1. Introduction

PACS numbers: 21.60.Fw, 21.10.Rk, 25.70.+w, 25.70.Fn

The nucl-th/0110030 library contains a document that provides the numerical implementation of the Hamiltonian, but also the interpretation and thus provides the symmetries of the system can be expressed in closed form, an exact of dynamical symmetry not only in Euclidean groups but also in the Hamiltonian matrix and in the properties of the numerical implementation. The symmetries of the system are expressed in closed form, an exact of dynamical symmetry not only in Euclidean groups but also in the Hamiltonian matrix and in the properties of the numerical implementation. The symmetries of the system are expressed in closed form, an exact of dynamical symmetry not only in Euclidean groups but also in the Hamiltonian matrix and in the properties of the numerical implementation.

In both cases, basis set expansions to limited-size orthogonal expressions of the resonances among the group operators of a chain of nested groups (dynamical symmetries).

Symmetries play an important role in physics. Concepts of motion associated with a Hamiltonian provide labels for the classification of states, democratic selection rules, and symmetries govern the interaction of a given classical system, and the quantum system correspondingly.

We present an example of a partial dynamical symmetry (PDS) in an interaction.

(Received: December 14, 2001)

Haim Heffter

July 13, 2001

Partial Dynamical Symmetry in the Symplectic Shell Model
considerable insight into the physics of a given system.

Naturally, the application of exact or dynamical symmetries to realistic situations has its limitations: Usually the assumed symmetry is only approximately fulfilled, and imposing certain symmetry requirements on the Hamiltonian might result in constraints which are too severe and incompatibles with experimentally observed features of the system. The standard approach in such situations is to break the symmetry. In cases where a symmetry-breaking Hamiltonian is involved, it is possible to decompose the offending terms into basic parts ("irreducible tensor operators") which exhibit specific transformation properties. Provided the appropriate group coupling coefficients and the matrix elements of some elementary tensor operators are available, matrix elements of operators which connect inequivalent irreducible representations can be determined and the exact eigenvalues and eigensates can then be obtained (at least in principle). While group theoretical considerations still play an important role in evaluating the coupling coefficients and matrix elements for such a calculation and in truncating model spaces which have become too large for a complete numeric treatment, the basic simplicity of the symmetry-based approach is lost.

Alternatively, one might consider some intermediate structure, which allows for symmetry breaking, but preserves the advantages of a dynamical symmetry for a part of the system. Partial dynamical symmetry (PDS) [13] provides such a structure. It corresponds to a particular symmetry breaking for which the Hamiltonian is not invariant under the symmetry group and hence various irreducible representations (irreps) are mixed in its eigenstates, yet it possesses a subset of 'special' solvable states which respect the symmetry. The notion of partial dynamical symmetry generalizes the concepts of exact and dynamical symmetries. In making the transition from an exact to a dynamical symmetry, states which are degenerate in the former scheme are split but not mixed in the latter, and the block structure of the Hamiltonian is retained. Proceeding further to partial symmetry, some blocks or selected states in a block remain pure, while other states mix and lose the symmetry character.

Other generalizations of the idea of dynamical symmetry are possible. Van Isacker [14], for example, suggested to break the dynamical symmetry associated with an intermediate group G_2 in a subchain $G_1 \supset G_2 \supset G_3$ for all states of the system, while preserving the remaining (dynamical) symmetries. The resulting Hamiltonian is in general not analytically solvable, but its eigenstates can still be (partly) classified by quantum labels associated with the groups G_1 and G_3. An approximate-symmetry scheme called quasi-dynamical symmetry was discussed by Bahri and Rowe [15]. They considered strong but coherent mixing of the irreducible representations associated with a given dynamical symmetry. Both methods of extending the concept of dynamical symmetry differ from the notion of partial dynamical symmetry introduced above since, unlike in the partial-symmetry case, the eigenvalues of the Hamiltonians cannot be obtained analytically, not even for a part of the system.

The partial-symmetry scheme was introduced first in bosonic systems, where it was applied to the spectroscopy of deformed nuclei. In Ref. [16], a Hamiltonian with partial SU(3) symmetry was constructed in the framework of the Interacting Boson Model (IBM) of nuclei [6], and the calculated spectrum and E2 rates of 168Er were compared to experimental results. The PDS Hamiltonian was found to reproduce the experimentally observed feature of non-degenerate rotational γ and β bands ('K-band splitting') and to possess several bands of solvable states, whereas previous attempts to describe the 168Er data had involved Hamiltonians with SU(3) dynamical symmetry, which can only yield γ and β bands with degenerate angular momentum states, or had achieved agreement with the data by completely breaking the SU(3) symmetry. Employing the same Hamiltonian, Sinai and Leviatan [17, 18]
investigated the structure of the lowest collective $K=0^+$ excitation in deformed rare-earth nuclei. Implications of the partial dynamical symmetry for the mixing behavior of this collective band were discussed and compared to broken-SU(3) predictions. In another study, Ref. [19] in the context of the IBM-2, the proton-neutron version of the Interacting Boson Model [6, 20], Talmi was able to explain simple regularities in spectra of the Majorana operator as an example of partial dynamical symmetry. More recently, the relevance of partial F-spin symmetry was studied in the framework of the IBM-2. It has long been known that F spin, the SU(2) quantum number associated with the two-valued proton-neutron degree of freedom of the IBM-2, cannot be conserved in nuclear spectroscopy. However, Levitan and Ginocchio [21] demonstrated that empirical energy systematics in the deformed Dy-Os region can be reproduced under the assumption of partial F-spin symmetry. Moreover, the associated partial symmetry Hamiltonians point to the existence of F-spin multiplets of scissors states, with a moment of inertia equal to that of the ground band. These predictions were tested against recent analyses of M1 transition strengths.

The subject of partial symmetries and supersymmetry in nuclear physics was considered by Jolos and von Brentano in the context of the Interacting Boson-Fermion Model [22] and the particle-rotor model [23].

Partial symmetries can be associated with continuous as well as discrete groups. The dynamical groups employed in the IBM, e.g., are continuous. In Ref. [24], an example of a partial symmetry which involves point groups was presented in the context of molecular physics. Ping and Chen used a model of N coupled anharmonic oscillators to describe the molecule XY_6. The partial symmetry of the Hamiltonian allowed them to derive analytic expressions for the energies of a set of unique levels and to discuss the structure of the associated eigenstates. Furthermore, the numerical calculations required to obtain the energies of the remaining (non-unique) levels were greatly simplified since the Hamiltonian could be diagonalized in a much smaller space.

Partial symmetries have relevance not only for discrete spectroscopy but also for the study of stochastic properties of dynamical systems. A generic classical or quantum-mechanical Hamiltonian exhibits mixed dynamics: areas of regular motion and chaotic regions coexist in phase space, and even when a system seems to be fully chaotic, regular states may exist. Whelan et al. [25] used Hamiltonians with partial dynamical symmetries to investigate quantum-mechanical systems which are partly regular and partly chaotic. In the context of the Interacting Boson Model, it was demonstrated that partial symmetries impose a particular phase-space structure which leads to a suppression of chaos in mixed systems. Canetta and Maino [26] carried out a quantum-statistical analysis of regular and chaotic dynamic behavior in the IBM-2. Varying the Hamiltonian parameters, they observed a nearly regular region in parameter space — far away from dynamical symmetry limits — which they linked to the existence of a partial dynamical symmetry. Since Hamiltonians with partial symmetries are not completely integrable and may exhibit stochastic behavior, they are an ideal tool for studying mixed systems with coexisting regularity and chaos.

Partial symmetries are not confined to bosonic systems. In Ref. [27], an example of a partial symmetry in an interacting fermion system was presented. A family of Hamiltonians with partial SU(3) symmetry was introduced in the framework of the symplectic shell model of nuclei [28]. The Hamiltonians were shown to be closely related to the deformation-inducing quadrupole-quadrupole interaction and to possess both mixed-symmetry and solvable pure-SU(3) rotational bands. For the example of the (prolate) deformed light nucleus 20Ne, it was demonstrated that various features of the quadrupole-quadrupole interaction can be
reproduced with a particular parametrization of the PDS Hamiltonians. In that work, the partial dynamical symmetry was identified directly at the fermion level. It is also possible to start with a bosonic PDS Hamiltonian and map the bosonic generators into fermionic generators of the same algebra. This approach was taken by Mamistvalov [29], who studied partial symmetry in a schematic SU(2) × SU(2) type Lipkin model. Very recently, partially solvable shell-model Hamiltonians with seniority-conserving interactions were investigated by Rowe and Rosensteel [30].

It is the purpose of this work to investigate the fermionic PDS Hamiltonians presented in Ref. [27] in more detail. Specifically, the construction process for the pure eigenstates is outlined and analytic expressions for the energies of pure states and the strengths of E2 transitions between these states are given. Properties of the special solvable states are discussed and an application to the oblate deformed light nucleus 12C and the prolate nucleus 20Ne are presented. Moreover, an application to 24Mg demonstrates the relevance of the PDS concept for well-deformed, triaxial nuclei.

In the next section, the symplectic shell model (SSM) is reviewed. In Section III, a family of symplectic Hamiltonians with partial SU(3) symmetry is introduced and their relation to the quadrupole-quadrupole interaction is established. Properties of the special eigenstates of the PDS Hamiltonians are discussed in Section IV, and applications to realistic nuclear systems are presented in Section V. In Section VI, the fermionic PDS Hamiltonians are compared to the earlier introduced bosonic PDS Hamiltonians [16, 17, 18], and Section VII summarizes our work. Appendix A contains further relevant material regarding SU(3) coupling coefficients and reduced matrix elements and Appendix B presents expressions for matrix elements of operators employed in the calculations.

II. THE SYMPLECTIC SHELL MODEL

The symplectic shell model (SSM) is an algebraic, fermionic, shell-model scheme which includes multiple $2\hbar\omega$ one particle-one hole excitations. It includes all essential observables for a description of nuclear monopole and quadrupole collective vibrations as well as for rigid and irrotational flow rotations. Since the model allows for intershell excitations and since its observables are expressible in microscopic shell-model terms, it provides a multi-shell realization of the nuclear shell model [28].

A. Symplectic Generators

The symmetry algebra of the symplectic scheme is spanned by one-body operators which are bilinear products in the (relative) position $(x_{si}, \ i = 1, 2, 3, \ s = 1, \ldots, A - 1)$ and momentum (p_{si}) observables:

\[Q_{ij} = \sum_s x_{si} x_{sj} \]
\[K_{ij} = \sum_s p_{si} p_{sj} \]
\[L_{ij} = \sum_s (x_{si} p_{sj} - x_{sj} p_{si}) \]
\[S_{ij} = \sum_s (x_{si}p_{sj} + p_{si}x_{sj}) , \]

where \(A - 1 \) is the number of Jacobi ‘particles’ remaining after removal of the center-of-mass contribution. Together the operators generate the 21-dimensional symplectic algebra \(sp(6, \mathbb{R}) \), that is, the Lie algebra of linear transformations which preserve a skew-symmetric bilinear form on a six-dimensional real vector space. It is the smallest Lie algebra that contains both the quadrupole moments and the many-nucleon kinetic energy, and it has several physically relevant subalgebras. These include \(gcm(3) \) and its subalgebra \(B^2_2 \) \(so(3) \), associated with the Geometric Collective Model and its rotational limit, respectively, the algebra \(gl(3, \mathbb{R}) \) of the general linear motion group, as well as \(su(3) \) and its subalgebra \(so(3) \), associated with the Elliott model and the rotation group, respectively. The \(sp(6, \mathbb{R}) \) algebra furthermore includes the canonical subalgebras \(sp(2, \mathbb{R}) \) and \(sp(4, \mathbb{R}) \), which have been studied by Arickx et al. [31], and by Peterson and Hecht [32], respectively, as possible approximations to the full three-dimensional symplectic model.

For many purposes, it is advantageous to express the symplectic generators in terms of harmonic oscillator boson creation and annihilation operators \(b_{si}^\dagger = (x_{si} - ip_{si})/\sqrt{2} \) and \(b_{si} = (x_{si} + ip_{si})/\sqrt{2} \). The symplectic generators may then be expressed as one-body operators which are quadratic in the oscillator bosons [33]:

\[
A_{ij} = \frac{1}{2} \sum_s b_{si}^\dagger b_{sj}^\dagger + b_{sj} b_{si}, \\
B_{ij} = \frac{1}{2} \sum_s b_{si} b_{sj}, \\
C_{ij} = \frac{1}{2} \sum_s (b_{si}^\dagger b_{sj} + b_{sj}^\dagger b_{si}).
\]

Alternatively, one may use the spherical components of the oscillator bosons, \(b_{s,1,\pm 1}^{(10)} = \pm \frac{1}{\sqrt{2}} (b_{s1}^\dagger \pm ib_{s2}^\dagger) \), \(b_{s,1,0}^{(10)} = b_{s3}^\dagger \), and \(b_{s,1,\pm 1}^{(11)} = \pm \frac{1}{\sqrt{2}} (b_{s1}^\dagger \pm ib_{s2}^\dagger) \), \(\tilde{b}_{s,1,0}^{(11)} = b_{s3} \), to write the generators as SU(3) tensor operators [34, 35]:

\[
\hat{H}_0 = \sqrt{3} \sum_s \{ b_{s}^{(10)} \times \tilde{b}_{s}^{(11)} \}^{(00)}_{j_{0}0} + \frac{3}{2}(A - 1) \\
\hat{C}_{lm}^{(11)} = \sqrt{2} \sum_s \{ b_{s}^{(10)} \times \tilde{b}_{s}^{(11)} \}^{(11)}_{j_{lm}} (l = 1, 2) \\
\hat{A}_{lm}^{(20)} = \frac{1}{\sqrt{2}} \sum_s \{ b_{s}^{(10)} \times \tilde{b}_{s}^{(10)} \}^{(20)}_{j_{lm}} (l = 0, 2) \\
\hat{B}_{lm}^{(02)} = \frac{1}{\sqrt{2}} \sum_s \{ \tilde{b}_{s}^{(10)} \times \tilde{b}_{s}^{(10)} \}^{(02)}_{j_{lm}} (l = 0, 2). \tag{3}
\]

The notation \(T_{lm}^{(\lambda, \mu)} \) indicates that the operator \(T \) possesses good SU(3) \((\lambda, \mu) \) and SO(3) \(l \) \(m \) tensorial properties. Since \(b_{s}^{\dagger} b_{s}^{\dagger} \) adds two quanta to particle \(s \), thereby moving it up across two major oscillator shells, \(\hat{A}_{lm}^{(20)} \) creates a \(2\hbar \omega \) excitation in the system. Analogously, \(\hat{B}_{lm}^{(02)} \), which is related to \(\hat{A}_{lm}^{(20)} \) by Hermitian conjugation, \(\hat{B}_{lm}^{(02)} = (-1)^{l-m} (\hat{A}_{-m}^{(20)})^{\dagger} \), annihilates a \(2\hbar \omega \) excitation. The \(\hat{C}_{lm}^{(11)} \) act only within a major harmonic
oscillator shell. They generate the group SU(3) of the well-known Elliott model [36]:

$$\sqrt{3} \hat{C}_{2m}^{(11)} = Q_{2m}^E \equiv \sqrt{\frac{4\pi}{3}} \sum_s (r_s^2 Y_{2m}(\hat{r}_s) + p_s^2 Y_{2m}(\hat{p}_s)) \quad (m = 0, \pm 1, \pm 2),$$

$$\hat{C}_{1q}^{(11)} = \hat{I}_q \quad (q = 0, \pm 1),$$

where Q_{2m}^E denotes the symmetrized quadrupole operator of Elliott, which does not couple different major shells, and \hat{I}_q is the orbital angular momentum operator. The harmonic oscillator Hamiltonian, $\hat{H}_0 = \sum_{i=1}^3 \hat{C}_{ii}$, is a SU(3) scalar and generates $U(1)$ in $U(3) = SU(3) \times U(1)$.

