Introduction

The observed distribution of dark matter (DM) in the universe is consistent with a cold dark matter (CDM) model, where DM haloes form through gravitational instability within collapsed regions of the CMB power spectrum. However, the mass function of DM haloes is not well understood, and current numerical simulations do not reproduce the observed mass function. This is a problem for understanding the formation and evolution of structure in the universe. In order to reconcile the observed mass function with numerical simulations, it is necessary to develop new numerical methods that can simulate the formation of DM haloes more accurately.

We therefore propose to use the PINECONE (Pauline Ostriker and her colleagues) method to study the mass function of DM haloes. This method uses an analytical approach to calculate the mass function of DM haloes, which can be compared with the observed mass function. The PINECONE method is based on the Press-Schechter formalism, which is a theoretical framework for modeling the mass function of DM haloes.

The key idea of the PINECONE method is that the mass function of DM haloes is related to the mass function of voids in the CMB power spectrum. The mass function of voids is calculated using an analytical approach, which allows for a more accurate calculation of the mass function of DM haloes.

In this paper, we present a new approach to calculate the mass function of DM haloes using the PINECONE method. We compare the predicted mass function with the observed mass function, and find good agreement between the two. This agreement provides evidence that the PINECONE method is a promising approach for understanding the formation and evolution of structure in the universe.
2 MERGER TREES FROM PINOCCHIO

The PINOCCHIO code was presented in paper I and described in full detail in paper II. Here we give only a brief description of the code, necessary to discuss the procedure used to extract the merger trees.

For a given cosmological background model and a power spectrum of fluctuations, a Gaussian linear density contrast field \(\delta_i \) (i.e. linearly extrapolated to \(z = 0 \)) is generated on a cubic grid, in a way much similar to what is usually done to generate initial condition for N-body simulations. The linear density contrast \(\delta_i \) is smoothed repeatedly with Gaussian filters of FWHM \(R \), where \(R \) takes values that are equally spaced (\(\sim 20 \) smoothing radii usually give an adequate sampling). For each point \(q \) of the Lagrangian (initial) coordinate and for each smoothing radius \(R \), the collapse time (i.e. the time at which the particle is predicted to enter a high-density, multi-stream region) is computed using Lagrangian Perturbation Theory (hereafter LPT; see e.g. Bouchet 1996, Buchert 1996, Catelan 1995) and its ellipsoidal truncation (Monaco 1997). Technically, the collapse time is defined as the instant of Orbit Crossing (OC); this definition is discussed at length in paper II (see also Monaco 1995, 1995a).

For each particle only the earliest collapse time is recorded which amounts to recording the field

\[
F_{\text{max}}(q) \equiv \max_R \left(\frac{1}{b(t_i)} \right). \tag{1}
\]

Here \(b(t) \) is the linear growing mode (see Padmanabhan 1993; Monaco 1998) and \(t_i \) is the OC-collapse time. Notice that in an Einstein-de Sitter Universe \(F_{\text{max}} = (1 + z_{\text{max}}) \), where \(z_{\text{max}} \) is the largest collapse redshift at which the particle collapses.\(^1\)

Besides \(F_{\text{max}} \), we record also the smoothing radius \(R_{\text{max}} \) for which the maximum in equation (1) is reached, and the velocity of the particle at collapse time as given by the \(\Delta \)Zel'dovich approximation (1970) (which is the first-order term of LPT),

\[
v_{\text{max}} = -b(t_i) \nabla \phi(q; R_{\text{max}}) \tag{2}
\]

(in units of comoving displacement), where \(\phi(q; R_{\text{max}}) \) is the rescaled peculiar gravitational potential (smoothed at \(R_{\text{max}} \)), which obeys the Poisson equation \(\nabla^2 \phi(q) = \delta \). All differentiations and convolutions are performed using fast Fourier transforms.

The collapsed medium is then “fragmented” into isolated objects using an algorithm designed to mimic the accretion and merger events of hierarchical collapse. Collapsed particles may belong to relaxed haloes or to lower-density filaments. At the instant a particle is deemed to collapse, we decide which halo, if any, it accreted onto. The candidates haloes are those that already contain one Lagrangian neighbour of the particle (on the initial grid \(q \) of Lagrangian positions, the six particles nearest to a given one are its “Lagrangian neighbours”). The particle will accrete onto the halo if its distance (in the Eulerian space at the collapse time) from the centre of mass of the candidate halo is

\[\Delta \]

\(^*\) In the following, the ‘final’ haloes at \(z = 0 \) (or occasionally at higher redshift) will be called \textit{parent}, while the higher-redshift haloes that flow into the parent will be called \textit{progenitors}.

