I

Introduction

Aims. The dwarf elliptical galaxy NGC 1399, a nearby example of a low mass, low luminosity galaxy, may facilitate studies of early galaxy formation and evolution. We present here new broadband photometry for NGC 1399 and discuss the implications of its observations for models of galaxy evolution.

Methods. We used the Digitized Sky Survey (DSS) and the Southern Sky Survey (SSS) to obtain optical images of NGC 1399. The images were processed using standard image processing techniques. We performed aperture photometry on the DSS images using the aperture correction and sky subtraction techniques described in Paper I. The SSS images were used to determine the fraction of light from the galaxy that is due to the background Galactic foreground. We also used the DSS images to estimate the contribution of the galaxy to the background light.

Results. We find that the dwarf elliptical galaxy NGC 1399 is a good example of a low mass, low luminosity galaxy. The photometry of the galaxy shows that it is a faint, compact system with a small, central bulge. We also find that the galaxy has a low metallicity, consistent with its low luminosity.

We thank C. Condon, J. D. C. K. and A. C. for their assistance in the observations.

Acknowledgments. This work was partially supported by NASA and the National Science Foundation.
as used by Kissler-Patig et al. (1998) except integrations were longer at 13,200 sec. The 600 l/mm grating gave a resolution of 5.6 Å.

Data reduction was carried out using the REDUX software package developed by A. Phillips. Using a series of scripts this package subtracts the bias, flatfields the data, removes the x- and y-distortions, and produces optimal sky subtracted 1-D spectra. Comparison lamp spectra of Hg, Ar, Ne and Kr were used for wavelength calibration. Spectra from the different nights were combined. Flux calibration was provided by the flux standard BD284211 observed on the first night. To correct the GCs onto the Lick/IDS system, we convolved our spectra with a wavelength-dependent Gaussian kernel and then applied small offsets obtained from observations of several Lick standard stars (see Beasley et al. in prep.).

Lick indices (Trager et al. 2000) were measured from our flux-calibrated spectra. Due to the variable nature of the wavelength ranges in multi-slit spectra, the same set of indices were not measured for all spectra. Uncertainties in the indices were derived from the photon noise in the unfiltered spectra. We have obtained spectra with S/N = 30–45 Å⁻¹, giving errors in the Hβ index of 0.34–0.22 Å.

Of the 17 usable spectra we confirm that 11 are bona fide GCs. We found objects #43 and #164 (IDs from Grillmair 1992) to be Galactic stars. Background galaxies (and their redshifts) are #40 (z~0.11), #163 (z~0.07), #167 (z~0.14) and #169 (z~0.13). Our sample of GCs have an average galactocentric distance of 20 kpc and cover the observed range of C–T1 colors for the GC system (Ostrow, Geisler & Forte 1993). Velocities have been measured from the spectra via cross-correlation with high S/N spectra of two M31 GCs (158-213; \(v_{\text{helio}} = -180 \; \text{km/s}\) and 225-280; \(v_{\text{heliocentric}} = -164 \; \text{km/s}\)). The 11 GCs have a mean velocity of 1551 ± 74 km/s and velocity dispersion of 246 ± 57 km/s. NGC 1399 itself has a velocity of 1447 ± 12 km/s. One GC, #41 with velocity 1619±68 km/s, has been excluded from our line-strength analysis due to suspect sky-subtraction.

3. Ages and Abundances

To investigate the properties of our GC sample, we primarily use the stellar population models of Maraston & Thomas (2000) which predict line-strength indices using the Lick/IDS-based fitting functions of Worthey (1994). It is important to check that we have adequately corrected the data onto the Lick system. To this end, we have compared index-index plots of our data with the models, and generally find good agreement. The strongest (and best measured) features in the GC spectra, which we use in this study, are the primarily metallicity-sensitive Mg b and (Fe) indices (the mean of the Fe5270 and Fe5335), and the more age-sensitive Hβ and HγA (the broader of the two Hγ indices defined by Worthey & Ottaviani 1997).

Our line index measurements for the 10 GCs in NGC 1399 are listed in Table 1. We also include T1 magnitudes (similar to Johnson R) and C–T1 colors from Geisler, Forte & Dirsch (in prep.).

In Fig. 1 we plot the magnesium and iron indices of the GCs, and for the central line-strength of NGC 1399 itself (Taken from Kuntschner 2000). At low metallicities, the GCs follow the models reasonably well. However, at higher metallicities, the NGC 1399 GCs deviate significantly from the grids. The metal-rich GCs seemingly show an enhancement of magnesium with respect to iron, and an enhancement of Mg b with respect to Mg2.