Alternatively, one can realize the symplectic generators in terms of fermionic creation and annihilation operators [34]:

$$\hat{C}_{lm}^{(11)} = \sum_{\eta} \sqrt{\frac{1}{6}} \eta(\eta + 1)(\eta + 2)(\eta + 3) \{ a_{\eta}^{\dagger} \times \tilde{a}_{\eta} \}^{S=0}_{S=0} + \hat{\theta}_C^{(2)} (A)$$

$$\hat{A}_{lm}^{(20)} = \sum_{\eta} \sqrt{\frac{1}{12}} (\eta + 1)(\eta + 2)(\eta + 3)(\eta + 4) \{ a_{\eta+2}^{\dagger} \times \tilde{a}_{\eta} \}^{S=0}_{S=0} + \hat{\theta}_A^{(2)} (A)$$

$$\hat{B}_{lm}^{(02)} = \sum_{\eta} \sqrt{\frac{1}{12}} (\eta + 1)(\eta + 2)(\eta + 3)(\eta + 4) \{ a_{\eta}^{\dagger} \times \tilde{a}_{\eta+2} \}^{(02)}_{S=0} + \hat{\theta}_B^{(2)} (A)$$

where $a_{\eta \eta_1 \ldots \eta_s}^{\dagger} \tilde{a}_{\eta \eta_1 \ldots \eta_s} = (-1)^{n+1} a_{\eta \eta_1 \ldots \eta_s} \eta^{n-m/2} \sigma d_{\eta \eta_1 \ldots \eta_s} \sigma = (-1)^{\eta + 1 + m} a_{\eta \eta_1 \ldots \eta_s} \eta^{n-m/2} \sigma$ is a single-particle creation (annihilation) operator, which produces (destroys) a fermion with angular momentum l, projection m and spin 1/2, projection σ in the η-th major oscillator shell. The sums run over all shells, and the coupling to total spin $S = 0$ with projection $\Sigma = 0$ reflects the fact that the generators act on spatial degrees of freedom only. The operators $\hat{\theta}_C^{(2n)} (A)$ remove the spurious center-of-mass content from the generators. Details regarding the fermionic realization of Sp(6,R) can be found in Ref. [34].

B. Symplectic Basis States

A basis for the symplectic model is generated by applying symmetrically coupled products of the $2\hbar \omega$ raising operator $A^{(20)}$ with itself to the usual $0\hbar \omega$ many-particle shell-model states. Each $0\hbar \omega$ starting configuration is characterized by the distribution of oscillator quanta into the three cartesian directions, $\{ \sigma_1, \sigma_2, \sigma_3 \}$, where $\sigma_1 \geq \sigma_2 \geq \sigma_3$. Here σ_i denotes the eigenvalue of the $U(3)$ weight operator C_{ii}, which essentially counts the number of oscillator bosons in the i-th direction of the system. Since $s = 1, 2, \ldots, A-1$, it follows that the σ_i are half-integer numbers for even-A and integers for odd-A nuclei. Equivalently, one may employ quantum numbers $N_{\lambda}(\lambda_\sigma, \mu_\sigma)$, where $\lambda_\sigma = \sigma_1 - \sigma_2$, $\mu_\sigma = \sigma_2 - \sigma_3$ are the Elliott SU(3) labels, and $N_{\lambda} = \sigma_1 + \sigma_2 + \sigma_3$ is the eigenvalue of the harmonic oscillator Hamiltonian, $\hat{H}_0 = \hat{C}_{11} + \hat{C}_{22} + \hat{C}_{33}$, which takes the minimum value consistent with the Pauli Exclusion Principle. Each such set of $U(3)$ quantum numbers uniquely determines an irreducible representation (irrep) of the symplectic group, since it characterizes a Sp(6,R) lowest weight state. Any component of the symplectic lowering operator $B^{(20)}$ (and of C_{ij} with $i < j$) annihilates such a lowest weight state.
In contrast, application of the symplectic generator $\hat{A}^{(20)}$ allows one to successively build a basis for the $\text{Sp}(6,\mathbb{R})$ irrep under consideration: The product of $N/2$, $N = 0, 2, 4, \ldots$, raising operators $\hat{A}^{(20)}$ is multiplicity-free and generates $N\hbar w$ excitations for each starting configuration $N_\sigma(\lambda_\sigma, \mu_\sigma)$. Each such product operator $\mathcal{P}^{N(\lambda_\sigma, \mu_\sigma)}$ can be labeled according to its $U(3)$ content, \(\{ n_1, n_2, n_3 \} \) or $N(\lambda_n, \mu_n)$, where (λ_n, μ_n) ranges over the set

$$\Omega = \{(n_1 - n_2, n_2 - n_3) | n_1 \geq n_2 \geq n_3 \geq 0; N = n_1 + n_2 + n_3; n_1, n_2, n_3 \text{ even integers}\} \quad (6)$$

The raising polynomial $\mathcal{P}^{N(\lambda_n, \mu_n)}$ is then coupled with $|N_\sigma(\lambda_\sigma, \mu_\sigma)\rangle$ to good $SU(3)$ symmetry $\rho(\lambda_\omega, \mu_\omega)$, with ρ denoting the multiplicity in the coupling $(\lambda_n, \mu_n) \otimes (\lambda_\sigma, \mu_\sigma)$. The quantization in the resulting state is given by $\{\omega_1, \omega_2, \omega_3\}$, with $N_\omega = N_\sigma + N = \omega_1 + \omega_2 + \omega_3$, $\omega_1 \geq \omega_2 \geq \omega_3$, and $\lambda_\omega = \omega_1 - \omega_2, \mu_\omega = \omega_2 - \omega_3$. The states of the $\text{Sp}(6,\mathbb{R}) \supset SU(3)$ basis are thus labeled by three types of $U(3)$ quantum numbers: $\Gamma_\sigma \equiv \{\sigma_1, \sigma_2, \sigma_3\} = N_\sigma(\lambda_\sigma, \mu_\sigma)$, the symplectic bandhead or $\text{Sp}(6,\mathbb{R})$ lowest weight $U(3)$ symmetry, which specifies the $\text{Sp}(6,\mathbb{R})$ irreducible representation; $\Gamma_n \equiv \{n_1, n_2, n_3\} = N(\lambda_n, \mu_n)$, the $U(3)$ symmetry of the raising polynomial; and $\Gamma_\omega \equiv \{\omega_1, \omega_2, \omega_3\} = N_\omega(\lambda_\omega, \mu_\omega)$, the $U(3)$ symmetry of the coupled product. A given symplectic representation space $N_\sigma(\lambda_\sigma, \mu_\sigma)$ is infinite dimensional, since $N/2$, the number of oscillator excitations, can take any non-negative integer value. In practical applications, one must therefore either truncate the symplectic Hilbert space, or restrict oneself to interactions and observables for which the matrix elements depend solely on the symplectic irrep and can be calculated analytically. The basis state construction is schematically illustrated in Fig. 1 for a typical Elliott starting state with $(\lambda_\sigma, \mu_\sigma) = (0, \mu)$. A similar figure for $(\lambda_\sigma, \mu_\sigma) = (\lambda, 0)$ is given in Ref. [27].

To complete the basis state labeling, additional quantum numbers α are required. This can be accomplished by reducing $\text{Sp}(6,\mathbb{R}) \supset SU(3)$ states with respect to the subgroup $U(1) \times SU(2)$ of $SU(3)$ and assigning labels $\alpha = \varepsilon \Lambda M_\Lambda$ 1. This $SU(2)$ subgroup, however, is not the physical orbital angular momentum subgroup $SO(3)$ of $SU(3)$. States with good angular momentum values can be obtained from the $SU(3) \supset U(1) \times SU(2)$ (canonical) basis by projection [36, 37]. The associated quantum numbers are $\alpha = \kappa L M$, where κ is a multiplicity index, which enumerates multiple occurrences of a particular L value in the $SU(3)$ irrep (λ, μ) from 1 to $\kappa_L^m(\lambda, \mu)$,

$$\kappa_L^m(\lambda, \mu) = \left\lfloor \left(\lambda + \mu + 2 - L \right) / 2 \right\rfloor - \left\lfloor \left(\lambda + 1 - \frac{L}{4} \right) / 2 \right\rfloor - \left\lfloor \mu + 1 - L / 2 \right\rfloor, \quad (7)$$

where $\left\lfloor x \right\rfloor$ is the greatest non-negative integer function [38]. The $\kappa_L^m(\lambda, \mu)$ occurrences of L can be distinguished in a variety of ways. The physically most significant scheme is that of Elliott [36], in which case the projection of L along the body-fixed 3-axis, denoted K, is used to sort the L-values into the familiar K-bands of the rotational model. Unfortunately, states defined in this manner are not orthonormal with respect to the multiplicity quantum number K. To avoid the resulting complications, such as working with non-hermitean matrices, the Elliott basis is usually orthonormalized using a Gram-Schmidt process. Vergados [39], for example, gives a prescription to construct orthogonal basis states in a systematic manner for all (λ, μ), such that the physical interpretation of K as a band label can be approximately

\[1\) Here ε, the eigenvalue of Q^E_{2B}, gives the $U(1)$ content and the $SU(2)$ irrep is characterized by Λ with projection M_Λ.\]
maintained. In the present work, we employ the orthonormal \(\phi = 1, 2, \ldots, \phi^m \) to distinguish multiple occurrences of \(\lambda \) in a given \(SU(3) \) irrep \((\lambda, \mu)\) and list the corresponding Vergados labels where appropriate. The dynamical symmetry chain and the associated quantum labels of the above scheme are given by [28]:

\[
Sp(6, R) \supset U(3) \supset SO(3) \supset SO(2)
\]

\[
N_x(\lambda, \mu) \; N_y(\lambda, \mu) \; N_z(\lambda, \mu) \; \kappa \; \lambda \; M
\]

When applying the formalism to realistic nuclei, we assign rotational band labels according to the calculated \(B(E2) \) rates.

The quadratic Casimir operators of \(SU(3) \) and \(Sp(6, R) \),

\[
\hat{C}_{SU3} = \frac{1}{2} \left[C_2^{(11)} \cdot C_2^{(11)} + C_4^{(11)} \cdot C_4^{(11)} \right]
\]

\[
\hat{C}_{Sp6} = -2 \hat{A}_0^{(20)} \hat{B}_0^{(02)} - 2 \hat{A}_2^{(20)} \cdot \hat{B}_2^{(02)} + \hat{C}_{SU3} + \frac{1}{3} \hat{H}_0^2 - 4 \hat{\mu}_0
\]

have the following eigenvalues in the dynamical symmetry basis:

\[
\langle \hat{C}_{SU3} \rangle \left[(\lambda, \mu) \right] = 2(\lambda^2 + \mu^2 + \lambda \mu + 3\lambda + 3\mu)/3
\]

\[
\langle \hat{C}_{Sp6} \rangle \left[N_x(\lambda, \mu), \kappa \right] = 2(\lambda^2 + \mu^2 + \lambda \mu + 3\lambda + 3\mu)/3 + N_x^2/3 - 4 N_x
\]

The collection of all \(\theta h\omega \) configurations provides a complete Hilbert space for the Elliott \(SU(3) \) submodel of the SSM and is referred to as the \(\theta h\omega \) horizontal shell-model space. The set of states built on a given \(U(3) \) irrep \(N_x(\lambda, \mu) \) is called the vertical extension of that irrep. Each vertical extension can be partitioned into horizontal slices with the states within the \(N/2 \)-th slice representable as a homogeneous polynomial of degree \(N/2 \) in the \(\hat{A}^{(20)} \) tensors acting on the parent \(\theta h\omega \) configuration (see also Fig. 2). Interactions can thus be classified according to their effect on this structure; pairing, for example, causes horizontal mixing, both within each 'cone' (symplectic irrep) and between different cones, while the quadrupole-quadrupole interaction induces horizontal and vertical mixing, but does not connect different cones.

