Second order perturbations in the radius stabilized Randall-Sundrum two branes model

Hideaki Kudoh* and Takahiro Tanaka†
Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan

The nonlinear gravitational interaction is investigated in the Randall-Sundrum two branes model with the radius stabilization mechanism. As the stabilization model, we assume a single scalar field which has the potential in the bulk and the potential on each brane. We develop the formulation of the second order gravitational perturbations under the assumption of the static and axial-symmetric 5-dimensional metric that is spherically symmetric in the 4-dimensional sense. After deriving the formal solutions for the perturbations, we discuss the gravity on each brane induced by the matter on its own side, taking the limit of the large coupling of the scalar field interaction term on the branes. We show using the Goldberger-Wise stabilization model that the 4-dimensional Einstein gravity is approximately recovered in the second order perturbations.

PACS 04.50.+h; 98.80.Cq
YITP-01-82

I. INTRODUCTION

Many unified theories require the spacetime dimension higher than that observed dimensions in the Universe, and then the extra dimensions must be invisible in some mechanism. One of the possible schemes has been known as Kaluza-Klein compactification. Recently, theories with extra-dimensions attract considerable attention from the other view point to provide a solution to the hierarchy problem [1–3] [4,5]. The main idea to resolve the large hierarchy is that the small coupling of 4-dimensional gravity is generated by the large physical volume of extra dimensions. These theories provide a novel setting for discussing phenomenological, cosmological and conceptual issues that are related to extra dimensions.

The model that was introduced by Randall and Sundrum (RS) is particularly attractive. The RS two branes model is constructed in a 5-dimensional Anti-de-Sitter (AdS) spacetime [2]. The fifth coordinate is compactified on \(S^1/Z_2 \), and the positive and the negative tension branes are on the two fixed points. It is assumed that all matter fields are confined on each brane and only the gravity propagates freely in the 5-dimensional bulk. In this model, the hierarchy problem is resolved on the brane with the negative tension if the separation of the branes is about 37 times the AdS radius.

Apart from the fine tuning of the brane tension that is necessary to solve the cosmological constant problem, one of the significant points in discussing the consistency of this model is whether the 4-dimensional Einstein gravity is recovered on the brane [6–11]. Another point is to give a so-called radius stabilization mechanism that works to select the required separation distance between two branes to resolve the hierarchy without fine tunings [12–20]. The stabilization mechanism is not only important to guarantee the stable hierarchy, but also plays an important role in the recovery of the 4-dimensional Einstein gravity in the linear order [7] and of the correct cosmological expansion [21–25]. The discussion on the recovery is almost independent of the detail of the stabilization model. The essence to recover the 4-dimensional Einstein gravity in linear perturbations is that the massless mode of the scalar-type gravitational perturbation disappears due to the bulk scalar field, and only the tensor-type perturbation remains to have a massless mode. When the stabilization mechanism is turned off, the induced gravity on the brane becomes of the Brans-Dicke type with the unacceptable Brans-Dicke parameter [6].

A large number of studies have been made on the gravity in the brane world model [26–33]. Although the model does not have a drawback in the linear perturbation, it is not trivial whether the second order gravitational perturbation works as well. As for the second order perturbation in the RS single brane model without bulk scalar field, where the tension of the brane is positive, it was confirmed that there is no observable disagreement with 4-dimensional Einstein gravity, [34,35]. However the setting of the RS two brane model with the stabilization mechanism is quite different from the single brane model, and furthermore we are mainly concerned with the gravity on the negative tension brane. In this paper we study the second order gravitational perturbation of the RS two branes model with the stabilization

*Email address: kudoh@yukawa.kyoto-u.ac.jp
†Email address: tanaka@yukawa.kyoto-u.ac.jp
mechanism due to a bulk scalar field. To simplify the analysis, we consider the static and axisymmetric configurations, which means that the metric on the branes is spherically symmetric. After developing the formulation to calculate the second order perturbation, we take the limit that the coupling of the scalar field interaction term on each brane is very large. In this limit, we find that the 4-dimensional Einstein gravity is approximately recovered.