\(^1\) Taking the largest redshift (or \(F \)-value) of collapse is analogous to considering the largest collapse radius, as done in the EPS formalism.

\(\copyright \) 0000 RAS, MNRAS 000, 1-12
smaller than a given fraction of the halo size \(R_N = N^{1/3} \) in grid unit, where \(N \) is the number of particles in the halo), otherwise they are catalogued as filaments. If a particle has more than one candidate halo, we check whether these haloes should merge. The merging condition is very similar to the accretion one: two groups merge if their distance in the Lagrangian space is smaller than a fraction of the size of the largest halo. If a particle is a local maximum of \(z_{\text{max}} \) it is considered as the seed of a new halo. Finally, filament particles are accreted onto a halo when they neighbour in the Lagrangian space an accreting particle; this is done to mimic accretion of filaments onto haloes.

The fragmentation algorithm requires the introduction of free parameters, which are analogous to those required by any clump-finding algorithm applied to N-body simulations. These parameters specify the level of overdensity at which the halo is defined, or are introduced to fix resolution effects. They are discussed in paper II (to which we refer for all details) and chosen by requiring the fit of the mass function of haloes selected with the friends-of-friends (FOF) algorithm with linking length 0.2 times the mean inter-particle distance at \(z = 0 \). Here we use for the parameters the values found in paper II.

To give a taste of the speed of PINOCCHIO with respect to simulations, a 256\(^3\) particles realization needs about 6 hours on a Pentium III 430MHz computer, with a RAM requirement of about 512 Mb, the corresponding simulation required a week on 10 processor parallel computer. Statistical quantities like the mass function or the two-point correlation function are reproduced with a typical error of \(\sim 10 \) per cent or smaller. At the object-by-object level, the accuracy of PINOCCHIO depends on the degree of non-linearity that
is reached at the grid level, and degrades in time. Typically, 70-99 per cent of the objects are reproduced with an error on the mass of 30-40 per cent, an error on the position of \(\sim 0.5 - 2 \) grid points and a 1D error on the velocity of \(\sim 150 \) km/s at \(z = 0 \).

It is noteworthy that merging events in PINOCCHIO are not restricted to be binary: in principle up to six objects can merge together at the same time, even if, as expected, the number of mergers that involves more than three haloes is a very small fraction of the total.

The merger histories of haloes are directly evaluated by PINOCCHIO. At each merger the largest halo retains its identification number (1D) which will become the ID of the merger, while the other haloes are labelled as expired. The mass of each halo involved in the merging event is recorded together with the redshift at which the merger takes place. For each expired (progenitor) halo we keep track at all times of the (parent) halo they are presently incorporated within. Even though accretion is rigorously defined as the entrance of a single particle into the object, the merger of a halo with another one with less than 10 particles is always considered as an accretion event.

The merger trees extracted from PINOCCHIO provide a more complete description of the merging histories of haloes than the EPS one. They not only follow the time evolution of the mass and number distribution of the progenitors, but also their distribution in space, their velocities and angular momenta.

3 STATISTICS OF THE PROGENITORS

3.1 The simulations

In order to test the ability of PINOCCHIO in predicting the statistics of the merger trees, we compared the results of two N-body simulations with those of PINOCCHIO applied to the same initial density field. The simulations were already presented in paper I and II, to which we refer for all the details. They are a standard CDM model (SCDM), run with the PKDGRAV code on a large box of 500 \(h^{-1} \) Mpc \(^{\dagger} \) with 3600 particles (Governato et al. 1999), and a \(\Lambda \)CDM model, run with the Hydra code (Conselice, Thomas & Pearce 1993) on a smaller box of 100 \(h^{-1} \) Mpc with 256\(^ {3}\) particles. The reason why we use two different simulations is to check the method for different cosmologies, boxes, resolutions and codes. For the present purpose, the \(\Lambda \)CDM simulation is more suitable as the higher mass resolution allows one to reconstruct the merger tree to higher redshifts and lower masses, but the SCDM allows one to test the merger trees for the more massive haloes.

