O(a) improved QCD: The 3-loop beta-function, and the critical hopping parameter

A. Bodea, H. Panagopoulosb, Y. Proestosc

aCSIT, Tallahassee, USA
bDepartment of Physics, University of Cyprus
cPresent address: Department of Physics, Ohio State University, USA

We calculate the 3-loop bare β-function of QCD, formulated on the lattice with the clover fermionic action. The dependence of our result on the number of colors N, the number of fermionic flavors N_f, and the clover parameter c_{SW}, is shown explicitly. A direct outcome of our calculation is the two-loop relation between the bare coupling constant g_0 and the one renormalized in the \overline{MS} scheme. Further, we can immediately derive the three-loop correction to the relation between the lattice Λ-parameter and g_0, which turns out to be very pronounced.

We also calculate the critical value of the hopping parameter, κ_c, in the clover action, to two loops in perturbation theory. This quantity is an additive renormalization; as such, it exhibits a linear divergence in the lattice spacing. We compare our results to non-perturbative evaluations of κ_c coming from MC simulations.

1. INTRODUCTION

The clover action for lattice fermions was introduced a number of years ago [1], as a means of reducing finite lattice spacing effects. It is widely used nowadays in Monte Carlo simulations.

To monitor the onset of the continuum limit, tests of scaling must be performed on measured quantities. In particular, asymptotic scaling is governed by the bare β-function:

$$\beta_L(g_0) = -a \frac{d g_0}{d a} |_{g_0, \mu},$$

(1)

(a is the lattice spacing, g (g_0) the renormalized (bare) coupling constant, μ the renormalization scale). For $g_0 \to 0$ one may write β_L as:

$$\beta_L(g_0) = -b_0 g_0^3 - b_1 g_0^5 - b_2 g_0^7 + \ldots$$

(2)

The first two coefficients, b_0 and b_1, are universal and well known in $SU(N)$ gauge theory with N_f fermion species; the 3-loop coefficient b_2^L, on the other hand, is regularization dependent. In the case at hand, b_2^L is thus expected to depend not only on N and N_f, but also on the parameter c_{SW} of the clover action (see next Section).

We calculate b_2^L for arbitrary N, N_f and c_{SW}. The analogous calculation for pure gauge theory without fermions [2,3], as well as for Wilson fermions [4], was done a few years ago. We follow the general setup of those publications.

The β-function enters directly into the relation defining the parameter Λ_L:

$$a \Lambda_L = \exp \left(-\frac{1}{2 b_0 g_0^2} \right) \left(b_0 g_0^2 - b_1 / 2 b_0^2 \right),$$

$$\cdot \left[1 + q g_0^2 + \ldots \right], \quad q = (b_1^2 - b_0 b_2^L) / 2 b_0^3,$$

(3)

The “correction” factor q turns out to be very pronounced for typical values of c_{SW} and g_0.

A direct outcome of our calculation is the two-loop relation between the \overline{MS} coupling $\alpha \equiv g^2 / (4 \pi)$ and $\alpha_0 \equiv g_0^2 / (4 \pi)$:

$$\alpha = \alpha_0 + d_1(a \mu) \alpha_0^2 + d_2(a \mu) \alpha_0^3 + O \left(\alpha_0^4 \right),$$

(4)

This relation is useful in studies involving running couplings or renormalized quark masses.

In Sec. 2 we present our results for b_2^L, $d_1(a \mu)$ and $d_2(a \mu)$, as functions of N, N_f and c_{SW}. Further technical details and checks of our calculations are relegated to a longer write-up [5].

We have also calculated the critical value of the hopping parameter κ_c, to two loops, using the
clover action. Since Wilson fermions break chiral invariance explicitly, merely setting their bare mass to zero does not ensure chiral symmetry in the continuum limit; quantum corrections introduce an additive renormalization to the fermionic mass, which must then be fine tuned to a vanishing renormalized value. Consequently, the hopping parameter κ is shifted from its naive value.

The additive mass renormalization is linearly divergent with the lattice spacing. This adverse feature of Wilson fermions poses an additional problem to a perturbative treatment. Indeed, our calculation serves as a check on the limits of applicability of perturbation theory, by comparison with non perturbative Monte Carlo results.