The paper is organized as follows. In Sec. II we describe the model that we will study, and derive the second order perturbation equations in the 5-dimensional bulk. We also discuss the gauge transformations and the boundary conditions. In Sec. III we explain our approximation scheme, and give the formal solutions. In Sec. IV we review the results of the linear perturbations, giving their explicit expressions following the notation of this paper, and explain the setup of the problem that we study in the present paper. In Sec. V we analyze the second order metric perturbations induced on each brane. We show that the 4-dimensional Einstein gravity is recovered with some small corrections. These results are summarized in Sec. VI.

II. PERTURBATION EQUATIONS IN THE RS MODEL

We consider the second order perturbations in the RS two branes model with a 5-dimensional scalar field introduced to stabilize the distance between the two branes. According to the warped compactification of the RS model, the unperturbed metric is supposed to be

\[ds^2 = g_{ab}dx^a dx^b = dy^2 + a^2(y)\eta_{\mu\nu}dx^\mu dx^\nu, \]

(2.1)

where \(\eta_{\mu\nu} \) is the 4-dimensional Minkowski metric with (− + + +) signature. The \(y \) direction is bounded by two branes located at \(y = y_+ \) and \(y = y_- \), whose tensions are assumed to be positive (\(\Lambda_{(+)} > 0 \)) and negative (\(\Lambda_{(-)} < 0 \)), respectively. On these two branes, \(Z_2 \)-symmetry is imposed, and we adopt the convention \(y_+ < y_- \). To generate the hierarchy between Planck and electroweak scales, we need

\[\frac{a_+}{a_-} \sim 10^{16}, \]

(2.2)

where \(a_{\pm} \equiv a(y_{\pm}) \).

In this paper we investigate the gravity induced by non-relativistic matter fields confined on each brane whose energy-momentum tensor is given in the perfect fluid form

\[T_{\pm\mu}^\nu = a_{\pm}^4 \text{diag}\{-\rho_{\pm}, P_\pm, P_\pm, P_\pm\}. \]

(2.3)

The warp factor in the definition of the energy-momentum tensor (2.3) is incorporated by the following reason. In the present analysis, we adopt the normalization that any physical quantities are always mapped onto and measured without mentioning it, and we omit the superscript to indicate the order when it is obvious. We impose the same

To simplify the analysis, we restrict our consideration to the static and axisymmetric spacetime whose axis of symmetry lies along \(y \) direction. We denote the perturbed metric by \(\tilde{g}_{ab} = g_{ab} + h_{ab} \). The 4-dimensional perturbation \(h_{\mu\nu} \) is divided into the trace part and the transverse-traceless (TT) part. According to this decomposition, we assume that the perturbed metric has the diagonal form,

\[ds^2 = e^{2y(r,y)}dy^2 + a^2(y)\left[-e^{A(r,y)-\psi(r,y)}dt^2 + e^{B(r,y)-\psi(r,y)}dr^2 + e^{C(r,y)-\psi(r,y)}r^2d\Omega^2\right]. \]

(2.4)

Here \(A, B, \) and \(C \) correspond to the TT part, and \(\psi \) to the trace part. The TT condition at the linear order is given in terms of \(A, B, \) and \(C \) as

\[A^{(1)}(r, y) = -\frac{1}{r^2}\partial_r(r^3B^{(1)}(r, y)) , \]

\[C^{(1)}(r, y) = \frac{1}{2r}\partial_r(r^2B^{(1)}(r, y)) , \]

(2.5)

where we have expanded the metric functions up to the second order as

\[A = \sum_{J=1,2} A^{(J)}. \]

(2.6)

The other metric functions, \(Y \) and \(\psi \), are expanded in the same way. Henceforth we neglect higher order terms without mentioning it, and we omit the superscript to indicate the order when it is obvious. We impose the same
The trace part at the linear order is \(\psi^{(1)} \), while \(\psi^{(2)} \) does not correspond to the trace part at the second order. Hence the second order counter part of the condition (2.5) does not mean that \(Y \) coincides with \(\psi \) in the linear perturbation, and then this metric assumption is the same at least in the linear perturbation as the “Newton gauge” condition.