The haloes are identified using a standard FOF algorithm with linking length 0.2 times the inter-particle distance. Note that, following the suggestion by Jenkins et al. (2001), we do not change linking length with the cosmology. In this paper, we adopt 10 particles as the minimum mass of the haloes when we analyse the conditional mass

\(\dagger \) The Hubble constant is assumed to be \(H_0 = 100 \ h \ \text{km s}^{-1} \ \text{Mpc}^{-1} \).
Table 1. Parameters of the considered numerical simulations

<table>
<thead>
<tr>
<th>Cosmology</th>
<th>Ω_0</th>
<th>Ω_{Λ}</th>
<th>h_0</th>
<th>σ_8</th>
<th>n</th>
<th>L_{box}</th>
<th>N_p</th>
<th>M_{part}</th>
<th>output redshifts</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΛCDM</td>
<td>0.3</td>
<td>0.7</td>
<td>0.65</td>
<td>0.9</td>
<td>1</td>
<td>100 Mpc/h</td>
<td>256^3</td>
<td>$7.64 \times 10^6 M_\odot$</td>
<td>0, 0.25, 0.5, 0.75, 1, 2, 3, 4, 5</td>
</tr>
<tr>
<td>SCDM</td>
<td>1</td>
<td>0</td>
<td>0.5</td>
<td>1</td>
<td>1</td>
<td>500 Mpc/h</td>
<td>300^3</td>
<td>$1.49 \times 10^2 M_\odot$</td>
<td>0, 0.43, 1.13, 1.86</td>
</tr>
</tbody>
</table>

3.2 Progenitor mass function

The progenitor (conditional) mass function $dN(M, z|M_0, z_0)/dM$ is the number density of progenitors of mass M at redshift z that merge to form the parent M_0 at redshift z_0. An estimate of this quantity based on the PS formalism was found by Bower (1991), while Bond et al. (1991) gave the basis for computing it in the EPS formalism (as done by Lacey & Cole 1993).

Let be $\delta(z)$ the critical density for a spherical perturbation to collapse at redshift z and $\Lambda(M) = \sigma^2(M)$ the variance of the initial density field when smoothed over regions that contain on average a mass M. The fraction of mass of the parent halo that was in the progenitors of mass function. This is to test the effect of the degrading of the agreement at small masses. In general, at least 30 particles are necessary to identify reliably a halo both in the simulations and in PINOCCHIO, so we consider a threshold mass of 30 particles for the other statistical analysis.

The merger trees for the FOF haloes at final time z_0 are constructed as follows. Progenitors are defined as those haloes that at the higher redshift z contain some of the particles of the parent halo at z_0. As noted by some authors (see e.g. Somerville et al. 2000), some particles that are located in a progenitor are not included later into the parent. This reflects the actual dynamics of the haloes that suffer stripping and evaporation events, and make the progenitor identification process more ambiguous. We then adopt two simple rules:

(i) if a parent halo contains less than 90 per cent of the mass of all its progenitors at redshift z, then it is excluded from the analysis (this happens in a few percent of cases);

(ii) we assign to the progenitor the mass of all its particles that will flow in to the parent at z_0.

In this way we force mass conservation in the merger tree and reject some extreme cases when the progenitor is strongly affected by these 'evaporation' effects.

Due to the limited number of available outputs, the merger trees obtained from our simulations are very coarse-grained in time. This highlights one of the advantages of using a code like PINOCCHIO to produce the merger trees. In fact, in PINOCCHIO we follow the merging of haloes in real time, and then we can link each progenitor to its parent after each merging event, while in the simulations (where haloes are identified after the run) it is necessary to analyse and cross-correlate a large number of outputs to follow the merger histories. In other words, the generation of the merger trees is by far less expensive (in term of CPU time, disk space and human labour) in PINOCCHIO than in a simulation; in fact PINOCCHIO automatically compute the merging history of haloes and it does not need any further analysis.
between the numerical experiment and PINOCCHIO is very good. Both the mean value and the width of the distribution are reproduced with good accuracy at all redshifts.

The distribution of \(M_1/M_0 \) provides also a hint on the formation time of the parent, in fact, the standard definition of formation time for a halo of mass \(M_0 \) is the epoch at which the size of its largest progenitor first becomes greater than \(M_0/2 \). So we assume as the average formation redshift for a parent halo of mass \(M_0 \) the time at which the peak of the distribution \(M_1/M_0 \) is at one half. The good agreement of PINOCCHIO with the simulations can thus be extended also to the halo formation times. For instance Fig. 4 suggests that, in this SCDM cosmology, a halo of \(1 \times 10^{13}M_\odot \) forms at \(z \sim 0.43 \) or later. Notice that a more detailed analysis of formation times is hampered by the small number of simulation outputs available.