In the present work we follow the procedure of Ref. [6], in which κ_c was computed using Wilson fermions without $\mathcal{O}(a)$ improvement. In Sec. 3 we present our results on κ_c, showing explicitly the dependence on N, N_f and c_{SW}. Details on our calculation can be found in our publication [7].

2. THE β FUNCTION

Our starting point is the Wilson formulation of the QCD action on the lattice, with the addition of the clover [1] fermion term, S_{SW}, which reads in standard notation:

$$S_{SW} = \frac{i a^5}{4} c_{SW} \sum_{x, \mu, \nu, f} \tilde{\psi}_f(x) \sigma_{\mu \nu} \tilde{F}_{\mu \nu}(x) \psi_f(x),$$

$$[\tilde{F}_{\mu \nu} = \frac{1}{8} (Q_{\mu \nu} - Q_{\nu \mu}),$$

$$Q_{\mu \nu} = U_{\mu, \nu} + U_{\nu, -\mu} + U_{-\mu, -\nu} + U_{-\nu, \mu}$$

Here $U_{\mu, \nu}(x)$ is the usual product of link variables $U_{\mu}(x)$ along the perimeter of a plaquette in the $\mu-\nu$ directions, originating at x; f is a flavor index; $\sigma_{\mu \nu} = (i/2)[\gamma_\mu, \gamma_\nu]$. The value of the parameter c_{SW} can be chosen arbitrarily; it is normally tuned in a way as to minimize $\mathcal{O}(a)$ effects. The lattice β-function is independent of the renormalized fermionic masses, which may be set to zero.

We compute the relation between g_0 and g, defined in the \overline{MS} renormalization scheme:

$$g_0 = Z_g(g_0, a\mu) g.$$ \hspace{1cm} (6)

The one- and two-loop terms of Z_g^2 have the form:

$$Z_g(g_0, a\mu)^2 = 1 + L_0(a\mu) g_0^2 + L_1(a\mu) g_0^4 + \ldots$$

$$L_0(x) = 2b_0 \ln x + l_0, \quad L_1(x) = 2b_1 \ln x + l_1.$$ \hspace{1cm} (7)

The constant l_0 is related to the ratio of the associated Λ parameters:

$$l_0 = 2b_0 \ln (\Lambda_\Lambda/\Lambda_{SW}).$$ \hspace{1cm} (8)

Its value is known (see e.g. Ref. [8] and references therein) and is presented here with increased accuracy for the c_{SW}-dependent coefficients:

$$l_0 = \frac{1}{8N} - 0.169955991998031(2) N + N_f l_{01}$$

$$l_{01} = 0.006696001(5) - c_{SW} 0.00504671402(1) + c_{SW}^2 0.02984346720(1)$$

The dependence on c_{SW} is quite pronounced, leading to changes in Λ_Λ of up to a factor of 2.

The quantity b_2^L can be obtained from l_0, l_1:

$$b_2^L = b_2 - b_1 l_0 + b_0 l_1.$$ \hspace{1cm} (10)

where b_2 is known from the continuum. Computing l_1 amounts to a two-loop calculation of the one-particle irreducible two-point function of a background gauge field. We find:

$$l_1 = \frac{3}{128N^2} + N_f [l_{11}/N + l_{12} N]$$

$$+ 0.018127763034(4) - N^2 0.0079101185(2)$$

$$+ c_{SW}^2 0.0052931(2) + c_{SW}^3 0.0005624(3)$$

$$+ c_{SW}^4 0.0008199(1),$$

$$l_{12} = 0.0009998(16) + c_{SW} 0.000342(4)$$

$$- c_{SW}^2 0.0048660(6) - c_{SW}^3 0.00021431(3)$$

$$- c_{SW}^4 0.0004382(1).$$ \hspace{1cm} (11)

Substitution in Eq. (10) now yields b_2^L, for any value of N, N_f, c_{SW}. The correction coefficient q of Eq. (3) also follows immediately; it brings about a substantial correction to asymptotic scaling, with a pronounced c_{SW} dependence. Finally, the coefficients $d_1(a\mu)$ and $d_2(a\mu)$ can be read off Eqs. (11), (4), (6), (7).