C. Symplectic Hamiltonians

A primary goal of the symplectic shell model is to achieve a microscopic description of deformed nuclei. These nuclei exhibit collective behavior, that is, modes of excitation

2 Vergados projects from a state with \(\varepsilon = \varepsilon_{\min} = -\lambda - 2\mu \), \(\lambda = \lambda/2 \), \(M_{\lambda} = \lambda/2 \) for \(\lambda \geq \mu \) and \(\varepsilon = \varepsilon_{\max} = 2\lambda + \mu \), \(\lambda = \mu/2 \), \(M_{\lambda} = -\mu/2 \) for \(\lambda < \mu \) and employs the ‘Elliot rule’ to determine the possible \(K \) values, \(K = \min(\lambda, \mu), \min(\lambda, \mu) - 2, \ldots, 1 \) or 0, and angular momenta, \(L = K, K + 1, K + 2, \ldots \) \(K + \max(\lambda, \mu) \) for \(K \neq 0 \) and \(L = \max(\lambda, \mu), \max(\lambda, \mu) - 2, \ldots, 1 \) or 0 for \(K = 0 \). It is also possible to project from \(\varepsilon = \varepsilon_{\max} \), \(\lambda = \mu/2 \), and \(M_{\lambda} = +\mu/2 \) or \(\varepsilon = \varepsilon_{\max} \), \(\lambda = \lambda/2 \), \(M_{\lambda} = -\lambda/2 \). Draayer et al. [37, 40] discuss the different projection possibilities and give rules analogous to the Elliot rule for determining the \(K \) and \(L \) content of a given \(SU(3) \) irrep \((\lambda, \mu)\).
in which an appreciable fraction of the nucleons in the system participate in a coherent manner, as, for example, is the case for rotations. An appropriate Hamiltonian for describing rotational phenomena within the symplectic model consists of the harmonic oscillator, which provides the background shell structure, the quadrupole-quadrupole interaction, $Q_2 \cdot Q_2$, and a residual interaction that should include, for example, single-particle spin-orbit and orbit-orbit terms, as well as pairing and other interactions. However, most applications of the theory are much less ambitious than this, restricting the interaction to terms that can be expressed solely in terms of generators of the symplectic algebra \[28, 41, 42, 43\]. Interactions of the latter form do not mix different symplectic irreps and therefore the Hamiltonian matrix for such interactions becomes block-diagonal. Indeed, in most practical applications the Hilbert space of the system is truncated to one single symplectic representation. This is accomplished by selecting the vertical slice (symplectic irrep) constructed from the leading starting irrep of the \(0\hbar \omega\) space. The leading irrep is defined to be the U(3) representation, \(N_\sigma(\lambda_\sigma, \mu_\sigma)\), from the lowest layer with the most symmetric spatial permutation symmetry consistent with the Pauli principle, and the maximal possible SU(3) Casimir operator value, \(\langle \hat{C}_{SU3}(\lambda_\sigma, \mu_\sigma) \rangle\). For \(^{12}\text{C}\), for instance, the leading irrep is given by \(N_\sigma(\lambda_\sigma, \mu_\sigma) = 24.5 \ (0, 4)\), which corresponds to the symplectic weights \(\sigma_1 = \sigma_2 = 9.5, \sigma_3 = 5.5\); for \(^{20}\text{Ne}\), one finds \(N_\sigma (\lambda_\sigma, \mu_\sigma) = 4.85 \ (8, 0)\), since \(\sigma_1 = 21.5, \sigma_2 = 13.5 \ [28]\); and \(^{24}\text{Mg}\) has \(N_\sigma (\lambda_\sigma, \mu_\sigma) = 62.5 \ (8, 4)\), that is, \(\sigma_1 = 27.5, \sigma_2 = 19.5, \sigma_3 = 15.5 \ [42]\). The single-symplectic irrep approximation is a sensible choice for nuclear systems which have a dominant quadrupole-quadrupole force, since this interaction does not mix symplectic representations and favors states with large \(\langle \hat{C}_{SU3}(\lambda_\sigma, \mu_\sigma) \rangle\) values.

A typical Hamiltonian for a calculation in a space truncated in the manner described above, is given by a harmonic oscillator term, \(H_0\), plus a collective potential, and a residual interaction:

\[
H = H_0 + V_{coll} + V_{res} .
\]

(13)

We choose the collective potential to be a simple quadratic, rotationally invariant, function of the microscopic quadrupole moment\(^3\), \(Q_{2m} = \sqrt{\frac{16\pi}{5}} \sum_i r_i^2 Y_{2m}(\hat{r}_i)\), namely

\[
V_{coll} = -\chi Q_2 \cdot Q_2 .
\]

(14)

The quadrupole-quadrupole interaction is a standard ingredient in models that aim at reproducing rotational spectra and nuclear deformations. It emerges (apart from a constant) as a leading contribution in the multipole expansion of a general two-body force. It mixes states from different oscillator shells, since the quadrupole operator has non-vanishing matrix elements between shells differing by zero or two oscillator quanta. A major strength of the symplectic model is its ability to fully accommodate the action of the quadrupole operator, which can be written in terms of symplectic generators:

\[
Q_{2m} = \sqrt{3} (\hat{C}_{2m}^{(11)} + \hat{A}_{2m}^{(20)} + \hat{B}_{2m}^{(02)}) .
\]

(15)

As a result, the model is able to reproduce intra-band and inter-band E2 transition strengths between low-lying, as well as giant resonance, states without introducing proton and neutron effective charges.

\(^3\) Higher order rotational scalars in \(Q_2\) can be included in \(V_{coll}\) in order to accommodate more complicated potential forms, e.g. a cubic term introduces a \(\gamma\)-dependence into the potential.
The effective residual interaction, V_{res}, is included to replace non-collective components of a more realistic Hamiltonian and the neglected effects of couplings to other Sp(6,R) representations. As in previous works, we choose V_{res} to be a rotationally invariant function of the SU(3) generators. For prolate and oblate nuclei we use:

$$V_{\text{res}} = d_2 \hat{L}^2 + d_4 \hat{L}^4 \cdot$$

(16)

where \hat{L} denotes the angular momentum operator, Eq. (4). This allows us to reproduce the energy splittings between states of a rotational band. For triaxial nuclei, such as 24Mg, it becomes necessary to include further terms, in order to reproduce the experimentally observed ‘K-band splitting’, the energy differences found between states with the same angular momentum but different K-band assignments. This can be achieved by including ‘SU(3) ⊃ SO(3) integrity basis’ operators $\hat{X}_3 \equiv (\hat{L} \times Q^E)_{(1)} \cdot \hat{L}$ and $\hat{X}_4 \equiv (\hat{L} \times Q^E)_{(1)} \cdot (\hat{L} \times Q^E)_{(1)}$ in the residual interaction [44]:

$$V'_{\text{res}} = c_3 \hat{X}_3 + c_4 \hat{X}_4 + d_1 \hat{L}^2 + d_4 \hat{L}^4 .$$

(17)

The evaluation procedure for the matrix elements of the symplectic generators $A^{(20)}$, $B^{(02)}$, and $C^{(11)}$, and of the integrity basis operators \hat{X}_3 and \hat{X}_4 is discussed in Appendix B.

III. PDS HAMILTONIANS AND THE QUADRUPOLE-QUADRUPOLE INTERACTION

In this section we introduce a family of fermionic Hamiltonians with partial dynamical symmetry. Motivated by the fact that a realistic quadrupole-quadrupole interaction breaks SU(3) symmetry within a given major oscillator shell, we define a family of Hamiltonians, $H(\beta_0, \beta_1)$, which allows us to study the features of the symmetry-breaking terms in some detail. The new Hamiltonians do not couple different oscillator shells and, for a particular choice of the parameters β_0 and β_1, reduce to a form which is closely related to the quadrupole-quadrupole interaction restricted to a shell. We prove that this family of Hamiltonians exhibits partial SU(3) symmetry and gives rules for determining the ‘special’ irreps and the associated pure eigenstates.

In the symplectic shell model, the quadrupole-quadrupole interaction can be expressed in terms of symplectic generators [45]:

$$Q_2 \cdot Q_2 = 3(\hat{C}_2 + \hat{A}_2 + \hat{B}_2) \cdot (\hat{C}_2 + \hat{A}_2 + \hat{B}_2) .$$

(18)

Employing the commutation relations $\hat{B}_1 \cdot \hat{A}_2 - \hat{A}_1 \cdot \hat{B}_2 = \frac{10}{\sqrt{6}} \hat{H}_0$ and $\hat{B}_1 \cdot \hat{C}_2 - \hat{C}_1 \cdot \hat{B}_2 = \frac{20}{\sqrt{6}} \hat{H}_0$, given in Ref. [45], this can be rewritten as:

$$Q_2 \cdot Q_2 = 3 \hat{C}_2 \cdot \hat{C}_2 + 6 \hat{A}_2 \cdot \hat{B}_2 + 10 \hat{H}_0 + \left[\left(6 \hat{C}_2 \cdot \hat{B}_2 + 10 \sqrt{6} \hat{B}_0 + 3 \hat{B}_2 \cdot \hat{B}_2 \right) + \text{H.c.} \right] .$$

(19)

where $3 \hat{C}_2 \cdot \hat{C}_2 = Q^E_2 \cdot Q^E_2$ and H.c. denotes the Hermitian conjugate of the expression in parentheses. The first three terms in the expansion, Eq. (19), act solely within a major harmonic oscillator shell, while the second line connects states differing in energy by $\pm 2\hbar \omega$ and $\pm 4\hbar \omega$. It is primarily the presence of the multi-$\hbar \omega$ correlations that differentiates the
SSM from the Elliott SU(3) model. The symplectic model allows for coherent multi-shell admixtures in its wave functions and thus achieves the experimentally observed nuclear deformation and absolute B(E2) rates. In contrast, the Elliott model requires effective charges, since it employs the algebraic (or Elliott) quadrupole-quadrupole interaction,

$$Q_E^E \cdot Q_E^E = 6\hat{C}_{SU3} - 3\hat{L}^2,$$

(20)

which does not connect different oscillator shells.

Although matrix elements of Q_2 and Q_E^E are identical within a harmonic oscillator shell, the corresponding quadrupole-quadrupole interactions exhibit differences here as well: The $\hat{C}_2 \cdot \hat{C}_2$ and \hat{H}_0 terms in the expansion, Eq. (19), are diagonal in the dynamical symmetry basis, Eq. (8), whereas $\hat{A}_2 \cdot \hat{B}_2$ contains contributions which mix different SU(3) irreps. This follows from the relations:

$$\hat{A}_0 \hat{B}_0 \equiv \hat{A}_{0}^{(20)} \hat{B}_{0}^{(02)} = \frac{1}{\sqrt{6}} \{ \hat{A} \times \hat{B} \}^{(00)}_0 - \frac{\sqrt{5}}{6} \{ \hat{A} \times \hat{B} \}^{(22)}_0,$$

$$\hat{A}_2 \cdot \hat{B}_2 \equiv \hat{A}_{2}^{(20)} \cdot \hat{B}_{2}^{(02)} = \frac{5}{\sqrt{6}} \{ \hat{A} \times \hat{B} \}^{(00)}_0 + \frac{\sqrt{5}}{6} \{ \hat{A} \times \hat{B} \}^{(22)}_0,$$

(21)

where

$$\{ \hat{A} \times \hat{B} \}^{(00)}_0 = \frac{1}{2\sqrt{6}} (\hat{C}_{SU3} + \frac{1}{3} \hat{H}_0^2 - 4 \hat{H}_0 - \hat{C}_{Sp6}).$$

(22)

The term $\{ \hat{A} \times \hat{B} \}^{(00)}_0$ is a SU(3) scalar, but $\{ \hat{A} \times \hat{B} \}^{(22)}_0$ breaks SU(3) symmetry. Within a major oscillator shell, it is mainly this symmetry-breaking term that distinguishes the action of $Q_2 \cdot Q_2$ from the effect of the Elliott interaction, $Q_E^E \cdot Q_E^E$, which respects the symmetry.

To explore this latter aspect in more detail, we rewrite the collective quadrupole-quadrupole interaction as follows:

$$Q_2 \cdot Q_2 = 9\hat{C}_{SU3} - 3\hat{C}_{Sp6} + \hat{H}_0^2 - 2\hat{H}_0 - 3\hat{L}^2 - 6\hat{A}_0 \hat{B}_0 + \{\text{terms coupling different h.o. shells}\}.$$

(23)

The quadratic Casimir invariants of SU(3), \hat{C}_{SU3}, and of Sp(6, R), \hat{C}_{Sp6}, and their eigenvalues, are given in Eqs. (9)-(12). In order to focus on the action of $Q_2 \cdot Q_2$ within a harmonic oscillator shell, we introduce the following family of rotationally invariant Hamiltonians:

$$H(\beta_0, \beta_2) = \beta_0 \hat{A}_0 \hat{B}_0 + \beta_2 \hat{A}_2 \cdot \hat{B}_2$$

$$= \frac{\beta_2}{18} (9\hat{C}_{SU3} - 9\hat{C}_{Sp6} + 3\hat{H}_0^2 - 36\hat{H}_0) + (\beta_0 - \beta_2) \hat{A}_0 \hat{B}_0.$$

(24)

For $\beta_0 = \beta_2$, one recovers a Sp(6, R)\otimesSU(3) dynamical symmetry Hamiltonian: $H(\beta_0, \beta_2 = \beta_0)$ contains only SU(3)-scalars, that is, it does not mix different SU(3) irreps. Furthermore, all eigenstates at a given Nilor excitation which belong to the same symplectic and SU(3) irreps are degenerate. Additional SO(3) rotational terms, such as \hat{L}^2 and \hat{L}^4 split the degeneracies, but do not change the wave functions. For the special choice $\beta_0 = 12, \beta_2 = 18$, one finds that $H(\beta_0 = 12, \beta_2 = 18)$ is closely related to the quadrupole-quadrupole interaction:

$$Q_2 \cdot Q_2 = H(\beta_0 = 12, \beta_2 = 18) + \text{const} - 3\hat{L}^2 + \{\text{terms coupling different h.o. shells}\},$$

(25)
where the value of $\text{const} = 6\tilde{C}_{-5\sigma} - 2\tilde{H}_0 + 34\tilde{H}_0$ is fixed for a given symplectic irrep $N_\sigma(\lambda_\sigma, \mu_\sigma)$ and Nh_ω excitation. Although $H(\beta_0, \beta_2)$ does not couple different harmonic oscillator shells, it contains the SU(3)-symmetry breaking term $\{A \times B\}_{-2}^{[22]}$ and is therefore expected to exhibit in-shell behavior similar to that of $Q_2 \cdot Q_2$.