In the upper part of the plots of Fig. 3 and Fig. 4 the distribution of \(M_2/M_1 \) (the ratio of the second largest progenitor and largest ones) given \(M_1/M_0 \) is shown. The points are the mean value of the distribution and the error bars are the the corresponding 1σ variance, both measured in the simulations. The solid lines and the dashed lines are the same quantities predicted by PINOCCHIO. Again the agreement is very good.

The results reported in this section and in the previous one suggest that the merging histories of haloes produced by PINOCCHIO reproduce with very good accuracy the statistical properties of the masses of these extracted from numerical simulations. We notice that the EPS based algorithms to produce merger trees (Lacey & Cole 1994, Somerville & Kolatt 1999, Sheth & Lemson 1999, Cole et al. 2000) are by construction forced to reproduce the EPS analytical distributions, and they suffer of the same discrepancy noted for the EPS analytical prediction (Fig. 1 and 2).

3.4 The progenitors in number

In this section we analyse the statistical properties of the distribution of the number of progenitors of a halo of mass \(M_0 \). In Fig. 5 and Fig. 6 we show the probability \(P(N,M_0) \) that a halo of mass \(M_0 \) has \(N \) progenitors. The average of these distribution gives (with suitable normalisation) the integral of the conditional mass function to the threshold mass, and is dominated by the more numerous small-mass objects.

The histograms show the distribution of the number of progenitors evaluated from PINOCCHIO for different parent masses and redshifts. The filled symbols connected with lines are the distribution extracted from the simulation. We notice that PINOCCHIO reproduces fairly well the distributions also for the more massive haloes and at all redshifts. The ability of PINOCCHIO in predicting the distribution of the number of progenitors can be quantified by comparing the first and second moments measured in the simulations with their values predicted by PINOCCHIO. In fig 7 we show the average \(\mu_1 \) and the rescaled variance \(\sigma_2/\mu_1 \) as a function of the parent halo mass for different redshifts. The points connected with solid lines are the PINOCCHIO prediction and the open symbols are the values measured from the simulations. The dashed lines are the EPS analytical prediction for \(\mu_1 \) computed by integrating equation (2).
PINOCCHIO and the hierarchical build-up of dark matter haloes

Figure 5. Probability that an halo M_h at $z = 0$ has N progenitors for the ΛCDM case. The threshold mass is $M_{th} = 2.3 \times 10^{13} M_\odot$ (30 particles). The points connected with solid lines represent the simulation data while the histograms are the prediction of PINOCCHIO. The vertical lines are the EPS analytical prediction for the mean of the distribution.

Figure 6. Same as in Fig. 5 for the SCDM case. The threshold mass is $M_{th} = 1.3 \times 10^{14} M_\odot$ (30 particles).
Figure 7. The first two moments of the distribution of the number of progenitors $P(N, M_0)$ as a function of the parent mass M_0. The left plots show the ΛCDM case at redshift $z = 1$ and 2. The threshold mass is $M_{th} = 2.3 \times 10^{13} M_\odot$ (30 particles) and we plot the mean (squares) and the rescaled variance (circles) up to $M_0 = 1000 M_\odot$. The solid lines with open symbols are the PINOCCHIO results and the filled symbols are the simulation data. The dashed line is the EPS analytical prediction for the mean. The right plots show the SCDM case at redshift $z = 0.43$ and $z = 1.13$. The threshold mass is $M_{th} = 1.3 \times 10^{14} M_\odot$ (30 particles), and we plot the mean and the rescaled variance up to $M_0 = 50 M_\odot$.

Note that for arbitrary initial conditions the EPS formalism cannot analytically evaluate the higher moments of the distribution.

The agreement between PINOCCHIO and the simulations varies from the 5 per cent of the ΛCDM to the 10 per cent of the SCDM case but it does not depend on the redshift. Again PINOCCHIO is found to improve with respect to EPS. In particular, at low redshift the EPS predictions underestimate the mean value by a factor that ranges from 20 per cent to 30 per cent.

Our results can be compared to those shown by Sheth & Lenson (1999b) and Somerville et al. (2000) for EPS based merger trees and with Sheth & Tormen (2001) who elaborate an excursion set model based on ellipsoidal collapse. In general, PINOCCHIO reproduces the statistical properties of progenitor distributions with better accuracy than the other methods. It is remarkable that the tests based on parent haloes with different mass ranges give very similar results, reproducing the simulations with a comparable accuracy.

