The Energy of the Gamma Metric in the Møller Prescription

I-Ching Yang† ¹ and Irina Radinschi‡ ²
†Department of Natural Science Education,
National Taitung Teachers College,
Taitung, Taiwan 950, Republic of China
and
‡Department of Physics, “Gh. Asachi” Technical University,
Iasi, 6600, Romania

ABSTRACT
We obtain the energy distribution of the gamma metric using the
energy-momentum complex of Møller. The result is the same as
obtained by Virbhadra in the Weinberg prescription.

PACS No.:04.20.-q, 04.50.+h

¹E-mail: icyang@dirac.phys.ncku.edu.tw
²E-mail: iradinsc@phys.tuiasi.ro
Energy-momentum is regarded as the most fundamental conserved quantity in physics, and associated with a symmetry of space-time geometry. According to Noether’s theorem and translations invariance, one could define a conserved energy-momentum $T^{\mu\nu}$ as a consequence of its satisfying the differential conservation law $\partial_{\nu}T^{\mu\nu} = 0$. However, in a curve space-time where the gravitational field is presented, the differential conservation law becomes

$$\nabla_{\nu}T^{\mu\nu} = \frac{1}{\sqrt{-g}} \frac{\partial}{\partial x^\nu} (\sqrt{-g}T^{\mu\nu}) - \frac{1}{2} g^{\nu\rho} \frac{\partial g^{\mu\rho}}{\partial x^\lambda} T^{\mu\lambda} = 0,$$

and generally does not lead to any conserved quantity. Early energy-momentum investigations attempted to determine the conserved energy-momentum for the gravitational field and the matter located in it, and led to energy-momentum complex

$$\Theta^{\mu\nu} = \sqrt{-g}(T^{\mu\nu} + t^{\mu\nu}),$$

which satisfies the differential conservation equation $\partial_{\nu}\Theta^{\mu\nu} = 0$. Here, $T^{\mu\nu}$ is the energy-momentum tensor of matter and $t^{\mu\nu}$ is regarded as the contribution of energy-momentum from the gravitational field. There are various energy-momentum complexes, including those of Einstein [1], Tolman [2], Papapetrou [3], Bergmann [4], Landau and Lifshitz [5], Møller [6], and Weinberg [7]. On the other way, a different idea, quasilocal (i.e., associated with a closed 2-surface) was proposed. The Hamiltonian for a finite region,

$$H(N) = \int_{\Sigma} N^{\mu} \mathcal{H}_{\mu} + \oint_{S=\partial \Sigma} B(N),$$

generates the space-time displacement of a finite spacelike hypersurface Σ along a vector field N^{μ}. Noether’s theorem guarantee that \mathcal{H}_{μ} is proportional to the filed equation. Consequently, the value depends only on the boundary term B, which gives the quasilocal energy-momentum. Moreover, there are also a large number of definitions of quasilocal mass [8, 9]. In their recent article, Chang et al. [9] showed that every energy-momentum complex can be associated with a particular Hamiltonian boundary term. So the energy-momentum complexes may also be considered as quasilocal.

Though Penrose [10] points out that a quasilocal mass is conceptually important. However, Bergqvist [11] studied several different definitions of
quasilocal masses for the Reissner-Nordström and Kerr space-times and came to the conclusion that not even two of these definitions gave the same results. On the contrary, several energy-momentum complexes have been showing a high degree of consistency in giving the same energy distribution for a given space-time. Recently, Virbhadra and his collaborators [12, 13, 14, 15, 16] have investigated that for a given space-time (like as the Kerr-Newman, the Vaidya, the Einstein-Rosen, the Bonnor-Vaidya and all Kerr-Schild class space-time) different energy-momentum complexes (the Einstein, the Landau-Lifshitz, the Papapetrou, the Tolman, The Weinberg, etc.) give the same energy distribution. Moreover some interesting results [12, 17, 18, 19, 20] led to the conclusion that in a given space-time (the Reissner-Nordström, the Kerr-Newman, the Garfinkle-Horowitz-Strominger, the de Sitter-Schwarzschild, and the charged regular metric, etc.) the energy distribution according to the energy-momentum complex of Møller is different from of Einstein. But in some specific case [6, 17] (the Schwarzschild, the Janis-Newman-Winicour metric, etc.) there are the same. Recently, the energy distribution in the Weinberg prescription obtained by Virbhadra [21] using the gamma metric, is given as

\[E = m \gamma. \] (4)

So, in this letter, we evaluate the energy distribution of the gamma metric by using Møller energy-momentum complex, and compare with the result obtained by Virbhadra with Weinberg energy-momentum complex.