From Eq. (21) it follows that $H(\beta_0, \beta_2)$ is generally not SU(3) invariant. We will now show that $H(\beta_0, \beta_2)$ exhibits partial SU(3) symmetry. Specifically, we claim that among the eigenstates of $H(\beta_0, \beta_2)$, there exists a subset of solvable pure-SU(3) states, the SU(3)\(\supset\)SO(3) classification of which depends on both the Elliott labels $(\lambda_\sigma, \mu_\sigma)$ of the starting state and the symplectic excitation N. In general, we find that all L-states in the starting configuration $(N = 0)$ are solvable with good SU(3) symmetry $(\lambda_\sigma, \mu_\sigma)$. For excited configurations, with $N > 0$ (N even), we distinguish two possible cases:

(a) $\lambda_\sigma > \mu_\sigma$: the pure states belong to $(\lambda, \mu) = (\lambda_\sigma - N, \mu_\sigma + N)$ at the Nh_ω level and have $L = \mu_\sigma + N, \mu_\sigma + N + 1, \ldots, \lambda_\sigma - N + 1$ with $N = 2, 4, \ldots$ subject to $2N \leq (\lambda_\sigma - \mu_\sigma + 1)$.

(b) $\lambda_\sigma \leq \mu_\sigma$: the special states belong to $(\lambda, \mu) = (\lambda_\sigma + N, \mu_\sigma)$ at the Nh_ω level and have $L = \lambda_\sigma + N, \lambda_\sigma + N + 1, \ldots, \lambda_\sigma + N + \mu_\sigma$, with $N = 2, 4, \ldots$.

To prove the claim, it is sufficient to show that \hat{B}_0 annihilates the states in question (since $H(\beta_0 = \beta_2)$ is diagonal in the dynamical symmetry basis). For $N = 0$ this follows immediately from the fact that the $0h_\omega$ starting configuration is a Sp(6,R) lowest weight which, by definition, is annihilated by the lowering operators of the Sp(6,R) algebra. The latter include the components of the generator $\hat{B}^{(02)}$.

For $N > 0$, we have to consider the action of \hat{B}_0 in more detail. Let $\{\sigma_1, \sigma_2, \sigma_3\}$ be the quanta distribution for a $0h_\omega$ state with $\lambda_\sigma > \mu_\sigma$. An excited state with SU(3) character $(\lambda, \mu) = (\lambda_\sigma - N, \mu_\sigma + N)$ must have the quanta distribution $\{\sigma_1, \sigma_2 + N, \sigma_3\}$. Acting with the rotational invariant \hat{B}_0 on such a state does not affect the angular momentum, but removes two quanta from the 2-direction, giving a $(N - 2)h_\omega$ state with $(\lambda', \mu') = (\lambda_\sigma - N + 2, \mu_\sigma + N - 2)$. Note that the symplectic generator \hat{B}_0 cannot remove quanta from the other two directions of this particular state, since this would yield a state which has fewer oscillator quanta in the 1- or 3-direction than the starting $(0h_\omega)$ configuration, i.e. the resulting state would belong to a different symplectic irrep. Comparing the number of occurrences of a given angular momentum value L in (λ, μ) at Nh_ω and (λ', μ') at $(N - 2)h_\omega$, one finds the following: As long as $\lambda_\sigma - N + 1 \geq \mu_\sigma + N$ holds, the difference $\Delta_L(N) \equiv \kappa_L^{\mu, \nu}(\lambda, \mu) - \kappa_L^{\mu, \nu}(\lambda', \mu')$ is a positive number, otherwise (with $\kappa_L^{\mu, \nu}$ as defined in Eq. (7)). Therefore, when $\Delta_L(N) = 1$, a linear combination $|\phi_L(N)\rangle = \sum \alpha c_\alpha |Nh_\omega(\lambda_\sigma - N, \mu_\sigma + N)\epsilon L M\rangle$ exists such that $\hat{B}_0|\phi_L(N)\rangle = 0$, and thus our claim for family (a) holds.

The proof for family (b) can be carried out analogously. Here the special irrep $(\lambda, \mu) = (\lambda_\sigma + N, \mu_\sigma)$ is obtained by adding N quanta to the 1-direction of the starting configuration. In this case there is no restriction on N, hence family (b) is infinite. Note that adding quanta to the 3-direction does not yield another family of pure states, since the multiplicity for a given L-value in the associated ‘special’ irreps, $(\lambda, \mu) = (\lambda_\sigma, \mu_\sigma - N)$, decreases as N increases, i.e. $\Delta_L(N) \leq 0$ for all L and N.

IV. SOLVABLE STATES AND THEIR PROPERTIES

All $0\hbar\omega$ states are eigenstates of $H(\beta_0, \beta_1)$. They are unmixed and span the entire $(\lambda_\sigma, \mu_\sigma)$ irrep. In contrast, for the excited levels $(N > 0)$, the pure states span only part of the corresponding SU(3) irrep. There are other states at each excited level which do not preserve the SU(3) symmetry and therefore contain a mixture of SU(3) irreps.

To construct the pure states for $N > 0$, we proceed as follows: Let (λ, μ) at $N\hbar\omega$ be the irrep which contains a pure state with angular momentum L and projection M, $|\phi_{LM}(N)\rangle$. This state can be written as:

$$|\phi_{LM}(N)\rangle = \sum_{\kappa} c_\kappa(L)|N\hbar\omega(\lambda, \mu)\kappa LM\rangle,$$

where $\kappa^{\max}_L(\lambda, \mu)$ denotes the maximum multiplicity of L in (λ, μ), Eq. (7). Obviously, $|\phi_{LM}(N)\rangle$ is an unmixed eigenstate of $H(\beta_0, \beta_1)$ if $\langle \psi(N - 2)|B_0|\phi_{LM}(N)\rangle = 0$ holds for all states $|\psi(N - 2)\rangle$ at the $(N - 2)\hbar\omega$ level. From the proof it follows that B_0 acting on states in the ‘special’ irrep (λ, μ) at $N\hbar\omega$ can only produce states belonging to the ‘special’ irrep (λ', μ') at $(N - 2)\hbar\omega$, hence $\langle (N - 2)\hbar\omega(\lambda', \mu')\kappa'LM|B_0|\phi_{LM}(N)\rangle = 0$ for $\kappa' = 1, 2, \ldots, \kappa^{\max}_L(\lambda', \mu')$ ensures that $|\phi_{LM}(N)\rangle$ is pure. The $\kappa^{\max}_L(\lambda, \mu)$ coefficients $c_\kappa(L)$, which characterize the pure state, are thus uniquely determined by the $\kappa^{\max}_L(\lambda', \mu') = \kappa^{\max}_L(\lambda, \mu) - 1$ equations

$$\sum_{\kappa} c_\kappa(L)(N - 2)\hbar\omega(\lambda', \mu')\kappa'LM|B_0|N\hbar\omega(\lambda, \mu)\kappa LM\rangle = 0$$

and the normalization requirement $\sum_{\kappa} |c_\kappa(L)|^2 = 1$. The proof given in the previous section guarantees the existence of a solution.

Making use of the Wigner-Eckart theorem for SU(3) (see Appendix A), the relations in Eq. (27) can be rewritten as $\langle (\lambda', \mu')|B^{(03)}|(|(\lambda, \mu)\kappa L; (02)0||\lambda, \mu)\kappa L\rangle = 0$, where $\langle \cdot | \cdot | \cdot \rangle$ denotes a reduced Wigner coupling coefficient for SU(3). Since the triple-reduced matrix element of $B^{(03)}$ is generally nonzero, we obtain the following conditions:

$$\kappa^{\max}_L(\lambda, \mu)$$

and the normalization requirement $\sum_{\kappa} |c_\kappa(L)|^2 = 1$. The proof given in the previous section guarantees the existence of a solution.

To illustrate the procedure outlined above, we consider the case of 12C. The leading irrep for the nucleus is $(\lambda_\sigma, \mu_\sigma) = (0, 4)$, thus the pure states belong to $(\lambda, \mu) = (0, 4)$ at $0\hbar\omega$, $(\lambda, \mu) = (2, 4)$ at $2\hbar\omega$, $(\lambda, \mu) = (4, 4)$ at $4\hbar\omega$, etc. At $0\hbar\omega$, all states $(L = 0, 2, 4)$ are unmixed. At $2\hbar\omega$, the possible L-values are 0, 2, 3, 4, 5, 6, and we have $\Delta_L = 0$, $\Delta_L = 1$, and $\Delta_L = 2$ for $L = 2, 3, 4, 5, 6$. Since the values $L = 3, 5, 6$ occur only once $(\kappa^{(03)}_L(2, 4)|L = 1)$, the associated states are pure $(c_1(L) = 1)$. For $L = 2, 4$, for which $\kappa^{(03)}_L(2, 4)|L = 2, 4 = 2$, the appropriate coefficients $c_\kappa(L)$ may be determined from the requirements:

$$c_1(L)(0, 4)L; (2, 0)0|(2, 4)1L\rangle + c_2(L)(0, 4)L; (2, 0)0|(2, 4)2L\rangle = 0,$$

$$|c_1(L)|^2 + |c_2(L)|^2 = 1.$$
For $L=2$, one finds $(0, 4); 2(2, 0) || (2, 4)\kappa 2 = -0.85280 (0.05372)$ for $\kappa = 1 (\kappa = 2)$ [46], and thus $|\phi_{2M}(2\hbar \omega)| = 0.063 [2\hbar \omega (2, 4)12M] + 0.998 [2\hbar \omega (2, 4)22M]$. Similarly, for $L=4$, one obtains $(0, 4); 4(2, 0) || (2, 4)\kappa 4 = -0.75107 (0.23440)$ for $\kappa = 1 (\kappa = 2)$ [46], and therefore $c_1(4) = 0.298$ and $c_2(4) = 0.955$. Analogously, one can proceed for the $4\hbar \omega$ level. There are, for instance, three $L=4$ states, one of which is pure. One finds: $|\phi_{4M}(4\hbar \omega)| = -0.637 [4\hbar \omega (4, 4)14M] + 0.761 [4\hbar \omega (4, 4)24M] - 0.124 [2\hbar \omega (4, 4)34M]$, and similarly for the other states.

For a nucleus with $(\lambda_\sigma, \mu_\sigma) = (\lambda, 0)$, $\lambda > 2$, pure states with $(\lambda', \mu') = (\lambda - 2, 2)$, $L = 2, 3, \ldots, \lambda - 1$, exist at $2\hbar \omega$ according to the proof given in Section III. The odd-angular momentum values, $L = 3, 5, \ldots, \lambda - 1$, occur only once ($\kappa = 1$) and the associated states are pure. The even-L values, on the other hand, occur twice with $\kappa = 1$ or 2, corresponding to Vergados labels 0 and 2, respectively. Since $(\lambda, 0)L; [2(\lambda - 2, 2)\kappa L] = [2(\lambda + 1)^2 - L(L + 1)]^{1/2} / [3\lambda(\lambda + 1)]^{1/2}$ for $\kappa = 1$ and 0 for $\kappa = 2$ [39], it follows that $c_\sigma(L) = 0 (1, 0)$ for $\kappa = 1 (\kappa = 2)$. Consequently, the pure $K=2$ band at $2\hbar \omega$ consists of states with $(\lambda', \mu') = (\lambda - 2, 2)$, $\lambda = 1 (2)$ for odd (even) L values, i.e. $\kappa = \kappa_{L_{\sigma}}^m (\lambda - 2, 2)$. An example for such a nucleus is given in Section V B, where the 20Ne system is discussed.

Having constructed the solvable eigenstates of the PDS Hamiltonian $H(\beta_0, \beta_2)$, Eq. (24), we can now give analytic expressions for their energies. We have $E(N = 0) = 0$ for the $0\hbar \omega$ level, and

$$E(N) = \beta_2 N \left((\lambda_\sigma - \lambda_\sigma + \mu_\sigma - 6 + \frac{3}{2}N) \right) \quad (\lambda_\sigma > \mu_\sigma)$$

$$E(N) = \beta_2 N \left((\lambda_\sigma + 2\lambda_\sigma + \mu_\sigma - 3 + \frac{3}{2}N) \right) \quad (\lambda_\sigma \leq \mu_\sigma)$$

(30)

for $N > 0$. For instance, for $N_\sigma(\lambda_\sigma, \mu_\sigma) = 24.5 (0, 4)$, which corresponds to 12C, this yields: $E(N = 0) = 0$, $E(2\hbar \omega) = 19\beta_2$, $E(4\hbar \omega) = 42\beta_2$, etc.

The partial SU(3) symmetry of $H(\beta_0, \beta_2)$ is converted into partial dynamical SU(3) symmetry by adding to the Hamiltonian SO(3) rotation terms which lead to $L(L + 1)$-type splitting but do not affect the wave functions. The solvable states then form rotational bands and since their wave functions are known, one can evaluate the quadrupole transition rates between them:

$$B(E2, L_i \rightarrow L_f) = e^2 b^4 \left(\frac{Z}{A}\right)^2 \frac{5}{16\pi} \frac{|(L_f||Q_2||L_i)|^2}{2L_i + 1} .$$

(31)

Here $b = \sqrt{\hbar/m \omega}$ is the harmonic oscillator length parameter, Z and A are the nuclear charge and mass, respectively, and the convention for the reduced matrix elements is summarized in Appendix A. For unmixed initial and final states, $|\phi_{L_i}(N_i)\rangle = \sum_{\kappa_i} c_{\kappa_i}(L_i)|N_i\hbar \omega(\lambda_i, \mu_i)\kappa_i L_i\rangle$ and $|\phi_{L_f}(N_f)\rangle = \sum_{\kappa_f} c_{\kappa_f}(L_f)|N_f\hbar \omega(\lambda_f, \mu_f)\kappa_f L_f\rangle$, the matrix element of Q_2 is given by:

$$\langle \phi_{L_i}(N_i)\rangle|Q_2||\phi_{L_i}(N_i)\rangle =$$

$$\delta_{N_i, N_f} \delta(\lambda_i, \mu_i) \langle (\lambda_i, \mu_i) || (-1)^{\lambda_i - \mu_i} \sqrt{6}CS_{SU3}[(\lambda_i, \mu_i)] \left[\sum_{\kappa_i, \kappa_f} c_{\kappa_i}(L_i) c_{\kappa_f}(L_f) \langle (\lambda_i, \mu_i) \kappa_i L_i; (11) || (\lambda_f, \mu_i) \kappa_f L_f \rangle \right]_{\rho=1}$$

$$+ \delta_{N_i, (N_i + 2)} \sqrt{5} \left[\langle (\lambda_f, \mu_f) || A^{(20)} || (\lambda_i, \mu_i) \rangle \right]$$

(32)
\[
\sum_{\kappa, \kappa_f} c_{\kappa_i}(L_i) c_{\kappa_f}(L_f) \langle \langle \lambda_i, \mu_i; \kappa_i | L_i \rangle \langle 02 \rangle 2 \parallel | (\lambda_f, \mu_f) \kappa_f L_f \rangle \\
+ \delta_{N_i(N_f-1)} \sqrt{3} \langle \langle \lambda_f, \mu_f \rangle \parallel | B^{(02)} \parallel | (\lambda_i, \mu_i) \rangle
\]

where \(\phi_{\mu} = 0 \) for \(\mu = 0 \) and 1 otherwise.