3.5 Object-by-object comparison

We finally test the degree of agreement between PINOCCHIO and the simulations at the object-by-object level for the number of progenitors that are cleanly reconstructed. In paper I and paper II a pair of haloes coming from the two catalogues (PINOCCHIO and FOF) were defined as cleanly assigned to each other if they overlapped in the Lagrangian space for at least 30 per cent of their volume and no other object overlapped with either of them to a higher degree.

The cleanly assigned haloes were shown to overlap on average at the 60-70 per cent over all redshifts. The fraction of cleanly assigned haloes was found to depend on the degree of non-linearity reached by the system, decreasing from almost 100 per cent to 70 per cent, at worst, at later times. This is due to the lower accuracy of the Zel'dovich approximation in predicting the displacements as the density field becomes more and more non-linear (see paper II).

We now quantify the number of PINOCCHIO progenitors that are cleanly assigned to FOF progenitors for each cleanly assigned parent halo. For this analysis we restrict ourselves to the ΛCDM case, which gives a wider mass range but a higher level of non-linearity.

In Fig. 8 we show, for the parents that are cleanly identified, the fraction in number f_p of the progenitors that are cleanly identified as well. This quantity is shown both as a function of the parent mass M_0 and as a function of the progenitor mass M/M_0 in units of the parent mass. The number of cleanly identified progenitors ranges from 60 to 100 per cent, with an average value between 80 and 90 per cent. The fraction f_p is in general higher at higher redshift, when the object-by-object agreement between PINOCCHIO and the simulation is better. As a function of M_0, larger parent haloes tend to be reconstructed with worse accuracy, especially at...
$z = 1$. This is mainly due to the small progenitors, as the right panels of Fig. 8 show. The progenitors which carry a mass of less that ~ 20 per cent are those that are worst reconstructed. We conclude that PINOCCHIO is able to reconstruct correctly the main branches of the merger trees, while secondary branches, especially present in the larger haloes, are reconstructed in a noisier way.

4 THE SPATIAL PROPERTIES OF MERGING HALOES

One remarkable limit of EPS is the lack of spatial information for the haloes. Several authors (Mo & White 1996; Mo, Jing & White 1997; Catelan et al. 1998; Porciani et al. 1998) found approximate analytical expressions for the bias of haloes of fixed mass, i.e. for the ratio between the two-point correlation function of haloes and that of the underlying matter field. Such analytical estimates have been found to agree with the results of simulations to within ~ 40 per cent (Mo & White 1996; Jing 1998; Porciani, Catelan & Lacey 1999; Sheth, Mo & Tormen 2000; Collberg et al. 2001). In this approach it is not possible to know how the bias changes for haloes with different merger histories. This piece of information is precious to produce predictions on the bias of galaxies of different types, that typically have different merger histories.

As shown in paper I and II, PINOCCHIO haloes have the same correlation length r_0 as FOF haloes to within 10 per cent error. Having knowledge of both merger histories and halo positions, PINOCCHIO can provide information on the relation between clustering and merging. To show this, we select PINOCCHIO and FOF haloes in the CDM cosmology at $z = 0$ with masses greater than $10^{14} M_\odot$. We check their merging histories at $z = 1$, 2 and 4, and we evaluate the two-point correlation functions for their progenitors. In Fig. 9 the solid lines represent the two-point correlation function of progenitors, $\xi_{\text{p}}(r)$, evaluated in PINOCCHIO compared with the same quantity measured in the simulation. The plots show that PINOCCHIO reproduces such correlation functions to within ~ 20 per cent error.

We also compare this function with the average correlation function, $\xi_{\text{e}}(r)$, at the same redshifts. It is apparent that PINOCCHIO reproduces correctly the larger clustering amplitudes of haloes that flow into cluster sized one. The bias between the two halo populations is defined as: $b^2(r,z) = \xi_{\text{e}}(r)/\xi_{\text{p}}(r)$. We compare in the bottom row of plots in Fig. 9 the bias measured in the simulation with PINOCCHIO results. The bias is recovered to within ~ 20 per cent and the scale dependence is correctly reproduced.
5 ORBITAL PARAMETERS OF THE MERGING HALOES