This behavior is also exhibited by NGC 1399 itself, which lies to the right of the population models. The fact that these magnesium lines do not vary in the same fashion does not indicate that we are unable to measure these indices. Rather, these indices (i.e. the bandpasses) have different contributions from elements other than magnesium (e.g. Tripicco & Bell 1995; Trager et al. 2000).

Since the models of Maraston & Thomas (2000) use scaled-solar isochrones, we conclude that this offset arises because the metal-rich GCs in our sample have non-solar abundance ratios, i.e. \([\text{Mg/Fe}] > 0\). This result is consistent with high-resolution spectroscopy of bright giants in Galactic GCs, which typically exhibit \([\text{Fe/H}] \sim 0.3\) (Carney 1996). Due to the small difference between solar and α-enhanced isochrones at low metallicities (e.g. Salaris & Weiss 1998) it is possible that the metal-poor GCs also possess super-solar abundance ratios.

![Fig. 1 — Comparison of primarily metallicity-sensitive Lick/IDS indices. Filled, numbered circles with error bars are the NGC 1399 GCs. Symbol size is roughly proportional to the S/N of the spectra. The open square indicates the position of NGC 1399 (Kuntschner 2000). Over-plotted are the stellar population models of Maraston & Thomas (2000) for ages between 1 and 15 Gyr (left to right), and \(-2.25 < [\text{Fe/H}] < +0.67\) (lower left to upper right).](image-url)

The stellar population models can be used to disentangle age and metallicity, albeit in a model dependent way, and derive relative ages and metallicities for the NGC 1399 GCs. In particular we use the hydrogen Balmer lines which are strongly age sensitive combined with magnesium and iron which are largely metal sensitive.

In Fig. 2 we show our GC data compared to the stellar population models of Maraston & Thomas (2000) ex-
tended to younger ages (Maraston 2001, private comm.). To complement Mg, our most robust measure of metallicity, we use [Mg/Fe] ([Mg b x (Fe)]) 0.5, which minimizes the effects of the overabundance seen in Mg b, whilst increasing measurement accuracy (Gonzalez 1993). We have chosen to derive ages and metallicities for the GCs using the Maraston grids, since these are calibrated on Galactic GCs. In Table I, we list the derived ages and metallicities of the GCs, obtained from the mean of the values predicted in the upper two panels of Fig. 2. Uncertainties are obtained by perturbing the line-strengths by their errors and re-deriving their ages and metallicities. We emphasize that these uncertainties represent the random measurement errors, and do not include possible systematic errors in the models themselves.

![Graphs showing Mg, Fe, and Hα measurements for NGC 1399 GCs compared to the stellar population models of Maraston & Thomas (2000).](image1)

**Fig. 2.** — Index measurements of NGC 1399 GCs compared to the stellar population models of Maraston & Thomas (2000). The open square indicates the position of NGC 1399, from Kuntschner (2000). For the final ages and metallicities we use the upper two grids. Top left: Hβ-[MgFe] grid. Top right: Hβ-Mg2 grid. Bottom left: Hα-[MgFe] grid. Bottom right: Hα-[MgFe] grid. The spectrum of GC #55 does not include Hα.

In Fig. 3 we show integrated spectra of three GCs associated with NGC 1399. As described below, two of the GCs (#159, #161) exhibit Balmer and metal line-strengths consistent with very young ages (notice in particular the strong Hβ and Mg features in the spectrum of #161). Cluster #49 represents our highest S/N spectrum (Hβ error is $\pm 0.22$ Å) and is an example of an old metal-poor GC.

The majority of the GCs are old (as found by Kissler-Patig et al. 1998) and are consistent with the 11 Gyr isochrone, within 2σ of their individual measurement errors. This age is consistent with the luminosity weighted age for the central stellar population of NGC 1399, i.e. 10 $\pm$ 2 Gyr using the line index measurement of Kuntschner (2000). One metal-poor GC (#149) falls below the oldest model isochrones, possibly reflecting the uncertainties in modelling horizontal-branches in the models.

Interestingly, two of the GCs (#159 and #161) have very young inferred ages of ~2 Gyr. Such young ages are consistent in all four model grids of Fig. 2, including Hα. Worthey (1994) models also indicate young ages. Significantly, the age estimates from Hβ-[MgFe] and Hα-[Fe] are both consistent indicating that the non-solar [$\alpha$/Fe] ratios of the GCs are not responsible. It is important however to recognize that the population models are somewhat uncertain at very young ages, because they use fitting-functions derived only from old stars.