The Lagrangian for the bulk scalar field is
\[
\mathcal{L} = -\frac{1}{2} \tilde{g}^{\mu\nu} \partial_\mu \phi \partial_\nu \phi - V_B(\phi) - \sum_{\sigma = \pm} V_{(\sigma)}(\phi) \delta(y - y_\sigma),
\]
where \(V_B \) and \(V_{(\pm)} \) are the potential in the bulk and that on the respective brane. For most of the present analysis, we do not need to specify the explicit form of the potentials \(V_B \) and \(V_{(\pm)} \). The scalar field is expanded up to the second order as
\[
\phi(r, y) = \phi_0(y) + \varphi^{(1)}(r, y) + \varphi^{(2)}(r, y),
\]
where \(\phi_0 \) is the background scalar field configuration, which depends only on \(y \).

From 5-dimensional Einstein equations with the cosmological term \(\Lambda \) and the equation of motion for the scalar field, we obtain background equations as
\[
\ddot{H}(y) = \frac{\kappa}{3} \dot{\phi}_0^2(y),
\]
\[
H^2(y) = \frac{\kappa}{6} \left(\frac{1}{2} \dot{\phi}_0^2(y) - V_B(\phi_0(y)) - \kappa^{-1} \Lambda \right),
\]
\[
\dot{\phi}_0(y) + 4H(y)\phi_0(y) - V'_B(\phi_0(y)) = 0,
\]
where \(H(y) := \dot{a}(y)/a(y)(\approx -\sqrt{-\Lambda}/6) \) and the 5-dimensional Newton’s constant is \(G_5 = \kappa/8\pi \). An overdot denotes differentiation with respect to \(y \).

A. 5D Einstein Equations in the bulk

In this subsection we derive the master equations for \(A^{(J)} \) and \(Y^{(J)} \) from 5-dimensional Einstein equations. From \((r, r), (\theta, \theta)\) and \((r, y)\) components of the Einstein equations, we obtain two independent equations:
\[
\partial_\nu [\partial_\mu \Delta(\psi^{(J)} - Y^{(J)})] = \epsilon^{(J)} \partial_\mu S_\psi,
\]
\[
\varphi^{(J)} = \frac{3}{2\kappa \phi_0} (\partial_\mu \psi^{(J)} + 2HY^{(J)} + \epsilon^{(J)} S_\varphi),
\]
where \(\Delta \equiv \sum_{i=1}^3 \partial_i^2 \). Here \(S_\psi \) and \(S_\varphi \) are the second order source terms that are constructed from the first order quantities, and the explicit forms are given below. We have introduced a symbol \(\epsilon^{(J)} \) that is defined by \(\epsilon^{(1)} = 0 \) and \(\epsilon^{(2)} = 1 \) to represent the first and the second order equations in a single expression. These equations are reduced to
\[
\psi^{(J)}(r, y) = Y^{(J)} + \epsilon^{(J)} \Delta^{-1} S_\psi,
\]
\[
\varphi^{(J)}(r, y) = \frac{3}{2\kappa \phi_0 a^2} \partial_y (a^2 \psi^{(J)}) + \frac{3}{2\kappa \phi_0} \epsilon^{(J)} \left[S_\varphi + \partial_y \Delta^{-1} S_\psi \right].
\]

The equations for \(A^{(J)} \) and \(Y^{(J)} \) are obtained from \((r, r)\) and \((y, y)\) components of Einstein equations as
\[
[L^{(TT)} + \frac{1}{a^2} \Delta] (a^2 A^{(J)}) = \epsilon^{(J)} S_A,
\]
\[
[L^{(Y)} + \Delta] Y^{(J)} = \epsilon^{(J)} S_Y,
\]
where
\[
\begin{align*}
\hat{L}^{(TT)} &:= \frac{1}{a^2} \partial_y a^4 \partial_y \frac{1}{\alpha^2}, \\
\hat{L}^{(Y)} &:= a^2 \phi_0^2 \partial_y \frac{1}{a^2 \phi_0^2} \partial_y a^2 - \frac{2\kappa}{3} a^2 \phi_0^2.
\end{align*}
\]