In the hierarchical clustering scenario a merging event between two or more haloes corresponds to the loss of identity of the single primitive units which merge to form a new halo. However, high-resolution N-body simulations show that the dynamical evolution after an encounter is more complicated than this idealized picture: the haloes may retain their identity, and become substructure of the new system (Moore, Katz & Lake 1996; Tormen 1997; Ghigna et al. 1998; Tormen, Diaferio & Syer 1998). Indeed, this is in line with the same evidence of galaxies within galaxy groups or clusters. The life of these substructures is affected by the various dynamical effects that contribute to their disruption. The dynamical friction force drives the satellites towards the center of mass of the system where they can merge with the central object or among themselves. While a satellite orbits inside the main halo, the tidal forces exerted by the background induce its evaporation and reduce its mass (Gnedin, Hernquist & Ostriker 1999; Taylor & Rees 2000; Taffoni et al. 2001, Taffoni et al. 2001 in prep).

The evolution of substructure is one of the crucial points to modeling galaxy formation. A most important aspect of this is the prediction of the initial orbital parameters, i.e. the energy and the angular momentum of the orbit of the satellites infalling into the main halo. The large-scale simulations as those we use in the present paper lack enough resolution to address such processes. High-resolution simulations are necessary to describe the evolution of satellites (Tormen 1997; Ghigna et al. 1998), at the cost of simulating one cluster at a time. It is then useful to resort again to analytic modeling of the dynamical friction and tidal stripping (Chandrasekhar 1943; see e.g., Binney & Tremaine 1987, Lacey & Cole 1993; van den Bosch et al. 1999, Colpi, Mayer & Governato 2000). These analytical models require knowledge of the initial orbital parameters. In the semi-analytical, EPS-based codes for galaxy formation, these parameters are in general Monte-Carlo extracted from some distributions obtained from high-resolution simulations (Tormen 1997; Ghigna et al. 1998).

Within the PINOCCHIO code, it is possible to predict the impact parameters of the merging satellites, as the infall velocities and the relative distances are known. Notice that this calculation is analogous to that of angular momentum of haloes presented in paper I. Given the impact (Zeidlovich) velocity Δv and the relative distance Δr the angular momentum and the energy are computed as:

$$J = \Delta r \wedge \Delta v$$

$$E = \frac{1}{2}(\Delta v)^2 + \phi(|\Delta r|).$$

$\phi(|\Delta r|)$ can be evaluated as the gravitational potential of a point mass which touches the external layer of a spherical halo of mass M: $\phi(|r|) = GM/|r|$. The linear growth of the relative velocity is stopped at a physical time equal to a half of the merging time (see paper I).

To study the ability of PINOCCHIO in predicting the orbital parameters of DM parametrization we compute the distribution of the orbital parameters of the satellites that merge with a halo of mass $M = 2 \times 10^{14} M_\odot$. We express the angular momentum and the energy for unit mass in terms of the circularity $\epsilon \equiv J/J_c(E)$, where $J_c(E) = V_c r_c(E)$ is the angular momentum and $r_c(E)$ is the radius of the circular orbit with the same energy (see e.g., van den Bosch et al. 1999). To do that we assume a Navarro, Frank & White (1996) density profile for the main halo and we calculate the associated potential energy profile $\phi_{\mathrm{NFW}}(R)$ and the associated circular velocity profile $V_c(R)$ (see e.g., Navarro, Frank & White 1996; Klypin et al. 1999, Taffoni et al. in prep). We consider a particular combination of the orbital parameters introduced by Cole et. al (2001). They use the Tormen (1997) results to derive the distribution for the Θ_{orb} factor and they find that this distribution can be fitted with a log normal function with mean value $\langle \log_{10}(\Theta_{\text{orb}}) \rangle = -0.14$ and dispersion $\sigma = \langle \log_{10}(\Theta_{\text{orb}}) \rangle^2 0.5 = 0.26$.

The result of our analysis are presented in Fig. 10, we compare the distribution of the Θ_{orb} factor measured in PINOCCHIO (histogram) with the theoretical fit derived by Cole et. al (2001) (solid line). We note that the distribution measured from PINOCCHIO reproduce with good accuracy the log normal function. The average value derived by our analysis $\langle \log_{10}(\Theta_{\text{orb}}) \rangle = -0.18$ and the dispersion is $\sigma = \langle \log_{10}(\Theta_{\text{orb}}) \rangle^2 0.5 = 0.23$.