2 ENERGY IN THE MØLLER PRESCRIPTION

First, the well-known gamma metric [21, 22], a static and asymptotically flat exact solution of Einstein vacuum equations, is given as

\[ds^2 = \left(1 - \frac{2m}{r}\right)^\gamma dt^2 - \left(1 - \frac{2m}{r}\right)^{-\gamma} \left[\frac{\Delta}{\Sigma} \right]^{\gamma^2 - 1} dr^2 + \frac{\Delta \gamma^2}{\Sigma^{\gamma^2 - 1}} d\theta^2 + \Delta \sin^2 \theta d\phi^2, \] (5)

where

\[\Delta = r^2 - 2mr, \]
\[\Sigma = r^2 - 2mr + m^2 \sin^2 \theta. \] (6)
For $|\gamma| = 1$ the metric is spherically symmetric and for $|\gamma| \neq 1$, it is axially symmetric. In the situation $|\gamma| = 1$, the gamma metric reduces to the Schwarzschild space-time. However, in another situation $|\gamma| \neq 1$, the gamma metric gives the Schwarzschild space-time with negative mass, as putting $m = -M(M > 0)$ and carrying out a coordinate transformation $r \rightarrow R = r + 2M$ one gets the Schwarzschild space-time with positive mass.

Next, let us consider the Møller energy-momentum complex which is given by [6]

$$\Theta^\mu_\nu = \frac{1}{8\pi} \frac{\partial \chi^{\mu\sigma}}{\partial x^\sigma}, \quad (7)$$

where the Møller superpotential,

$$\chi^{\mu\sigma} = \sqrt{-g} \left(\frac{\partial g_{\nu\alpha}}{\partial x^\beta} - \frac{\partial g_{\nu\beta}}{\partial x^\alpha} \right) g^{\mu\beta} g^{\sigma\alpha}, \quad (8)$$

are quantities antisymmetric in the indices μ, σ. According to the definition of the Møller energy-momentum complex, the energy component is given as

$$E = \int \Theta^0_0 dx^1 dx^2 dx^3 = \frac{1}{8\pi} \int \frac{\partial \chi^0_0}{\partial x^k} dx^1 dx^2 dx^3, \quad (9)$$

where the Latin index takes values from 1 to 3. However, in the case, the only nonvanishing component of Møller’s superpotential is

$$\chi^0_0 = 2m \gamma \sin \theta. \quad (10)$$

Applying the Gauss theorem to (9) and using (10), we evaluate the integral over the surface of a sphere with radius r, and find the energy distribution is

$$E = m \gamma. \quad (11)$$

It is the same result as obtained by Virbhadra in the Weinberg prescription.

3 DISCUSSION

It is well-known that the subject of the energy-momentum localization is associated with much debate. In contradiction with Misner et al.[23], Cooperstock and Sarracino [24] gave their viewpoint that if the energy localization is meaningful for spherical system it is, also, meaningful for all systems. Also,
Cooperstock [25] gave his opinion that the energy and momentum are confined to the regions of non-vanishing energy-momentum tensor of the matter and all non-gravitational fields. Bondi [26] sustained that a nonlocalizable form of energy is not admissible in relativity so its location can in principle be found.

We calculate the energy distribution of the gamma metric using the energy-momentum complex of Møller. The energy depends on the mass \(m \). Thus, we get the same result as Virbhadra [21] obtained using the energy-momentum complex of Weinberg. This result sustains the opinion that different energy-momentum complexes could give the same expression for the energy distribution in a given space-time. As we noted, for some given space-times [17] the energy distribution according with the energy-momentum complex of Møller is the same as those calculated in the Einstein prescription. Our results sustain the conclusion of Lessner [27] that the Møller energy-momentum complex is an important concept of energy and momentum in general relativity. Also, the Møller energy-momentum complex allows to make the calculations in any coordinate system.

References