Kissler-Patig et al. (1998) also identified two GCs (#83 and #102 from Grillmair 1992) with strong Balmer and metal lines, and potentially very young ages albeit with large errors. One possibility raised by these authors was that their enhanced Balmer lines were due to the presence of blue horizontal branches (BHBs).

de Freitas Pacheco & Barbary (1995), Maraston & Thomas (2000) and Lee et al. (2000) have investigated the potential influence of a BHB on the Hβ line index. According to Lee et al. a warm BHB can raise the Hβ EW in metal-rich GCs by up to 0.75 Å, without significantly affecting the metallicity, if those GCs are ~4 Gyr older than Galactic ones. For metal-rich Galactic GCs, with estimated ages ~15 Gyr, the increase in Hβ from a BHB is minimal. Thus assuming that GCs #159 and #161 are truly metal-rich with [Fe/H] $\geq$ 0, then they must be $\geq$ 4 Gyr older than typical Galactic GCs in order for BHBs to explain their Hβ EW. If we accept current estimates for the oldest Galactic GCs to be 12.5 Gyr, then 16.5 Gyr GCs would be incompatible with the current best estimates for the age of the Universe (Gnedin, Lahav & Rees 2000).
We note that future far-UV photometry may help to distinguish between the presence of a BHB and a young age (Lee 2001, private comm.)

So although we can not conclusively choose between these two alternatives, both have interesting implications. If the BHB interpretation is correct, it would be the first detection of BHBs in metal-rich GCs of an elliptical galaxy since the initial discovery in two metal-rich Galactic GCs by Rich et al. (1997). It also implies that at least some GCs in NGC 1399 are systematically older than their Galactic counterparts by at least 4 Gyrs, and hence in conflict with the age of the Universe under certain cosmologies. The alternative is that these GCs, which are both metal-rich and have super-solar [Mg/Fe] abundance ratios, formed only \( \sim 2 \) Gyrs ago. Whether these GCs formed in an accreted satellite or in situ is not clear, but to attain the enhanced abundance ratios would require that they formed very soon after the first type II SNe. According to Thomas, Greggio & Bender (1999), a recent merger would require an extremely flat IMF to reproduce the observed enhancement. However late epoch mergers of spiral disks, like the Milky Way, would not be expected to form a enhanced metal-rich GCs (Goudfrooij et al. 2001).

4. CONCLUDING REMARKS

From high S/N spectra and the stellar population models of Maraston & Thomas (2000) we find that the majority of globular clusters in NGC 1399 are old, similar to the luminosity-weighted age of NGC 1399 itself. At least two clusters have super-solar abundance ratios, again like the host galaxy. A super-solar abundance ratio for metal-rich stellar populations is a natural outcome from a fast, clumpy collapse but may also be produced by mergers if star formation has a sufficiently flat IMF (Thomas, Greggio & Bender 1999). Two metal-rich GCs are reported with unusually high H\( \beta \) line strengths. It remains unclear whether this is due to a young (\( \sim 2 \) Gyr) age, or extremely old (\( > 15 \) Gyr) age with a blue horizontal branch. However a conflict with current cosmological parameters is avoided if the young age is favoured.

5. ACKNOWLEDGMENTS

We thank T. Bridges for the cluster photometry, A. Phillips for the use of his software, L. Schroeder for help with initial data reduction, and C. Maraston for providing her model grids ahead of publication. We also thank S. Larsen, B. Gibson and C. Maraston for useful discussions. Part of this research was funded by NSF grant AST 9900732 and an ARC grant. MB thanks the Royal Society. The data presented herein were obtained at the W.M. Keck Observatory, which is operated jointly by the California Institute of Technology and the University of California.

REFERENCES

Goudfrooij, P., Victoria Alonso, M., Maraston, C., Minniti, D.,
Huchra, J., Brodie, J., Caldwell, N., Christian, C., Schommer, R.,
Kissler-Patig, M., Brodie, J., Schroder, L., Forbes, D., Grillmair,
Kundu, A., Whitmore, B., Sparks, W., Macchetto, F., Zepf, S.,
Maraston, C., Kissler-Patig, M., Brodie, J., Burhney, P., Huchra, J.,
Trager, S., Faber, S., Worthey, G., Gonzalez, J., 2000, AJ, 120, 165
Tripicco, M., Bell, R., 1995, AJ, 110, 3035
## Table 1. Candidate Globular Clusters Around NGC 1399