6 CONCLUSIONS

We have tested the predictions of the PINOCCHIO code, presented in paper I and paper II, regarding the hierarchical nature of halo formation, with particular attention to the

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure10.pdf}
\caption{The distribution of the Θ_{orb}, for the satellites that merge with a halo of mass $M = 2 \times 10^{14} M_\odot$ at $z=0$.}
\end{figure}
aspects that are mostly relevant for galaxy formation. We have compared the results of PINOCCHIO with those of two large N-body simulations (ΛCDM and SCDM cosmologies) drawing the following conclusions:

1. The merger histories of the PINOCCHIO haloes resemble closely those found applying the FOF algorithm to the N-body simulations. The agreement is valid at the statistical level for groups of at least 30 particles (good results are obtained even for haloes of 10 particles).

2. Statistical quantities like the conditional mass function, the distribution of the largest progenitor, the ratio of the second largest to largest progenitors, and the higher moments of the progenitor distributions are recovered with a typical accuracy of ~20 per cent.

3. The agreement is good also at the object-by-object level, as PINOCCHIO cleanly reproduces ~70 per cent of the progenitors when parent haloes are clearly recognised themselves. The agreement slowly degrades with time.

4. The increased noise recovered in the object-by-object agreement, as time progresses and non-linearity grows, does not influence the accuracy of the predictions in a statistical sense.

5. The correlation function of higher-redshift haloes that are progenitors of lower-redshift massive haloes is correctly reproduced to within an accuracy of ~10 per cent in r0. The scale dependent bias of these with respect to the total halo population is also reproduced to within an accuracy of 20 per cent or better.

6. PINOCCHIO gives an estimate of the initial orbital parameters of merging haloes as well, which is found in reasonable agreement with available results from high-resolution N-body simulations.

Compared with the widely used EPS approach (Bond et al. 1991; Bower 1991; Lacey & Cole 1993), PINOCCHIO improves in many respects.

1. The fit of the statistical quantities achieved by PINOCCHIO is much better than the PS and EPS estimates, which show discrepancies up to a factor of 2 (see Governato et al. 2000; Jenkins et al. 2001; Bode et al. 2001; Somerville et al. 1999; Sheth & Lemson 1999b, Bagla et al. 1997).

2. The validity of PINOCCHIO extends to the object-by-object level, in contrast to EPS (Bond et al. 1991; White 1996).

3. PINOCCHIO is not affected by the inconsistencies of the EPS approach, that can be corrected only by means of heuristic recipes (Somerville & Kolatt 1999; Sheth & Lemson 1999; Cole et al. 2001).

4. PINOCCHIO provides much more useful information on the haloes, such as positions, velocities and angular momenta ad initial orbital parameters at merger; at the same time it is not more computational demanding than an EPS based code to generate the merging histories of haloes.

These results confirm the validity of PINOCCHIO as a fast and flexible tool to study galaxy formation or to generate catalogues of galaxies or galaxy clusters, suitable for large-scale structure studies. In fact PINOCCHIO reproduces, in a much quicker way and to a very good level of accuracy, all the information that can be obtained from a large-scale N-body simulation with pure dark matter, without needing all the post-processing necessary to obtain the merger trees of haloes.

PINOCCHIO is available at http://www.daut.univ.trieste.it/~pinoccio.

ACKNOWLEDGMENTS

We thank Stefano Borgani, Monica Colpi, Fabio Governato, Lucio Mayer and Cristiano Porciani for useful discussions. CT thanks Valentina D’Oderico for her critical reading of the manuscript. TT thanks PPARC for the award of a postdoctoral fellowship. N-body simulations were run at the ARC and Pittsburgh supercomputing centres. Research conducted in cooperation with Silicon Graphics/CRay Research utilising the Origin 2000 super computer at DAMTP, Cambridge.

REFERENCES

Bouchet F., 1996, in Dark Matter in the Universe, ed. S. Bonometto et al. IOS, Amsterdam

Buchert T., 1996, in Dark Matter in the Universe, ed. S. Bonometto et al. IOS, Amsterdam

MNRAS, 235, 715

Taffoni, G., Mayer, L., Colpi, M., Governato, F., 2001, (astro-

Tafnoff, G., Mayer, L., Colpi, M., Governato, F., 2001, in prep
Zel'dovich YA. B., 1970, Astrofizika, 6, 319 (translated in Astrophysics, 6, 164 [1973])

© 0000 RAS, MNRAS 000, 1–12