There exist several constraints on the algebraic and numerical values of individual diagrams. A particularly strong check is provided by Ref. [8]. Eq. (5.6) in that reference reads:

$$d_2(N=3, c_{SW}^3=1) = 1.685(9) - 8.6286(2) c_{SW}^3.$$ \hspace{1cm} (12)

For the same quantity, our results lead to:

$$1.6828(8) - 8.62843775(1) c_{SW}^3.$$ \hspace{1cm} (13)

Both sets of numbers are clearly in very good agreement.
3. THE HOPPING PARAMETER

We set out to calculate the hopping parameter,
\[\kappa \equiv \frac{1}{(2m_B a + 8r)} \]
which is an adjustable quantity in numerical simulations; \(m_B \) is the bare fermionic mass, and \(r \) is the Wilson parameter appearing in the fermionic action, usually set to 1. The critical value of \(\kappa \), at which chiral symmetry is restored, is thus \(1/8r \) classically, but gets shifted by quantum effects.

For a vanishing renormalized mass we require:
\[m_B = \Sigma^L(0, m_B, g_0) \]
where \(\Sigma^L(p, m_B, g_0) \) is the truncated, 1PI fermionic two-point function. We solve this recursive equation for \(m_B \) perturbatively. We write:
\[\Sigma^L(0, m_B, g_0) = g_0^2 \Sigma^{(1)} + g_0^4 \Sigma^{(2)} + \cdots \]

Two diagrams contribute to \(\Sigma^{(1)} \), and 26 to \(\Sigma^{(2)} \). Certain sets of diagrams must be evaluated together for infrared convergence. The dependence on \(c_{SW} \) is polynomial. For \(\Sigma^{(1)} \) we find:
\[\Sigma^{(1)} = \frac{N^2 - 1}{N} \left(-0.16285705871085(1) \right) \]
\[+ c_{SW} \left(0.04348303388205(1) \right) \]
\[+ c_{SW}^2 \left(0.01809576878142(1) \right) \]

One- and two-loop results pertaining to \(c_{SW} = 0 \) are as in Ref. [6], and can be found with greater accuracy in a subsequent work [9].

For \(c_{SW} \neq 0 \), only one-loop results exist so far in the literature; a recent presentation for \(N=3 \), \(c_{SW}=1 \) [8] agrees with our Eq. (15):
\[\Sigma^{(1)} \rightarrow -0.2700753495(2), \quad \text{Ref. [8]} \]
\[-0.270075349597(5), \quad \text{Eq. (15).} \]

We now turn to the much more cumbersome evaluation of \(\Sigma^{(2)} \). Our result is:
\[\Sigma^{(2)}/(N^2-1) = \]
\[\left[(-0.017537(3) + 1/N^2 0.016567(2) \right. \]
\[+ N_f/N 0.00118618(8)) \]
\[+ (0.002601(2) - 1/N^2 0.000597(7) \right. \]
\[- N_f/N 0.000545(2)) \]
\[+ (-0.0001556(3) + 1/N^2 0.0026226(2) \right. \]
\[+ N_f/N 0.0013652(1)) \]
\[+ (-0.000163(6) + 1/N^2 0.00015803(6) \right. \]
\[- N_f/N 0.00069225(3)) \]
\[+ (-0.00017219(2) + 1/N^2 0.000042829(3) \right. \]
\[- N_f/N 0.000198100(7)) \]

Several important consistency checks can be performed on the values of individual diagrams; our results satisfy these checks [7]. Eqs. (15, 16) lead immediately to the critical mass and hopping parameter, making use of Eqs. (13, 12).

A number of non-perturbative determinations of \(\kappa_c \) exist for particular values of \(g_0, c_{SW}, \) and \(N_f \). We present these in [7], along with our results and with “dressed” results obtained by a resummation of cactus diagrams [10]. Comparing with the Monte Carlo estimates, dressed results show a definite improvement over non-dressed values.

REFERENCES

5. A. Bode, H. Panagopoulos, e-print hep-lat/0110211.