The second order source terms, \(S_A \) and \(S_Y \), are given soon later. After the simplification using the linear order equations (2.12), (2.13), (2.14) and (2.15), \(S_A \) and \(S_Y \) are written down as

\[
\partial_r S_\varphi(r, y) = \frac{3}{8 r^2} \partial_r (r^8 (\Delta B)^2) + B_r \left(\frac{14}{3} B + \frac{5}{4} r \partial_r \Delta B - \frac{11}{6r} B_r \right) + \frac{9}{4r^{8/3}} \partial_r \left\{ r^{8/3} \frac{Y_r(\Delta Y)_r}{\kappa a^2 \phi_0^2} \right\} + \frac{1}{a^2} \partial_y \left(-2 a^4 Y_r B_y + \frac{3}{2r^{8/3}} \partial_r \left\{ r^{8/3} a^2 Y_r \frac{\varphi r}{\phi_0} \right\} \right),
\]

\[
(2.16)
\]

and

\[
S_\varphi = S_\varphi - \frac{\varphi}{a^2 \phi_0} \left(\Delta Y - \frac{\kappa a^2 \phi_0}{3} \varphi \right),
\]

\[
(2.17)
\]

where

\[
S_\varphi = \frac{2}{3} \int \left(B_y A_r + \frac{r}{8} B_{yr} (3A_r + B_r) \right) dr - \int B_y Y_r dr + \frac{1}{a^2} \partial_y \int \varphi_r \Delta Y dr + HY^2 - \frac{\kappa}{3} \partial_y (\varphi^2).
\]

(2.18)

In the derivation of Eq. (2.16), we used Eq. (B14). The underline in Eq. (2.16) is attached for convenience of our explanation. So is the double underline below. Using Eq. (2.16), \(S_A \) is given as

\[
S_A = -\frac{8}{r} B B_r - \frac{17}{3} (B_r)^2 - \frac{1}{r^6} \partial_r (r^7 B B_{rr}) - \int dr \left(\frac{r}{2} (B_r)^2 + \frac{7}{r} B_y (B_r)^2 \right) - 3 \int \frac{dr}{r} \left(\frac{Y_r(\Delta Y)_r}{\kappa a^2 \phi_0^2} \right) + \frac{1}{a^2} \partial_y \left[3 a^4 Y A_y + \int dr (a^4 Y_r B_y) - 2 \int \frac{dr a^2 Y_r \varphi r}{\phi_0} \right],
\]

(2.19)

where we again used Eq. (B14). The complete expression of \(S_Y \) is slightly complicated. For the later convenience we divide \(S_Y \) as

\[
S_Y = S_Y - \phi_0^2 a^2 \partial_y \left(\frac{1}{\phi_0^2} \left[S_\varphi + \partial_y \Delta^{-1} S_\varphi \right] \right),
\]

(2.20)

where \(S_Y \) is given by

\[
S_Y = \frac{a^2}{8} \left((A_y)^2 + (B_y)^2 + \frac{2}{3} A_y B_y \right) - \int \left\{ \Delta B \left(\frac{7r}{3} \Delta B + \frac{r^2}{2} (\Delta B)_r + 4 B_r \right) + \frac{5}{6} B_{rr} (\Delta B)_r + (B_r)^2 \right\} dr + \frac{a^2 H}{3} \left[A_r (3A + B)_y - r B_r B_y \right] + \left[Y_r \left(\Delta B + \frac{8 B_y}{r} \right) - B (\Delta Y)_r - 2 B_y \Delta Y \right] + 3 B_y \Delta Y + \left(Y + \frac{4H}{\phi_0} \right) (\Delta Y)_r + \frac{2\kappa}{3} \left(\varphi_r \Delta \varphi - \varphi (\Delta \varphi)_r \right) - 2 a^4 Y_a \left(\frac{Y_a}{a^2} \right)_r \right\} dr - \frac{9(\Delta Y)^2}{4\kappa a^2 \phi_0^2} - a^2 HY^2.
\]

(2.21)

B. Boundary condition

In the previous subsection, we derived master equations for the metric functions in the bulk up to second order. To solve these equations we must determine the boundary conditions on the branes. It is well known that the boundary condition is given by the Israel’s junction condition [36], which is easily obtained in the Gaussian normal coordinates. On the other hand, the “Newton gauge” simplifies the master equations for the perturbations. Therefore we consider the gauge transformation between them.