For intraband transitions, the above expression reduces to the first term on the right-hand side. For interband transitions there are three possibilities: For transitions from \(Nh_\omega \) to \((N+2)h_\omega\), the second term has to be evaluated; for \(Nh_\omega \rightarrow (N-2)h_\omega \) transitions, the third term is required. For \(\lambda_\sigma \neq 0, \mu_\sigma \neq 0 \), i.e. for triaxially deformed nuclei, a \(N = 0 \rightarrow N = 0 \) transition is possible as well; in that case the relevant contribution originates from the first term. For example, for a transition from \(L_i = 2 \) to \(L_f = 0 \) in the ground band of \(^{12}\text{C} \), \(b = 1.668 \text{fm}, \ 6\langle \tilde{C}_{SU(3)} | \langle 0, 4 \rangle \rangle = 112 \), and thus \(B(E2; 0h_\omega L_i=2 \rightarrow 0h_\omega L_f=0) = 0.1925 \ e^2 f m^4 \times 112/5 \times ((0, 4); (2, 1)^2)(0, 4) \parallel | 2 \rangle = 4.31 \ e^2 f m^4 = 2.64 \text{ W.u.} \) (which corresponds to 4.65 W.u., when an effective charge \(e^* = 1.327 \) is used).

V. APPLICATIONS TO LIGHT NUCLEI

To illustrate that the PDS Hamiltonians of Eq. (24) are physically relevant, we present applications to prolate, oblate, and triaxially deformed nuclei. We compare energy spectra, reduced quadrupole transition rates, and eigenstates of

\[
H_{\text{PDS}} = h(N) + \xi H(\beta_0 = 12, \beta_2 = 18) + \gamma_2 \hat{L}^2 + \gamma_4 \hat{L}^4
\]

(33)

to those of the symplectic Hamiltonian

\[
H_{\text{Sp6}} = \hat{H}_0 - \chi Q_2 \cdot Q_2 + d_2 \hat{L}^2 + d_4 \hat{L}^4.
\]

(34)

Here the function \(h(N) \), which contains the harmonic oscillator term \(\hat{H}_0 \), is simply a constant for a given \(Nh_\omega \) excitation. We select light, \(p \)-shell and \(d\)-shell, nuclei for which a full, three-dimensional symplectic calculation can be carried out, that is, a limitation to a submodel of the \(\text{Sp}(6,\mathbb{R}) \) model is not required. Since we employ Hamiltonians composed solely of \(\text{Sp}(6,\mathbb{R}) \) generators, we restrict the model space to one \(\text{Sp}(6,\mathbb{R}) \) irrep (represented by one ‘cone’ in Fig. 2). We include excitations up to \(8h_\omega \).

A. The \(^{12}\text{C} \) case

The first nucleus to be considered is \(^{12}\text{C} \), with four protons and four neutrons in the valence \(p \)-shell. This nucleus has previously been studied in the \(\text{Sp}(2,\mathbb{R}) \) submodel of the SSM \cite{31, 48}. Here we employ the full, three-dimensional, symplectic shell model. The leading \(\text{Sp}(6,\mathbb{R}) \) irrep for this case is \(N_\sigma(\lambda_\sigma, \mu_\sigma) = 24.5(0, 4) \). At the \(2h_\omega \) level \(\text{SU}(3) \) irreps \((\lambda, \mu) = (2, 4), (1, 3), (0, 2) \) occur, at the \(4h_\omega \) level we have \((\lambda, \mu) = (0, 6), (1, 4), (2, 2)^2, (4, 4), (3, 3), (1, 1), (0, 0) \), and so on for higher excitations. The parameters of \(H_{\text{Sp6}} \) were fitted (simultaneously) to the ground band energies and the \(2^+_1 \rightarrow 0^+_1 \) reduced quadrupole transition strength, for symplectic model spaces including excitations up to \(2h_\omega, 4h_\omega, 6h_\omega, \)}
and $8\hbar\omega$. The resulting B(E2) strengths are listed in Table I and several low-lying rotational bands are shown in Fig. 3. The left part of the figure shows the experimental energies of the ground band [49], while the center portion (labeled $Q_2 \cdot Q_2$) shows the calculated ground band ($K=0$), as well as several resonance bands which are dominated by $2\hbar\omega$ excitations ($K=2, 0, 1, 0_3$), $4\hbar\omega$ excitations ($K=4$), and $6\hbar\omega$ excitations ($K=6$). The parameters of H_{PDS} were determined as follows: γ_2 and γ_4 were fixed by the level splittings of the ground band, ξ was chosen to fit the energy difference between the $K=2$ and $K=0$ bandheads of the symplectic calculation, and $h(N)$ was adjusted to reproduce approximately the relative positions of the $K=0, 2, 4, 1$, and 6 bandheads. The resulting spectrum is that shown on the right side of Fig. 3, labeled PDS.

Since H_{PDS} does not mix states with different $N\hbar\omega$ excitations, the B(E2) values obtained in the PDS calculations require an effective charge $e^* = 1.33$ to match the experimental values [49] (compare Table I). Overall, we find little deviation between the energies and electromagnetic transition strengths of the two approaches. A better measure for the level of agreement between the PDS and symplectic results is given by a comparison of the eigenstates. According to the proof given in Section III, the Hamiltonian H_{PDS} should have sets of solvable, pure-SU(3) eigenstates, which can be organized into rotational bands: All $0\hbar\omega$ states should be pure $(\lambda, \mu) = (0, 4)$ states, and at $2\hbar\omega$ a rotational band with good SU(3) symmetry $(\lambda, \mu) = (2, 4)$ and $L = 2, 3, 4, 5, 6$ should exist. Similarly, we expect pure-SU(3) bands at $4\hbar\omega$ with $(\lambda, \mu) = (4, 4)$ and $L = 4, 5, 6, 7, 8$, at $6\hbar\omega$ with $(\lambda, \mu) = (6, 4)$ and $L = 6, 7, 8, 9, 10$, etc. An analysis of the PDS eigenstates shows that this is indeed the case. The associated rotational bands are indicated in Fig. 3.

Figure 4 shows the decomposition of representative $(L^r = 2^+)$ states of the five lowest rotational bands for the H_{Sp} and H_{PDS} Hamiltonians. The left side of the figure illustrates the amount of mixing in the wave functions of the $8\hbar\omega$ ($Q_2 \cdot Q_2$) calculation: Members of the ground band ($K=0$) are nearly pure ($\approx 90\%$) $0\hbar\omega$ states and the resonance bands have strong $2\hbar\omega$ contributions ($\geq 60\%$). The $K=2$, 1, and 0_3 bands contain admixtures from $N\hbar\omega$ excited states with $N > 2$, while the $K=0_2$ contains admixtures from both the $0\hbar\omega$ space and from higher oscillator shells. The relative strengths of the SU(3) irreps within the $2\hbar\omega$ space are given as well. We find that each rotational band tends to be dominated by one representation, namely $(2, 4)$ for the $K=2$, and $K=0$ bands, $(1, 3)$ for $K=1$, and $(0, 2)$ for $K=0_3$, with the other irreps contributing less than 3%. The right side of Fig. 4 shows the structure of the PDS eigenstates. Since the Hamiltonian H_{PDS} does not mix different major oscillator shells, each eigenstate belongs entirely to one $N\hbar\omega$ level of excitation. Here the ground band belongs to the $0\hbar\omega$ space, while the four resonance bands are pure $2\hbar\omega$ configurations. Comparing this with the symplectic results, we observe that the $N\hbar\omega$ level to which a particular PDS band belongs also dominates the corresponding symplectic band. Furthermore, within this dominant excitation, eigenstates of H_{Sp} and H_{PDS} have very similar SU(3) structure, that is, the relative strengths of the various SU(3) irreps in the symplectic states are approximately reproduced in the PDS case. This holds for the $K=0$, and $K=2_1$ bands, which are pure in the PDS scheme, as well as for the mixed $K=0_2, 1_1$, and 0_3 bands. The above statements are also true for higher $N\hbar\omega$ excitations, as is illustrated in Fig. 5 for the $L = 6$ states of the $N=2, K=2_1$, $N=4, K=4$, and $N=6, K=6$ bands. Note also that, in the symplectic case, admixtures from higher shells in the $L=6$ wave functions originate predominantly from the ‘special’ irreps $(\lambda, \mu) = (N, 4)$.

The 12C example given above nicely illustrates the concept of a partial dynamical symmetry for a fermionic many-body system. The pure PDS eigenstates form rotational bands
which follow the pattern for solvable states of family (b), their energies and E2 transition strengths between them can be evaluated analytically according to Eqs. (30)–(32).

B. The 30Ne case

We now turn to a system with pure PDS eigenstates that follow pattern (a). The 30Ne nucleus, with two valence protons and neutrons each, has previously been described within the symplectic model framework [28, 43, 51, 52]. The leading Sp(6,R) irrep for this prolate nucleus is $N_\nu(\lambda,\mu) = 48.5(8,0)$. We expect to find solvable, pure-SU(3) eigenstates of H_{PDS} at $0\hbar\omega$, $2\hbar\omega$, and $4\hbar\omega$. More specifically, there should be a $K=0_1^+$ $L = 0, 2, 4, 6, 8$ rotational band with $(\lambda,\mu) = (8,0)$ at $0\hbar\omega$, a $K=2_1^+$ $L = 2, 3, 4, 5, 6, 7$ band with $(\lambda,\mu) = (6,2)$ at $2\hbar\omega$, and a $K=4_1^+$ $L = 4, 5$ ‘band’ with $(\lambda,\mu) = (4,4)$ at $4\hbar\omega$. Pure PDS states at higher levels of excitation do not exist.

As in the 12C case, we compare the eigenstates of H_{PDS} to those of the symplectic Hamiltonian H_{Sp6}. Least squares fits to measured energies and B(E2) values of the ground band of 30Ne [53] were carried out for $2\hbar\omega$, $4\hbar\omega$, $6\hbar\omega$, and $8\hbar\omega$ symplectic model spaces. The resulting energies and transition rates converge to values which agree with the data, as is illustrated in Fig. 6 and Table II. The parameters γ_2 and γ_4 in H_{PDS} were determined by the energy splitting between states of the ground band, ξ was adjusted to reproduce the relative positions of the $2\hbar\omega$ resonance bandheads and $h(N)$ was fixed by the energy difference $[E(0^+_2) - E(0^+_1)]$. Figure 6 and Table II demonstrate the level of agreement between the PDS and symplectic results.

An analysis of the structure of the ground and resonance bands reveals the amount of mixing in the $8\hbar\omega$ symplectic (Q_1, Q_2) wave functions. Figure 7 shows the decomposition for representative $(L^\pi = 2^+)$ states of the five lowest rotational bands. Ground band ($K=0_1^+$) states are found to have a strong $0\hbar\omega$ component ($\geq 64\%$), and three of the four resonance bands are clearly dominated ($\geq 60\%$) by $2\hbar\omega$ configurations. States of the first resonance band ($K=1_2^+$), however, contain significant contributions from all but the highest $N\hbar\omega$ excitations. The relative strengths of the SU(3) irreps within the $2\hbar\omega$ space are shown as well: as in the 12C case, states are found to be dominated by one representation $[10,0]$ for the $K=0_1$ band, $(8,1)$ for $K=1_1$, $(6,2)_\omega = 2$ for $K=2_1$, and $(6,2)_\kappa = 1$ for $K=0_3$ here, while the other irreps contribute only a few percent. Such trends are present also in the more realistic symplectic calculations of Suzuki [52].

As expected, H_{PDS} has families of pure-SU(3) eigenstates which can be organized into rotational bands, Fig. 6. The ground band belongs entirely to $N = 0$, $(\lambda,\mu) = (8,0)$, and all states of the $K=2_1$ band have quantum labels $N = 2$, $(\lambda,\mu) = (6,2)$, $\kappa = 2$. The $K=4_1$ band at $4\hbar\omega$ is not shown. A comparison with the symplectic case shows that the $N\hbar\omega$ level to which a particular PDS band belongs is also dominant in the corresponding symplectic band, Fig. 7. As before, within this dominant excitation, eigenstates of H_{PDS} and H_{Sp6} have similar SU(3) distributions; in particular, both Hamiltonians favor the same $(\lambda,\mu)\kappa$ values. Significant differences in the structure of the wave functions appear, however, for the $K=0_2$ resonance band. In the $8\hbar\omega$ symplectic calculation, this band contains almost equal contributions from the $0\hbar\omega$, $2\hbar\omega$, and $4\hbar\omega$ levels, with additional admixtures of $6\hbar\omega$ and $8\hbar\omega$ configurations, while in the PDS calculation, it belongs entirely to the $2\hbar\omega$ level. These structural differences are also evident in the interband transition rates, as is illustrated in Table III. Whereas the intraband B(E2) strengths are approximately equal in both approaches, we observe that the interband rates differ by a factor of 2-3 in most cases.
These differences reflect the action of the inter-shell coupling terms that are present in the quadrupole-quadrupole interaction of Eq. (23), but do not occur in the PDS Hamiltonian. Increasing the strength χ of $Q_2 \cdot Q_2$ in H_{sp6} will also spread the other resonance bands over many $N\hbar\omega$ excitations. The $K=2_1$ band (which is pure in the PDS scheme) is found to resist this spreading more strongly than the other resonances. For physically relevant values of χ, the low-lying bands have the structure shown in Fig. 7.