<table>
<thead>
<tr>
<th>ID</th>
<th>H7</th>
<th>H5</th>
<th>Mg 6</th>
<th>Mg 2</th>
<th>&lt;Te &gt;</th>
<th>T1</th>
<th>C–T1</th>
<th>[Fe/H]</th>
<th>Age</th>
<th>V_helio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(A)</td>
<td>(A)</td>
<td>(m)</td>
<td>(m)</td>
<td>(A)</td>
<td>(m)</td>
<td>(m)</td>
<td>(dex)</td>
<td>(Gyr)</td>
<td>(km/s)</td>
</tr>
<tr>
<td>44</td>
<td>-3.96±0.65</td>
<td>1.88±0.31</td>
<td>3.14±0.32</td>
<td>0.204±0.008</td>
<td>2.33±0.40</td>
<td>31.19±0.01</td>
<td>1.75±0.02</td>
<td>-0.3±0.3</td>
<td>10,\textsuperscript{+2}_{-1}</td>
<td>1127±41</td>
</tr>
<tr>
<td>48</td>
<td>-1.57±0.45</td>
<td>2.19±0.24</td>
<td>2.38±0.23</td>
<td>0.139±0.006</td>
<td>1.85±0.33</td>
<td>20.58±0.01</td>
<td>1.43±0.01</td>
<td>-0.8±0.2</td>
<td>10,\textsuperscript{+4}_{-3}</td>
<td>1831±48</td>
</tr>
<tr>
<td>49</td>
<td>1.60±0.37</td>
<td>2.18±0.22</td>
<td>1.11±0.24</td>
<td>0.063±0.006</td>
<td>0.88±0.32</td>
<td>20.48±0.01</td>
<td>1.22±0.01</td>
<td>-1.7±0.2</td>
<td>~15</td>
<td>1618±64</td>
</tr>
<tr>
<td>55</td>
<td>...</td>
<td>3.29±0.32</td>
<td>0.81±0.39</td>
<td>0.051±0.009</td>
<td>1.03±0.51</td>
<td>20.87±0.01</td>
<td>1.14±0.01</td>
<td>-1.9±0.3</td>
<td>7,\textsuperscript{+3}_{-3}</td>
<td>1364±65</td>
</tr>
<tr>
<td>149</td>
<td>-0.75±0.62</td>
<td>1.66±0.28</td>
<td>0.74±0.27</td>
<td>0.019±0.007</td>
<td>0.75±0.35</td>
<td>20.84±0.01</td>
<td>1.14±0.01</td>
<td>-2.2±0.3</td>
<td>≥15</td>
<td>1361±107</td>
</tr>
<tr>
<td>156</td>
<td>1.88±0.78</td>
<td>2.03±0.33</td>
<td>2.97±0.32</td>
<td>0.163±0.008</td>
<td>1.41±0.42</td>
<td>21.12±0.01</td>
<td>1.50±0.02</td>
<td>-0.7±0.4</td>
<td>11,\textsuperscript{+7}_{-7}</td>
<td>1662±43</td>
</tr>
<tr>
<td>159</td>
<td>-2.73±0.65</td>
<td>2.66±0.29</td>
<td>3.37±0.30</td>
<td>0.180±0.008</td>
<td>2.28±0.41</td>
<td>21.08±0.01</td>
<td>1.47±0.02</td>
<td>0.1±0.3</td>
<td>2.3,\textsuperscript{+4}_{-4}</td>
<td>1579±41</td>
</tr>
<tr>
<td>160</td>
<td>-7.61±0.58</td>
<td>1.94±0.27</td>
<td>5.45±0.27</td>
<td>0.227±0.007</td>
<td>2.38±0.37</td>
<td>20.75±0.01</td>
<td>1.72±0.01</td>
<td>0.2±0.3</td>
<td>7,\textsuperscript{+4}_{-4}</td>
<td>1378±32</td>
</tr>
<tr>
<td>161</td>
<td>-1.51±0.59</td>
<td>3.15±0.31</td>
<td>4.23±0.36</td>
<td>0.212±0.009</td>
<td>1.99±0.47</td>
<td>20.89±0.01</td>
<td>1.45±0.01</td>
<td>0.3±0.3</td>
<td>1.6,\textsuperscript{+4}_{-4}</td>
<td>1506±45</td>
</tr>
<tr>
<td>165</td>
<td>0.67±0.56</td>
<td>2.30±0.34</td>
<td>1.89±0.38</td>
<td>0.105±0.009</td>
<td>1.86±0.50</td>
<td>20.82±0.01</td>
<td>1.43±0.01</td>
<td>-1.0±0.3</td>
<td>11,\textsuperscript{+5}_{-5}</td>
<td>2020±38</td>
</tr>
</tbody>
</table>

\(^a\)Global cluster ID number from Grillmair (1992).

\(^b\)Metallicity and age are derived using the single stellar population models of Maraston & Thomas (2000).