The Maximal Abelian Gauge in SU(3) Lattice Gauge Theory

William W. Tucker and John D. Stack

Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois, 68101

We gauge fix 600 SU(3) β = 6.0 configurations on a 16^4 lattice to a simple form of the maximal abelian gauge. We project the SU(3) valued links to the U(1) × U(1) subgroup, and extract U(1) × U(1) and monopole string tensions. After gauge fixing to the indirect center gauge, the U(1) × U(1) links are projected to Z(3) and a vortex string tension is measured. The vortex and magnetic current densities are measured.

The idea that the long-range physics of an SU(N) gauge field can be compressed into the abelian sector of that field was suggested by 't Hooft [1]. The simplest way to do this is to gauge fix the field so that it is as much in the abelian “direction” as possible and then to project to the abelian sector.

The process of gauge fixing to the maximum abelian gauge (MAG) has been studied extensively in SU(2) lattice gauge theory. Gauge fixed configurations are projected to the U(1) subgroup. From this U(1) gauge field, monopole currents are located and a potential from the U(1) gauge field or from the monopoles can be found and compared to the full SU(2) case. Also studied is the indirect center gauge (ICG). Here, after going to the MAG, the U(1) field is also gauge fixed and then projected to the Z(2) center of the group [2]. There are still unresolved issues such as stability under cooling and sensitivity to gauge ambiguities for the case of SU(2) [3]. It is natural, however, to go on to the case of an SU(3) gauge group in order to look at confinement as it occurs in QCD.

1. Maximal Abelian Gauge

In SU(2) gauge theory in the continuum, the MAG is the gauge that minimizes the quantity

\[G_{\text{mag}}^{\text{SU(2)}} = \int \left[(A_\mu^1)^2 + (A_\mu^2)^2 \right] d^4x. \]

The equivalent lattice functional is

\[G_{\text{mag}}^{\text{SU(2)}} = \frac{1}{2N_{\text{link}}} \sum_{x,\mu} \text{Tr} \left[U_\mu^\dagger(x) \sigma_3 U_\mu(x) \sigma_3 \right]. \]

A maximum of Eq.(2) is reached by sweeping over the lattice and performing gauge transformations that maximize the lattice functional at a given site.

In SU(3), the corresponding continuum functional is

\[G_{\text{mag}}^{\text{SU(3)}} = \int \left[(A_\mu^1)^2 + (A_\mu^2)^2 + (A_\mu^4)^2 + (A_\mu^6)^2 + (A_\mu^7)^2 \right] d^4x. \]

On the lattice Eq.(3) becomes

\[G_{\text{mag}}^{\text{SU(3)}} = \frac{1}{4N_{\text{link}}} \left\{ \sum_{x,\mu} \text{Tr} \left[U_\mu^\dagger(x) \lambda_3 U_\mu(x) \lambda_3 \right] + \sum_{x,\mu} \text{Tr} \left[U_\mu^\dagger(x) \lambda_8 U_\mu(x) \lambda_8 \right] \right\}. \]

For SU(3), gauge fixing updates are done based on SU(2) subgroups. We denote the three subgroups as follows: SU(2) : \(\lambda_1, \lambda_2, \lambda_3 \), SU(2)' : \(\lambda_4, \lambda_5, \lambda_3' \), SU(2)'' : \(\lambda_6, \lambda_7, \lambda_3'' \), where \(\lambda_i \) are the usual \(\lambda \)-matrices, and \(\lambda_3' = \text{diag}(1, 0, -1) \) and \(\lambda_3'' = \text{diag}(0, 1, -1) \).

2. Abelian Projection

Having reached a maximum of Eq.(4), it is necessary to project each SU(3) link matrix to the
3. Indirect Center Gauge

With configurations projected to the $U(1) \times U(1)$ subgroup, it becomes a simple (and considerably less computationally intensive) matter to gauge fix to the indirect center gauge (ICG). This gauge is determined by maximizing the functional

$$G_{ICG}^{SU(3)} = \frac{1}{9N_{\text{link}}} \sum_{x,\mu} |\text{Tr}[U_\mu(x)]]|^2,$$

where the U_μ are the $U(1) \times U(1)$ projected links. The easiest way to reach the ICG is with gauge transformations by factors of $\bar{\lambda}_8$, λ_8', and λ_8'', where $\bar{\lambda}_8 = \sqrt{3}\lambda_8 = \text{diag}(1, 1, -2)$, $\lambda_8' = \text{diag}(1, -2, 1)$, and $\lambda_8'' = \text{diag}(-2, 1, 1)$. This choice of transformation has the advantage that solving for the optimal transformation gives an easy analytical solution.