C. The ^{24}Mg case

The final example to be considered here involves the triaxially deformed nucleus ^{24}Mg, which has been the subject of several symplectic model studies [42, 43, 56, 57]. With four valence protons and neutrons in the $d_{5/2}$-shell each, and a leading $\text{Sp}(6,\mathbb{R})$ irrep $N_\alpha(\lambda_\alpha, \mu_\alpha) = 62.5(8, 4)$, this system is the most complicated one to be investigated here. Since both $\lambda_\alpha \neq 0$ and $\mu_\alpha \neq 0$, the symplectic Hilbert space has a very rich structure. The $(8, 4)$ representation at $0\hbar\omega$ contains three rotational bands: a $K=0$ band with $L = 0, 2, 4, 6, 8$, a $K=2$ band with $L = 2, 3, \ldots, 10$, and a $K=4$ band with $L = 4, 5, \ldots, 12$. At the $2\hbar\omega$ level, there are six possible SU(3) irreps, (10,4), (8,5), (6,6), (9,3), (7,4), and (8,2), which contain a total of four $K=0$, two $K=1$, four $K=2$, two $K=3$, three $K=4$, one $K=5$, one $K=6$, \ldots bands. At the $4\hbar\omega$ level, there are 15 different SU(3) irreps, at $6\hbar\omega$ there are 25, etc. Accordingly, the number of states for a given angular momentum value L increases dramatically with the inclusion of higher excitations. This is illustrated in Table IV for $L = 0, 1, 2, \ldots, 8$.

Since the interactions in H_{sp6} do not distinguish different κ-multiplicities, it becomes necessary to make use of the integrity basis operators \hat{X}_3 and \hat{X}_4 discussed in Section II, which allow us to reproduce the experimentally observed K-band splitting in the spectrum of ^{24}Mg. Using the Hamiltonian

$$H'_{sp6} = H_{sp6} + c_3 \hat{X}_3 + c_4 \hat{X}_4 ,$$

we carried out least squares fits to measured energies and B(E2) values for $2\hbar\omega$, $4\hbar\omega$, and $6\hbar\omega$ symplectic spaces.

Figure 8 (top) displays the energies obtained with the $6\hbar\omega$ calculation (right part of the figure) in comparison with the experimental values [58, 59] (left side). In addition to the ground ($K=0_1$) and γ ($K=2_1$) bands, the calculated $K=4_1$ band, which is dominated by $0\hbar\omega$ configurations, and several low-lying symplectic $K=0, 2, 4$, and 6 bands, which are dominantly $2\hbar\omega$ resonances, are shown. Table V lists various B(E2) transition rates between the low-lying states of ^{24}Mg. We find that the results of the symplectic calculations are in good agreement with the data. Specifically, the γ-band is correctly located and nearly all the calculated intraband and interband transition rates fall, without the use of an effective charge, within experimental uncertainties. The $4\hbar\omega$ results are better than the $2\hbar\omega$ results, with the $6\hbar\omega$ calculation yielding only moderate improvements.

Note that we have used the experimental B(E2) values from Ref. [58], which contains a more complete list of B(E2) data than the compilation by Endt [59]. The latter gives values of 20.6 ± 0.4 W.u., 35 ± 5 W.u., and 37 ± 12 W.u. for the first three transitions listed in Table V. Fitting the symplectic Hamiltonian parameters to reproduce the values of Ref. [59] gives results very similar to the ones presented here and does not alter our conclusions.
In analogy with the symplectic case, we include terms \hat{X}_3 and \hat{X}_4 in the PDS Hamiltonian:
\[H'_{PDS} = H_{PDS} + c_3\hat{X}_3 + c_4\hat{X}_4. \]

As we will see below, the introduction of these extra terms breaks the partial symmetry. We fixed c_3 and c_4 at the values that were used in the $6\hbar\omega$ symplectic calculation, determined γ_2 and γ_4 from the level splittings in the $K=0_1$ ground band, and adjusted ξ so as to reproduce the relative positions of selected $2\hbar\omega$ bandhead states (we focused on the lowest three $K=0$ bands and the first $K=6$ band). Then $h(N)$ was chosen to reproduce approximately the positions of the $2\hbar\omega$ resonances relative to the ground and γ bands.

We obtain an energy spectrum which agrees well with the results of the symplectic calculation, as is shown in Fig. 8. The B(E2) strengths for the ground and γ-bands, rescaled by an effective charge $e^*=1.75$, are given in Table V. We find good agreement between the PDS and symplectic calculations for the intraband transitions, whereas there are larger deviations in the interband rates.

According to the proof given in Section III, the three rotational bands at $0\hbar\omega$ should be pure in the PDS scheme, and at $2\hbar\omega$ there should be a (short) rotational $K=6$ band with $L=6,7$, which belongs entirely to the $(\lambda,\mu) = (6,6)$ representation. We find that the $0\hbar\omega$ states are indeed pure, but the $K=6 L = 6,7$ band has small admixtures ($<1\%$) from $2\hbar\omega$ irreps other than $(\lambda,\mu) = (6,6)$, thus indicating that H'_{PDS}, unlike H_{PDS}, is not an exact partial dynamical symmetry Hamiltonian, due to the presence of the K-band splitting terms \hat{X}_3 and \hat{X}_4. This can be understood as follows: While \hat{X}_3 and \hat{X}_4 cannot mix different SU(3) irreps, their eigenstates involve particular linear combinations of different κ values. Since the operators \hat{X}_3 and \hat{X}_4 do not commute with B_0, these linear combinations differ from configurations resulting from the PDS requirement $B_0\phi = 0$. Fortunately, a very small amount of symmetry-breaking suffices to fit the relative positions of the ground and γ-bands, as can be inferred from the eigenstate decompositions plotted in Fig. 9. Shown are the decompositions of the $L = 6$ states associated with the calculated H'_{PDS} and H'_{PDS} spectra. More specifically, we have plotted the contributions from the SU(3) irreps at $0\hbar\omega$ and $2\hbar\omega$, as well as the (summed) contributions from $4\hbar\omega$ and $6\hbar\omega$ excitations.

As in the previous examples, we observe that the eigenstates of both Hamiltonians have very similar structures: For a given state, the same $Nh\omega$ level of excitation is dominant in both calculations and, moreover, within this dominant excitation, we find similar SU(3) distributions. The structural differences that do exist are, again, reflected in the very sensitive interband transition rates, as can be seen in Table VI.

VI. COMPARISON OF PARTIAL SYMMETRIES IN BOSONIC AND FERMIONIC MANY-BODY SYSTEMS

Partial dynamical symmetries were first studied in the Interacting Boson Model (IBM) of nuclei [6]. In [16], the following IBM Hamiltonian was used to reproduce measured energies and E2 rates of 168Er:
\[H_{IBM}(h_0, h_2) = h_0 P_0^1 P_0 + h_2 P_2^1 \cdot \hat{P}_2 , \]

where h_0, h_2 are arbitrary parameters and $P_l^1, L = 0$ and 2, are boson pair operators:
\[P_0^1 = d^\dagger \cdot d^\dagger - 2(s^\dagger)^2 , \]
\[P_2^1 = 2s^\dagger d^\dagger + \sqrt{i}((d^\dagger d^\dagger)^2)_{\mu} . \]
The creation operators s_l^+ and $d^+_l (\mu = 0, \pm 1, \pm 2)$ denote a monopole boson with angular momentum and parity $J^P = 0^+$, and a quadrupole boson with $J^P = 2^+$, respectively. They represent correlated valence nucleon pairs and are the basic building blocks of the IBM. The pair operators P^+_0 and $P^+_{2\mu}$ are components of a $(\lambda, \mu) = (0, 2)$ SU(3) tensor, and their Hermitian adjoints, P_0 and $\tilde{P}_{2\mu} = (-1)^\mu P_{-2\mu}$, are characterized by $(\lambda, \mu) = (2, 0)$.

It can be shown that for $\hbar_2 = \hbar_0$, the Hamiltonian of Eq. (37) becomes a SU(3) scalar (related to the Casimir operator of SU(3)) and for $\hbar_2 = -\hbar_0/5$, it transforms as a $(\lambda, \mu) = (2, 2)$ SU(3) tensor component. In general, $H_{IBM}(\hbar_0, \hbar_2)$ is therefore not a SU(3) scalar, nevertheless it turns out that it always has an exact zero-energy eigenstate, denoted in what follows by $|c; N\rangle$, where the integer N gives the total number of bosons in the system. The state $|c; N\rangle$ describes a condensate of bosons and can be written as

$$|c; N\rangle = \frac{1}{\sqrt{N!}} \left[(s^+ + \sqrt{2}d^+_0)/(\sqrt{3})\right]^N |0\rangle. \quad (39)$$

It is the lowest weight state in the SU(3) irrep $(\lambda, \mu) = (2N, 0)$ and serves as an intrinsic state for the SU(3) ground band. The rotational members of the ground band with good angular momentum L are obtained by projection from $|c; N\rangle$. Moreover, one finds that states of the form

$$|k\rangle \propto (P^+_{2\mu})^k |c; N\rangle \quad (40)$$

are eigenstates of $H_{IBM}(\hbar_0, \hbar_2)$ with eigenvalues $E_k = 6\hbar_2(2N + 1 - 2k)k$ and good SU(3) symmetry $(2N - 4k, 2k)$. The projected states span the entire $(2N, 0)$ representation for $k = 0$, but only part of the corresponding irrep for $k > 0$. There are other excited states which do not preserve the SU(3) symmetry and therefore contain a mixture of SU(3) irreps, including the ‘special’ irreps $(2N - 4k, 2k)$. Since $H_{IBM}(\hbar_0, \hbar_2)$ is not a SU(3) scalar, but possesses a subset of solvable eigenstates with good SU(3) symmetry, it is a partial symmetry Hamiltonian. Adding L^2, the Casimir operator of SO(3), to $H_{IBM}(\hbar_0, \hbar_2)$ converts the partial symmetry to a partial dynamical symmetry and contributes a $L(L + 1)$ splitting, but does not affect the wave functions.

The boson and fermion Hamiltonians, $H_{IBM}(\hbar_0, \hbar_2)$ of Eq. (37) and $H(\beta_0, \beta_2)$ of Eq. (24), have several features in common: Both display partial SU(3) symmetry, they are constructed to be rotationally invariant functions of $(\lambda, \mu) = (2, 0)$ and $(\lambda, \mu) = (0, 2)$ SU(3) tensor operators, and SU(3) tensor decompositions show that both contain $(\lambda, \mu) = (0, 0)$ and $(2, 2)$ terms only. $H_{IBM}(\hbar_0, \hbar_2)$, as well as $H(\beta_0, \beta_2)$, has solvable pure-SU(3) eigenstates, which can be organized into rotational bands; the degeneracies within these bands are lifted by adding the SO(3) term L^2 to the Hamiltonian. The ground bands are pure in both cases, and higher-energy pure bands coexist with mixed-symmetry states.

There are several significant differences between the bosonic and fermionic PDS Hamiltonians, however. For example, the ground band of the Hamiltonian $H_{IBM}(\hbar_0, \hbar_2)$, Eq. (37), is characterized by $(\lambda, \mu) = (2N, 0)$, i.e., it describes an axially-symmetric prolate nucleus. Is is also possible to find an IBM Hamiltonian with partial SU(3) symmetry for an oblate nucleus.
It can be shown that these two cases exhaust all possibilities for partial SU(3) symmetry with a two-body Hamiltonian in the IBM-1 with one type of monopole and quadrupole bosons. In contrast, the fermionic Hamiltonians considered here can accommodate ground bands of prolate \([[(\lambda_\sigma, 0)], \text{oblate} \, [[(0, \mu_\sigma)], \text{and triaxial} \, [[(\lambda_\sigma, \mu_\sigma) \text{with } \lambda_\sigma \neq 0, \mu_\sigma \neq 0] \text{ shapes.}})

Another difference between the fermionic and the bosonic PDS cases discussed here lies in the physical interpretation of the excited solvable bands. While these bands represent \(\gamma\), double-\(\gamma\), etc. excitations in the IBM, they correspond to giant monopole and quadrupole resonances in the fermion case.

Furthermore, whereas the pure eigenstates of \(H_{IBM}(\hbar_0, h_2)\) can be generated by repeated action of the boson pair operator \(P_{12}^f\) on the boson condensate and subsequent angular momentum projection, a similar straightforward construction process for the special eigenstates of \(H(\beta_0, \beta_2)\) has not been identified yet. The situation seems to be more complicated in the fermion case, which is also reflected in the fact that \(H(\beta_0, \beta_2)\) has two possible families of pure eigenstates, one finite, the other infinite. The association of the special states to one or the other family depends on the \(0\hbar\omega\) symplectic starting configuration.

The comparison of partial dynamical symmetries in bosonic and fermionic systems above illustrates that, in spite of similar algebraic structures of the associated Hamiltonians, two given systems with partial symmetries may exhibit not only different physical interpretations, but also different systematic features and different mechanisms for generating the partial symmetries in question.

VII. SUMMARY AND CONCLUSIONS

The fundamental concept underlying algebraic theories in quantum physics is that of an exact or dynamical symmetry. Realistic quantum systems, however, often require the associated symmetry to be broken in order to allow for a proper description of some observed basic features. Partial dynamical symmetry describes an intermediate situation in which some eigenstates exhibit a symmetry which the associated Hamiltonian does not share. The objective of this approach is to remove undesired constraints from the theory while preserving the useful aspects of a dynamical symmetry, such as solvability, for a subset of eigenstates.

We have presented an example of a partial dynamical symmetry in an interacting many-fermion system. In the framework of the symplectic shell model, we have constructed a family of rotationally invariant Hamiltonians with partial SU(3) symmetry. We have demonstrated that the PDS Hamiltonians are closely related to the deformation-inducing quadrupole-quadrupole interaction and break SU(3) symmetry, but still possess a subset of 'special' solvable eigenstates which respect the symmetry. The construction process for these special states was outlined and analytic expressions for their energies and for \(E_2\) transition rates between them were given.