In the Gaussian normal coordinates \(\tilde{x}^a \), the metric becomes
\[
ds^2 = dy^2 + a^2(\bar{y}) \left[-e^A dt^2 + e^B dr^2 + e^{C r^2} d\Omega^2 \right],
\]
\[(2.22) \]

with \(\bar{y} = \text{const.} \) on either positive or negative tension brane. Note that we introduced two sets of Gaussian normal coordinates; one is the coordinate set in which the positive tension brane is located at \(\bar{y} = \bar{y}_+ \), and the other is that in which the negative tension brane is located at \(\bar{y} = \bar{y}_- \). Corresponding to these two different Gaussian normal coordinates, there are two infinitesimal gauge transformations \(\bar{x}^a = x^a + \xi^a \) between the Newton gauge and the Gaussian normal gauge, respectively. To satisfy the restriction on the metric form in both gauges, the gauge parameters \(\xi_a = (\xi^a_\pm + \xi^a_\pm) \) associated with each brane must take the form of

\[
(2.23) \quad \xi^{(J)}_\pm (r, y) = \int_{y_\pm}^{y} dy' \left(Y^{(J)} + \frac{1}{2} e^{(J)} \left[Y^2 - \frac{1}{a^2} (\xi^{(1)}_\pm)^2 \right] \right) + \xi^{(J)}_{y_\pm} (r),
\]

\[
(2.24) \quad \xi^{(J)}_\pm (r, y) = \int_{y_\pm}^{y} dy' \left(-\frac{1}{a^2} \xi^{(J)}_{\pm, r} + \frac{e^{(J)}}{a^2} \xi^{(J)}_{\pm, r} \left[B - Y + 2H (\xi^{(1)}_\pm + \xi^{(1)}_{\pm, r}) \right] + \xi^{(J)}_{y_\pm} (r),
\]

where we simplified the integrand of the equation for the second order perturbation by using the result for the linear perturbation. The functions of \(r, \xi^y \) and \(\xi^y \), arise as integration constants. The arbitrariness of \(\xi^y_\pm \) is due to a residual gauge degree of freedom of the coordinate transformation in the radial direction, while \(\xi^y_\pm \) is determined with the aid of the junction conditions as we will see below.

The gauge transformations for each metric component are given by

\[
(2.25) \quad \bar{A}^{(J)}(r, y) = A^{(J)}(r, y) - \psi^{(J)}(r, y) - 2H \xi^{y}_{\pm} + \frac{\xi^{(J)}_{\pm}}{a^2} \bar{A}_{y_\pm} + \frac{1}{2} \xi^{(J)}_{\pm} \bar{A}_{r_\pm} + \frac{1}{2} \xi^{(J)}_{\pm} \bar{A}_{r_\pm},
\]

\[
(2.25) \quad \bar{B}^{(J)}(r, y) = B^{(J)}(r, y) - 2H \xi^{y}_{\pm} - \frac{1}{2} \psi^{(J)}(r, y) - 2H \xi^{y}_{\pm} \left[\xi^{y}_{\pm, r} + \frac{\xi^{(J)}_{\pm}}{a^2} \bar{B}_{y_\pm} + \frac{1}{2} \xi^{(J)}_{\pm} \bar{B}_{r_\pm} \right],
\]

\[
(2.25) \quad \bar{C}^{(J)}(r, y) = C^{(J)}(r, y) - \frac{1}{r^2} \xi^{y}_{\pm} - \frac{1}{2} \psi^{(J)}(r, y) - 2H \xi^{y}_{\pm} \left[\xi^{y}_{\pm} - \frac{1}{2} \xi^{(J)}_{\pm} \bar{C}_{y_\pm} + \frac{1}{2} \xi^{(J)}_{\pm} \bar{C}_{r_\pm} \right],
\]