Projection to $Z(3)$ is accomplished by choosing the element $\xi_j 1$, $j = 0, 1, 2$, $\xi = \exp(2\pi i/3)$ that maximizes the quantity $\text{Tr}[\xi_j U_\mu^\dagger(x)\xi_j U_\mu(x)]$, for each $U(1) \times U(1)$ link. This results in a set of $Z(3)$ links. The Wilson loop is then calculated by multiplying these $Z(3)$ valued links around the loop.

4. Magnetic Currents

Magnetic currents are extracted for each $SU(3)$ color by applying the Toussaint DeGrand procedure to the $U(1) \times U(1)$ links. This produces three magnetic currents, of which only two are independent. In our method [4], the sum over colors of the magnetic current is non-vanishing on a link by link basis. Nevertheless, when used to calculate a Wilson loop, this total current produces a null potential, as it should. After extracting the magnetic currents, monopole Wilson loops are calculated for each color. This part of the calculation proceeds exactly as in $U(1)$ or $SU(2)$ lattice gauge theory [5,6]. Finally the color average of these monopole Wilson loops is used to produce a monopole potential from which a monopole string tension is extracted. The color averaged fraction of links carrying magnetic current was also measured and found to be 7.44(4) $\times 10^{-3}$.

5. Results

We gauge fixed each of 600 configurations to the MAG using Eq. (4), generating one gauge copy per configuration. The MAG gauge fixing was done using overrelaxation [7] with overrelaxation parameter $\omega = 1.8$. Gauge fixing was continued until $\langle |X_{12}|^2 + |X_{13}|^2 + |X_{23}|^2 \rangle < 3 \times 10^{-11}$ was satisfied where the matrix $X(x)$ is

$$\sum_{\mu} U_\mu(x)\lambda_3 U_\mu^\dagger(x) + U_\mu^\dagger(x - \mu)\lambda_3 U_\mu(x - \mu),$$

and the matrices X', X'' are similar, but have λ_3', λ_3'', respectively in place of λ_3.

Further gauge-fixing using Eq.(5) was performed to get to the ICG. The stopping criterion for this procedure was the same as in [4]. One gauge copy/configuration was generated, and the overrelaxation parameter for ICG was $\omega = 1.7$. Links were then projected to $Z(3)$ and Wilson loops calculated as in a $Z(3)$ gauge theory. The P-vortex density, that is the fraction of $Z(3)$ plaquettes with non-zero flux, was measured to be 2.25(1) $\times 10^{-2}$.
Wilson loops up to $R = 8, T = 8$ were generated for the various cases. Potentials were determined from Wilson loop values by fitting $-\ln(W(R,T))$ to a straight line in T. The $\ln(W)$ vs T plots were remarkably linear in all cases, even for $T < R$. From the potentials, string tensions were determined by fitting to the form $V(R) = \sigma R + \alpha/R + V_0$. Values for these parameters are given in Table 1. As can be seen there, the MAG $U(1) \times U(1)$, ICG vortex, and MAG monopole string tensions all lie below the full $SU(3)$ value [8] by an amount well outside of error bars. In Fig.(1), we plot the potentials determined here along with the best $SU(3)$ potential from the literature [8]. The values of the constant V_0 have been adjusted for display.

Our findings for $SU(3)$ are to be contrasted with the behavior in $SU(2)$, where for one gauge copy/configuration, at couplings with comparable string tension, the MAG $U(1) \times U(1)$ and ICG vortex string tensions are larger than the full $SU(2)$ value [3], while the monopole string tension lies very close to the full $SU(2)$ value [6]. Accounting for gauge copies with higher values of the functionals causes all the string tensions to decrease, with the $U(1)$ MAG string tension ending up $\sim 8\%$ below the full $SU(2)$ result [9]. If the same trend holds here, the $U(1) \times U(1)$ MAG string tension would end up well below the full $SU(3)$ value, with the monopole and ICG vortex values lower still. To remedy this situation for $SU(3)$, we are studying more general forms of the MAG condition [4].

REFERENCES

4. J. Stack and R. Wensley, ILL-TH-01-10, to be published.