To illustrate that the PDS Hamiltonians introduced here are physically relevant, we have presented applications to oblate, prolate, and triaxially deformed nuclei. Specifically, we have compared the energy spectra, reduced quadrupole transition strengths, and eigenstate structures of the partial symmetry Hamiltonians to those of a symplectic shell model Hamiltonian containing a realistic quadrupole-quadrupole interaction. Although the PDS Hamiltonians cannot account for intershell correlations, we have observed that various features of the quadrupole-quadrupole interaction are reproduced with a particular parameterization of the partial symmetry Hamiltonians. PDS eigenfunctions do not contain admixtures from different \(N\hbar\omega\) configurations, but belong entirely to one level of excitation. We have found
that, for reasonable interaction parameters, the $N\hbar\omega$ level to which a particular PDS band belongs is also dominant in the corresponding band of exact $Q_2 \cdot Q_2$ eigenstates. Moreover, within this dominant excitation, eigenstates of both Hamiltonians have similar SU(3) distributions. Structural differences, nevertheless, do arise and are reflected in the very sensitive interband transition rates. Overall, however, we may conclude that PDS eigenstates approximately reproduce the structure of the exact $Q_2 \cdot Q_2$ eigenstates, for both ground and most resonance bands.

The notion of partial dynamical symmetries extends and complements the familiar concepts of exact and dynamical symmetries. It is applicable when a subset of physical states exhibit a symmetry which does not arise from the invariance properties of the relevant Hamiltonian. Recent studies, including the one presented here, show that partial symmetries may indeed be realized in various quantum systems. This indicates that PDS is not a mere mathematical concept, but may serve as a practical tool in realistic applications of algebraic methods to physical systems.

Acknowledgements

The authors appreciate valuable discussions with D.J. Rowe, J.P. Elliott, and G. Rosensteel during a visit to the Institute for Nuclear Theory at the University of Washington. This work is supported in part by the Israel Science Foundation.

Appendix A: SU(3) Wigner coefficients and Wigner-Eckart theorem

If α represents a set of labels used to distinguish orthonormal basis states within a given irreducible SU(3) representation (λ, μ), the Wigner coefficients $\langle (\lambda_1, \mu_1) | (\lambda, \mu) \rangle_{\rho}$ are defined as the elements of a unitary transformation between coupled and uncoupled orthonormal irreps of SU(3) in the α-scheme [37]:

$$
\langle (\lambda, \mu) \rangle_{\rho} = \sum_{\alpha_1, \alpha_2} \langle \alpha_1 \rangle | (\lambda_1, \mu_1) \rangle | (\lambda_2, \mu_2) \rangle_{\rho} = \sum_{\rho(\lambda, \mu)^{\alpha}} \langle \alpha_1 \rangle | (\lambda_1, \mu_1) \rangle | (\lambda_2, \mu_2) \rangle_{\rho},
$$

and the inverse transformation is given by:

$$
| (\lambda_1, \mu_1) \rangle | (\lambda_2, \mu_2) \rangle_{\rho} = \sum_{\rho(\lambda, \mu)^{\alpha}} \langle \alpha_1 \rangle | (\lambda_1, \mu_1) \rangle | (\lambda_2, \mu_2) \rangle_{\rho}.
$$

Here $\alpha = \epsilon \Lambda M \Lambda$ for the SU(3) ⊃ SU(2) ⊗ U(1) (canonical) group chain and $\alpha = \kappa l m$ for the SU(3) ⊃ SO(3) reduction employed in this work. The subgroup chains impose certain restrictions on the above couplings, for example the usual angular momentum coupling rules, $l = l_1 + l_2 + \ldots$, $|l_1 - l_2|$, and $m = m_1 + m_2$ apply for the chain containing SO(3).

The outer multiplicity label $\rho = 1, 2, \ldots, \rho_{max}$ is used to distinguish multiple occurrences of a given (λ, μ) in the direct product $(\lambda_1, \mu_1) \times (\lambda_2, \mu_2)$; $\rho = 1, 2, \ldots, \overline{\rho}_{max}$, where $\overline{\rho}_{max}$ denotes the number of possible couplings $(\lambda_1, \mu_1) \times (\lambda_2, \mu_2)$, and the possible (λ, μ) irreps in the product can be obtained by coupling the appropriate Young diagrams [3]. O’Reilly [60] determines a closed formula for the decomposition of the outer product $(\lambda_1, \mu_1) \times (\lambda_2, \mu_2)$ of SU(3) irreps for arbitrary positive integers λ_i, μ_i and derives necessary and sufficient conditions for a su(3) irrep (λ, μ) to appear as summand in $(\lambda_1, \mu_1) \times (\lambda_2, \mu_2)$.
It is possible to factor out the dependence of the above SU(3) \(\supset \) SO(3) Wigner coupling coefficient on the \(m \) subgroup label by defining so-called double-barred or “reduced” SU(3) coupling coefficients:

\[
\langle (\lambda_1, \mu_1) \kappa_1 l_1 m_1; (\lambda_2, \mu_2) \kappa_2 l_2 m_2 | (\lambda, \mu) \kappa l m \rangle_p = \langle (\lambda_1, \mu_1) \kappa_1 l_1; (\lambda_2, \mu_2) \kappa_2 l_2 | (\lambda, \mu) \kappa l | m \rangle_p
\]

reduced Wigner coefficient

\[
\langle l_1 m_1, l_2 m_2 | m \rangle
\]

geometric part

The “geometric” part \(\langle _ | _ \rangle \) is simply a SU(2) Clebsch-Gordan coefficient. From the unitarity of the full SU(3) Wigner and the ordinary SU(2) Clebsch-Gordan coefficients it follows that the double-bar coefficients are also unitary. With the phase convention introduced in Ref. [37] they become real, and therefore orthogonal. Draayer and Akiyama [37] give a prescription for the unique determination, including the phases, of SU(3) Wigner coefficients and derive their relevant conjugation and symmetry properties. They furthermore provide a computer code which allows for a numerical determination of the coefficients [46]. Analytic expressions for Wigner coefficients which are of particular interest in p-shell and d-plane nuclear shell-model calculations are tabulated in Ref. [61] for the canonical subgroup chain and in Ref. [39, 47, 62] for the SU(3) \(\supset \) SO(3) chain.

The Wigner-Eckart theorem for the group SU(2) yields SU(2)-reduced (double-bar) matrix elements of a SO(3) irreducible tensor operator:

\[
\langle l_3 m_3 | T^{l_2 m_2} | l_1 m_1 \rangle = \langle l_1 m_1; l_2 m_2 | l_3 m_3 \rangle \frac{\langle l_3 \| T^{l_2} \| l_1 \rangle}{\sqrt{2l_3 + 1}}.
\]

Analogously, the generalized Wigner-Eckart theorem allows one to express matrix elements of SU(3) irreducible tensor operators as a sum over \(\rho \) of the product of a \(\rho \)-dependent generalized reduced matrix element multiplied by the corresponding Wigner coefficient [37]:

\[
\langle (\lambda_3, \mu_3) \alpha_3 | T^{(\lambda_2, \mu_2) \alpha_2} | (\lambda_1, \mu_1) \alpha_1 \rangle = \sum_{\rho} \langle (\lambda_1, \mu_1) \alpha_1; (\lambda_2, \mu_2) \alpha_2 | (\lambda_3, \mu_3) \alpha_3 \rangle_{\rho} \langle (\lambda_3, \mu_3) \|| T^{(\lambda_2, \mu_2) \rangle \|| (\lambda_1, \mu_1) \rangle \rangle_{\rho}.
\]

For more details on SU(3) coupling and recoupling coefficients, see the compilation in Appendix C of Ref. [34] and references therein.

Appendix B: Matrix elements of relevant operators

The calculations presented here require expressions for matrix elements of the Sp(6,R) generators \(\hat{A}^{(20)}_{10}, \hat{B}^{(02)}_{10}, \) and \(\hat{C}^{(11)}_{11}, \) and combinations thereof. None of these operators connect states belonging to different symplectic representations and, furthermore, the SU(3) generators \(\hat{C}^{(11)}_{11} = \hat{L}_{\eta} \) and \(\hat{C}^{(11)}_{11} = \frac{1}{\sqrt{3}} \hat{Q}_{\mu} \) act only within one level of excitation, \(\eta. \) Matrix elements for \(\hat{C}^{(11)}_{11} \) in the standard SU(3) bases are given by [44, 61]:

\[
\langle (\lambda', \mu') \| \hat{C}^{(11)}_{11} \| (\lambda, \mu) \rangle = (-1)^{\delta_{\lambda'}^d} \sqrt{2 \langle \hat{C}^{(11)}_{SU(3)} | (\lambda, \mu) \rangle \delta_{(\lambda', \mu') (\lambda, \mu)}},
\]

where
where \(\hat{C}_{SU3} \) denotes the second-order Casimir operator of SU(3), given in Eq. (9), and
\(\phi_\mu = 1 \) for \(\mu \neq 0 \) and \(\phi_\mu = 0 \) for \(\mu = 0 \). The reduced matrix element
\(\langle \lambda', \mu' || \hat{A}^{(11)} || (\lambda, \mu) \rangle \) is related to the full SU(3) matrix element via the Wigner-Eckart theorem for SU(3) and
the phase is chosen to be consistent with that of Ref. [44].

Several strategies for calculating matrix elements of the symplectic generators \(\hat{A}^{(20)} \) and
\(\hat{B}^{(02)} \) have been explored. A direct way is to use the Sp(6,R) commutation relations to
derive recursion formulae, as shown by Rosensteel [33]. Another approach is to start from
approximate matrix elements and to proceed by successive approximations, adjusting the
matrix elements until the commutation relations are precisely satisfied [28]. Deelen and
Quesne [63] have employed a boson mapping to obtain generator matrix elements, and
Castaños et al. [64] have derived simple analytical functions for some special irreps.
The most elegant method, outlined by Rowe in Ref. [65], involves vector-valued coherent state
representation theory and evaluates matrix elements of the symplectic raising and lowering
operators by relating them to the matrix elements of a much simpler \(u(3) \otimes \mathfrak{weyl} \) algebra.
A listing of the relevant formulæ is beyond the scope of this appendix, the reader is thus
referred to Ref. [65] for details of the calculation.

Matrix elements of the SU(3) \(\supseteq \) SO(3) integrity basis operators \(\hat{X}_3 \equiv (\hat{L} \times Q^E)_1 \cdot \hat{L} \) and
\(\hat{X}_4 \equiv (\hat{L} \times Q^E)_1 \cdot (\hat{L} \times Q^E)_1 \) can be given in terms of SO(3) Racah recoupling coefficients
\(W(l_1, l_2, l_3; l) \) [66] and the SU(3) \(\supseteq \) SO(3) reduced matrix elements of \(\hat{C}^{(11)} \) [44]:

\[
\langle \lambda', \mu' | l' m' \rangle = \frac{\delta_{\lambda', \lambda} \delta_{\mu', \mu} \delta_{l', l} \delta_{m', m}}{3l(l+1) \sqrt{2l+1}} \times W(l, 1, l, 1; l, 2) \langle \lambda, \mu | l \rangle \langle \hat{C}^{(11)}_2 \rangle \langle \lambda, \mu | l \rangle ;
\]

(47)

\[
\langle \lambda', \mu' | l' m' \rangle = \frac{\delta_{\lambda', \lambda} \delta_{\mu', \mu} \delta_{l', l} \delta_{m', m}}{9l(l+1) \sqrt{2l+1}} \times \sum_{p,n} (-1)^{l+p+n+1} \frac{1}{\sqrt{2p+1}} \left[W(l, 1, 2, l' n; l, 1) \right]^2 \times \langle \lambda, \mu | l \rangle \langle \hat{C}^{(11)}_2 \rangle \langle \lambda, \mu | l \rangle \langle \hat{C}^{(11)}_2 \rangle \langle \lambda, \mu | l \rangle ;
\]

(48)

[2] *Dynamical Groups and Spectrum Generating Algebras*, eds. A. Bohm, Y. Ne’eman, and

Algebras in Particle Physics*, Benjamin, Reading, MA, 1982.

Cambridge, 1987; D. Bonatsos, *Interacting Boson Models of Nuclear Structure*, Oxford University

TABLE I: B(E2) values (in Weisskopf units) for ground band transitions in 12C. Compared are several symplectic calculations, PDS results, and experimental data. Q denotes the static quadrupole moment of the $L^x = 2^+_1$ state and is given in units of eb. The experimental values are taken from Refs. [49, 50]. PDS results are rescaled by an effective charge $e^* = 1.33$ and the symplectic calculations employ bare charges.

<table>
<thead>
<tr>
<th>Transition $J_i \rightarrow J_f$</th>
<th>Model B(E2) [W.u.]</th>
<th>B(E2) [W.u.]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$2\hbar\omega$</td>
<td>$4\hbar\omega$</td>
</tr>
<tr>
<td>$2 \rightarrow 0$</td>
<td>4.65</td>
<td>4.65</td>
</tr>
<tr>
<td>$4 \rightarrow 2$</td>
<td>4.35</td>
<td>4.27</td>
</tr>
<tr>
<td>Q [eb]</td>
<td>0.059</td>
<td>0.060</td>
</tr>
</tbody>
</table>

TABLE II: B(E2) values (in Weisskopf units) for ground band transitions in 20Ne. Compared are experimental data, predictions from several symplectic calculations, and PDS results. The static quadrupole moment of the $L^x = 2^+_1$ state is given in the last row. The experimental values are taken from Refs. [53, 54, 55]. PDS transition rates are rescaled by an effective charge $e^* = 1.95$, while the symplectic calculations use bare charges.

<table>
<thead>
<tr>
<th>Transition $J_i \rightarrow J_f$</th>
<th>Model B(E2) [W.u.]</th>
<th>B(E2) [W.u.]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$2\hbar\omega$</td>
<td>$4\hbar\omega$</td>
</tr>
<tr>
<td>$2 \rightarrow 0$</td>
<td>14.0</td>
<td>18.7</td>
</tr>
<tr>
<td>$4 \rightarrow 2$</td>
<td>18.4</td>
<td>24.5</td>
</tr>
<tr>
<td>$6 \rightarrow 4$</td>
<td>17.1</td>
<td>22.3</td>
</tr>
<tr>
<td>$8 \rightarrow 6$</td>
<td>12.4</td>
<td>15.2</td>
</tr>
<tr>
<td>Q [eb]</td>
<td>-0.14</td>
<td>-0.16</td>
</tr>
</tbody>
</table>
TABLE III: Comparison of intraband and interband B(E2) rates for 20Ne. Shown are various transitions between states of the lowest rotational bands. K=0\textsubscript{1} denotes the ground band, which is dominated by 0\hbar\omega configurations; members of the other bands correspond to 2\hbar\omega resonances. Results are from the PDS calculation (rescaled by $e^* = 1.95$) and from the 8\hbar\omega symplectic approach ($e^* = 1.0$). In the last column, ratios of the calculated transition strengths are given.

