC Hamiltonian method with a stochastic basis and the analytic ones.

<table>
<thead>
<tr>
<th>n</th>
<th>E_{n}^{eff}</th>
<th>E_{n}^{exact}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10.904663192168</td>
<td>10.944060480668</td>
</tr>
<tr>
<td>2</td>
<td>12.9568305557334</td>
<td>12.944060480668</td>
</tr>
<tr>
<td>3</td>
<td>12.985023578737</td>
<td>13.057803869484</td>
</tr>
<tr>
<td>4</td>
<td>13.044311582647</td>
<td>13.057803869484</td>
</tr>
<tr>
<td>5</td>
<td>13.299967341242</td>
<td>13.321601993380</td>
</tr>
<tr>
<td>6</td>
<td>13.345480638394</td>
<td>13.321601993380</td>
</tr>
<tr>
<td>7</td>
<td>13.552195133687</td>
<td>13.589811791733</td>
</tr>
<tr>
<td>8</td>
<td>13.58794986361</td>
<td>13.589811791733</td>
</tr>
<tr>
<td>9</td>
<td>13.680136748933</td>
<td>13.751084748745</td>
</tr>
<tr>
<td>10</td>
<td>13.744919087477</td>
<td>13.751084748745</td>
</tr>
<tr>
<td>11</td>
<td>14.984737011385</td>
<td>14.944060480668</td>
</tr>
<tr>
<td>12</td>
<td>15.012353803145</td>
<td>15.057803869484</td>
</tr>
<tr>
<td>13</td>
<td>15.057295761044</td>
<td>15.057803869484</td>
</tr>
<tr>
<td>14</td>
<td>15.108904652020</td>
<td>15.171547258300</td>
</tr>
<tr>
<td>15</td>
<td>15.125356713561</td>
<td>15.171547258300</td>
</tr>
<tr>
<td>16</td>
<td>15.187413290039</td>
<td>15.171547258300</td>
</tr>
<tr>
<td>17</td>
<td>15.308536490102</td>
<td>15.321601993380</td>
</tr>
<tr>
<td>18</td>
<td>15.396255686587</td>
<td>15.321601993380</td>
</tr>
<tr>
<td>19</td>
<td>15.420708031412</td>
<td>15.435345382196</td>
</tr>
<tr>
<td>20</td>
<td>15.432823810789</td>
<td>15.435345382196</td>
</tr>
</tbody>
</table>

\[E_{\text{eff}}^{(\beta)} = \sum_{n=1}^{N} \frac{E_{n}^{\text{eff}} e^{-\beta E_{n}^{\text{eff}}}}{Z_{\text{eff}}^{(\beta)}} \]

\[C_{\text{eff}}^{(\beta)} = k_B \beta^2 \left(\sum_{n=1}^{N} \frac{(E_{n}^{\text{eff}})^2 e^{-\beta E_{n}^{\text{eff}}}}{Z_{\text{eff}}^{(\beta)}} - \left(E_{\text{eff}}^{(\beta)} \right)^2 \right) \]

Since this is a static system, the eigenvalues should in principle not vary with β, which is also confirmed numerically within statistical errors when β and N are not too small. Using this assumption and the spectrum at $\beta = 2$, we obtain the thermodynamical quantities for other β. The results for the free energy, average energy and specific heat as a function of β are shown in Figs. 2, 3 and 4. Again, the results from the MC Hamiltonian are in good agreement with the analytical ones when $\beta > 1$.

Preliminary results for larger N_{osc} indicate that it is not necessary to
increase N accordingly. This property is very important for a feasible application of the algorithm to many body systems and QFT.

5 Summary

In this paper, we have extended the effective Hamiltonian method with a stochastic basis to QFT, and taken the Klein-Gordon model as an example. The results are very encouraging. We believe that the application of the algorithm to more complicated systems will be very interesting for non-perturbative investigation beyond the ground state.

Acknowledgments

We are grateful to the attendees of the workshop for useful discussions. X.Q.L. is supported by the National Science Fund for Distinguished Young Scholars (19825117), National Natural Science Foundation (10010310687), Guangdong Provincial Natural Science Foundation (990212), and the Ministry of Education of China. H.K. has been supported by NSERC Canada. We would also thank E.B. Gregory, C.Q. Huang, J.Q. Jiang, J.J. Liu, and H. Xu for collaborations.
Figure 3. Average energy of the Klein-Gordon model on a 1+1 dimensional lattice.

References

Figure 4. Specific heat over k_B of the Klein-Gordon model on a 1+1 dimensional lattice.

13. C. Hamer, M. Smaras, and R. Bursill, these proceedings, hep-lat/0007031.