<table>
<thead>
<tr>
<th>Transition</th>
<th>Model B(E2) [W.u.]</th>
<th>BE2(PDS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>J\textsubscript{i} K\textsubscript{i} J\textsubscript{f} K\textsubscript{f} Sp(6,R)</td>
<td>PDS</td>
<td>BE2(Sp6)</td>
</tr>
<tr>
<td>2 0\textsubscript{1} 0 0\textsubscript{1}</td>
<td>19.3</td>
<td>20.3</td>
</tr>
<tr>
<td>2 0\textsubscript{2} 0 0\textsubscript{1}</td>
<td>5.8</td>
<td>12.6</td>
</tr>
<tr>
<td>2 0\textsubscript{3} 0 0\textsubscript{1}</td>
<td>0.10</td>
<td>0.32</td>
</tr>
<tr>
<td>2 0\textsubscript{1} 0 0\textsubscript{2}</td>
<td>2.9</td>
<td>5.7</td>
</tr>
<tr>
<td>2 0\textsubscript{2} 0 0\textsubscript{2}</td>
<td>20.3</td>
<td>27.8</td>
</tr>
<tr>
<td>2 0\textsubscript{3} 0 0\textsubscript{2}</td>
<td>0.15</td>
<td>0.13</td>
</tr>
<tr>
<td>2 0\textsubscript{1} 0 0\textsubscript{3}</td>
<td>0.17</td>
<td>0.48</td>
</tr>
<tr>
<td>2 0\textsubscript{2} 0 0\textsubscript{3}</td>
<td>0.25</td>
<td>0.26</td>
</tr>
<tr>
<td>2 0\textsubscript{3} 0 0\textsubscript{3}</td>
<td>12.9</td>
<td>16.8</td>
</tr>
<tr>
<td>4 0\textsubscript{1} 2 0\textsubscript{1}</td>
<td>24.5</td>
<td>25.7</td>
</tr>
<tr>
<td>4 0\textsubscript{2} 2 0\textsubscript{1}</td>
<td>10.9</td>
<td>22.8</td>
</tr>
<tr>
<td>4 1\textsubscript{1} 2 0\textsubscript{1}</td>
<td>2.3</td>
<td>5.8</td>
</tr>
<tr>
<td>4 2\textsubscript{1} 2 0\textsubscript{1}</td>
<td>0.63</td>
<td>2.3</td>
</tr>
<tr>
<td>4 0\textsubscript{3} 2 0\textsubscript{1}</td>
<td>0.09</td>
<td>0.30</td>
</tr>
</tbody>
</table>
TABLE IV: Dimensions of symplectic Hilbert spaces for 24Mg. Shown are the number of L-states ($L = 0, 1, \ldots, 8$) for spaces which include $N \hbar \omega$ excitations up to $N = 0, 2, 4,$ and $6,$ respectively.

<table>
<thead>
<tr>
<th>Symplectic space</th>
<th>Angular momentum L</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0\hbar \omega$</td>
<td>0 1 2 3 4 5 6 7 8</td>
</tr>
<tr>
<td>$(0+2)\hbar \omega$</td>
<td>4 3 11 10 17 15 19 16 18</td>
</tr>
<tr>
<td>$(0+2+4)\hbar \omega$</td>
<td>13 15 40 41 62 59 71 63 67</td>
</tr>
<tr>
<td>$(0+2+4+6)\hbar \omega$</td>
<td>32 49 110 122 171 171 198 182 187</td>
</tr>
</tbody>
</table>
TABLE V: B(E2) strengths of 24Mg. Compared are results from 2$\hbar\omega$, 4$\hbar\omega$, and 6$\hbar\omega$ symplectic calculations, a PDS calculation, and experiment [55, 58]. Both intraband and interband transitions between states of the ground (K=0) and \(\gamma \) (K=2) band are given. The static quadrupole moment of the 2^+_1 state is listed in the last line (in units of eb) \(^a\). The symplectic model reproduces the observed transition rates without employing effective charges, while the PDS approach requires $e^*=1.75$.

<table>
<thead>
<tr>
<th>Transition</th>
<th>Model B(E2)</th>
<th>B(E2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$J_i K_i J_f K_f$</td>
<td>$2\hbar\omega$</td>
<td>$4\hbar\omega$</td>
</tr>
<tr>
<td>2 0 0 0</td>
<td>17.2</td>
<td>20.2</td>
</tr>
<tr>
<td>4 0 2 0</td>
<td>24.5</td>
<td>26.9</td>
</tr>
<tr>
<td>6 0 4 0</td>
<td>25.2</td>
<td>25.5</td>
</tr>
<tr>
<td>8 0 6 0</td>
<td>24.4</td>
<td>19.4</td>
</tr>
<tr>
<td>3 2 2 2</td>
<td>31.6</td>
<td>35.6</td>
</tr>
<tr>
<td>4 2 2 2</td>
<td>9.7</td>
<td>11.2</td>
</tr>
<tr>
<td>5 2 3 2</td>
<td>15.3</td>
<td>17.0</td>
</tr>
<tr>
<td>5 2 4 2</td>
<td>17.3</td>
<td>18.0</td>
</tr>
<tr>
<td>6 2 4 2</td>
<td>15.3</td>
<td>19.4</td>
</tr>
<tr>
<td>8 2 6 2</td>
<td>12.4</td>
<td>18.0</td>
</tr>
<tr>
<td>2 2 0 0</td>
<td>1.1</td>
<td>1.3</td>
</tr>
<tr>
<td>2 2 0 0</td>
<td>2.2</td>
<td>1.7</td>
</tr>
<tr>
<td>3 2 0 0</td>
<td>1.9</td>
<td>2.4</td>
</tr>
<tr>
<td>4 2 0 0</td>
<td>0.2</td>
<td>1.0</td>
</tr>
<tr>
<td>4 2 4 0</td>
<td>2.9</td>
<td>2.1</td>
</tr>
<tr>
<td>5 2 4 0</td>
<td>1.0</td>
<td>2.4</td>
</tr>
<tr>
<td>6 2 4 0</td>
<td>0.2</td>
<td>2.2</td>
</tr>
</tbody>
</table>

Q [eb]

-0.171 -0.186 -0.185 -0.191 -0.18±0.02

\(^a\) Measurements have given results for $|Q|$ ranging from less than 0.16 eb to nearly double that value. We list the value adopted in the review by Spear [55].
TABLE VI: Comparison of intraband and interband B(E2) rates for ^{24}Mg. Shown are selected transitions between states of the K=0$_1$, 0$_2$, 0$_3$, and 2$_2$ bands. The PDS values are rescaled by e*$=1.75$. Ratios of the results from the two theoretical approaches are given in the last column.

<table>
<thead>
<tr>
<th>Transition</th>
<th>Model B(E2) [W.u.]</th>
<th>BE2(PDS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>J_i K_i J_f K_f</td>
<td>$^6\text{P}(6,R)$</td>
<td>PDS</td>
</tr>
<tr>
<td>2 0$_1$ 0 0$_1$</td>
<td>20.4</td>
<td>20.5</td>
</tr>
<tr>
<td>2 0$_2$ 0 0$_1$</td>
<td>5.6</td>
<td>10.2</td>
</tr>
<tr>
<td>2 0$_3$ 0 0$_1$</td>
<td>0.047</td>
<td>0.19</td>
</tr>
<tr>
<td>2 2$_2$ 0 0$_1$</td>
<td>0.22</td>
<td>2.1</td>
</tr>
<tr>
<td>2 0$_1$ 0 0$_2$</td>
<td>2.5</td>
<td>5.2</td>
</tr>
<tr>
<td>2 0$_2$ 0 0$_2$</td>
<td>14.8</td>
<td>26.6</td>
</tr>
<tr>
<td>2 0$_3$ 0 0$_2$</td>
<td>0.037</td>
<td>0.047</td>
</tr>
<tr>
<td>2 2$_2$ 0 0$_2$</td>
<td>0.48</td>
<td>3.4</td>
</tr>
<tr>
<td>2 0$_1$ 0 0$_3$</td>
<td>0.025</td>
<td>0.042</td>
</tr>
<tr>
<td>2 0$_2$ 0 0$_3$</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>2 0$_3$ 0 0$_3$</td>
<td>12.9</td>
<td>16.2</td>
</tr>
<tr>
<td>2 2$_2$ 0 0$_3$</td>
<td>0.023</td>
<td>0.12</td>
</tr>
<tr>
<td>4 0$_1$ 2 0$_1$</td>
<td>26.9</td>
<td>26.2</td>
</tr>
<tr>
<td>4 0$_2$ 2 0$_1$</td>
<td>9.7</td>
<td>18.4</td>
</tr>
<tr>
<td>4 0$_3$ 2 0$_1$</td>
<td>0.052</td>
<td>0.48</td>
</tr>
<tr>
<td>4 2$_2$ 2 0$_1$</td>
<td>0.66</td>
<td>0.21</td>
</tr>
</tbody>
</table>
FIG. 1: Basis construction in the symplectic model. SU(3)-coupled products of the raising operator \(\hat{A}^{(20)} \) with itself act on an Elliott starting state with \((\lambda, \mu) = (0, \mu)\) \((\{\sigma_1, \sigma_2 = \sigma_1, \sigma_3\})\) to generate symplectic \(2\hbar \omega, 4\hbar \omega, \ldots\) excitations. Also shown are the SU(3) labels \((\lambda, \mu)\) and quanta distributions \(\{\omega_1, \omega_2, \omega_3\}\) for some excited states.

FIG. 2: Symplectic shell model space. The schematic plot illustrates a model space with multiple symplectic representations. Each 'cone' corresponds to a Sp(6,R) irrep and is uniquely characterized by U(3) quantum numbers \(N_{\sigma}(\lambda, \mu)\), where \((\lambda, \mu)\) denotes the Elliott SU(3) quantum labels for the associated \(0 h \omega\) shell model configuration. For a given starting representation \((\lambda, \mu)\) \((\sigma = 1, 2, 3, 4\) here), one obtains multiple SU(3) configurations, \((\lambda, \mu)\), at each \(N h \omega\) level of excitation \((N > 0)\), indicated here by small filled circles.
FIG. 3: Energy spectra for 12C. Comparison between experimental values (left) [49], results from a symplectic $8\hbar \omega$ calculation (center) and a PDS calculation (right). $K=0_1$ indicates the ground band in all three parts of the figure. In addition, resonance bands dominated by $2\hbar \omega$ excitations ($K=2_1, 0_2, 1_1, 0_3$), $4\hbar \omega$ excitations ($K=4_1$), and $6\hbar \omega$ excitations ($K=6_1$) are shown for the Sp(6,R) and PDS calculations. Additional mixed resonance bands (not shown), dominated by $4\hbar \omega$ and $6\hbar \omega$ excitations, exist for this nucleus. The angular momenta of the positive parity states in the rotational bands are $L=0,2,4\ldots$ for $K=0$ and $L=K,K+1,K+2,\ldots$ otherwise. Bands which consist of pure-SU(3) eigenstates of the PDS Hamiltonian are indicated.
FIG. 4: Decompositions for calculated $L^\tau = 2^+$ states of ^{12}C. Individual contributions from the relevant SU(3) irreps at the $0h\omega$ and $2h\omega$ levels are shown for both a symplectic $8h\omega$ calculation (denoted $Q_2 \cdot Q_2$) and a PDS calculation. In addition, the total strengths contributed by the $Nh\omega$ excitations for $N > 2$ are given for the symplectic case.
FIG. 5: Decompositions for calculated $L^\pi = 6^+$ states of 12C. The structures shown are representative for the members of the $K=2_1, 4_1$, and 6_1 rotational bands, respectively. States of these bands are dominated by $Nh\omega$ excited configurations with $(\lambda, \mu) = (N, 4)$, $N = 2, 4, 6, 8$, in the symplectic scheme and are pure in the PDS approach.
FIG. 6: Energy spectra for ^{20}Ne. Experimental ground band ($K=0_1$) energies [53] are shown on the left, while theoretical results for both the ground band and $2\hbar\omega$ resonances ($K=0_2, 1_1, 2_1, 0_3$) are given in the center and on the right, for a symplectic $8\hbar\omega$ and a PDS calculation, respectively. Rotational bands which consist of pure eigenstates of the PDS Hamiltonian are indicated.
FIG. 7: Decompositions for calculated \(L^x = 2^+ \) states of \(^{20}\)Ne. Individual contributions from the SU(3) irreps at the \(0\hbar\omega \) and \(2\hbar\omega \) levels are shown for both a symplectic \(8\hbar\omega \) calculation (left side) and a PDS calculation (right side). For the symplectic approach the summed contributions from SU(3) irreps at higher \((N > 2) \) excitations are given as well.
FIG. 8: Energy spectra for 24Mg. Energies from a PDS calculation (bottom) are compared to symplectic results (top). Both $0\hbar\omega$-dominated bands ($K=0_1, 2_1, 4_1$) and some $2\hbar\omega$ resonance bands ($K=0_2, 2_2, 4_2, 6_1, 6_2, 6_3$) are shown. The $K=0_1, 2_1, 4_1 (6_1)$ states are pure (approximately pure) in the PDS scheme. Experimental values for the ground and γ-band energies, taken from Refs. [58, 59], are given on the left.
FIG. 9: Decompositions for calculated $L^\pi = 6^+$ states of 24Mg. Eigenstates resulting from the symplectic $6\hbar\omega$ calculation are decomposed into their $0\hbar\omega$, $2\hbar\omega$, $4\hbar\omega$, and $6\hbar\omega$ components (denoted by $Q_2 \cdot Q_2$ in the figure). At the $0\hbar\omega$ and $2\hbar\omega$ levels, contributions from the individual SU(3) irreps are shown, for higher excitations ($N > 2$) only the summed strengths are given. Eigenstates of the PDS Hamiltonian belong entirely to one $N\hbar\omega$ level of excitation, here $0\hbar\omega$ or $2\hbar\omega$. Contributions from the individual SU(3) irreps at these levels are shown. Members of the K=0, 2, 4 bands are pure in the PDS scheme, and K=6 states are very nearly (> 99%) pure.