As for the scalar field, its gauge transformation is given by

\[
(2.26) \quad \bar{\phi}(r, y) = \phi(r, y) - \psi^{(J)}(r, y),
\]

\[
(2.27) \quad \delta \varphi^{(J)}(r, y) = \frac{\phi_{0}(\xi^{y}_{\pm}) + \frac{\xi^{(J)}_{\pm}}{a^2} \phi_{0}(\xi^{y}_{\pm})}{(\xi^{y}_{\pm} + \xi^{y}_{\mp})},
\]

where

As mentioned earlier, we assume the energy-momentum tensor of the perfect fluid form (2.3). The 4-dimensional energy-momentum conservation \(T^{\mu\nu}_{\pm, \mu} = 0 \) becomes

\[
(2.28) \quad (\rho_\pm + P_\pm) \partial_r \bar{A}^{(1)}(r, y_\pm) + 2 \partial_r P_\pm = 0,
\]

and hence we find that \(P_\pm \) is a second order quantity. This equation represents the force balance between pressure and gravity acting on the matter field.

Now we consider the boundary conditions. Israel’s junction conditions on the 3-branes are given as

\[
(2.29) \quad \pm \bar{g}^{\mu\lambda} \partial_\mu (\hat{g}_{\mu\lambda}) = -\kappa \left[T^{\mu_\nu}_\pm - \frac{1}{3} \delta^\nu_\mu T \right] - \kappa \left[T^{(\varphi)^{\mu}}_\pm - \frac{1}{3} \delta^\nu_\mu T^{(\varphi)} \right] \pm \frac{\kappa}{3} \delta^\nu_\mu \Lambda_{\pm}, \quad (y = y_\pm).
\]

where \(\Lambda_{\pm} \) is the tension on each brane, and \(T^{(\varphi)^{\mu}}_\pm \) is the energy-momentum tensor for the scalar field. Here and hereafter, when we evaluate the value at \(y = y_\pm \), we take the value at \(y = y_\pm \) in the \(\epsilon \rightarrow 0 \) limit. Since, by assumption, the scalar field does not have the kinetic term on the brane, its energy-momentum tensor on the brane is given by \(T^{(\varphi)^{\mu}}_\pm = -V_\pm \delta^\nu_\mu \). Then, Eq. (2.29) gives at the lowest order

\[
(2.30) \quad \pm H = \frac{\kappa}{6} V_{\pm} + \frac{\kappa}{6} \Lambda_{\pm}, \quad (y = y_\pm).
\]

5
The potential $V_{(\pm)}$ must be chosen to satisfy this condition. The (t, t)-component of the junction condition (2.29) gives
\[\pm \partial_y A^{(j)} = -\kappa \left(T_0^0 - \frac{1}{3} T_\pm^{(j)\pm} \right) = \frac{2\kappa}{3} \left(\varphi^{(j)} \dot{\phi}_0 + \frac{\epsilon^{(j)}}{4} \partial_y [(\varphi^{(1)})^2] \right), \quad (y = y_\pm). \] (2.31)

The junction condition in the Newton gauge is obtained by applying the gauge transformation to this equation. We define $\Sigma^{(j)}_{\pm}$ as the jump of the derivative of a metric function in the Newton gauge:
\[\frac{k}{a_{\pm}} \Sigma^{(j)}_{\pm} \equiv \pm A^{(j)} \big|_{y = y_\pm}, \quad (y = y_\pm), \] (2.32)
where $S^{(j)}_{\Sigma}$ is given by the substitution of Eqs. (2.10), (2.15), (2.17) and (2.26) as
\[S^{(j)}_{\Sigma} = \frac{2k}{3} \left(\varphi^{(2)} \dot{\phi}_0 + \frac{1}{4} \partial_y [(\varphi^{(1)})^2] \right) - (A^{(2)}_{\pm} - A^{(2)}_{\bar{y}}), \quad (y = y_\pm), \]
\[= \frac{2}{3} \int \left(B_{x} A_x + \frac{r}{8} B_{y} (3 A_x + B_{x}) \right) dr - \int \left(B_{x} Y_x + \frac{\varphi (\Delta Y)_{x} x}{a^2 \phi_0} - \frac{H_0 (\hat{\varphi}_y)^{2}}{a^2} \right) dr - \left[\left(\xi^y \hat{A}_y + \xi^r \hat{A}_r \right) \right] dy + \frac{H}{a^2} \left(\hat{\varphi}_y \right)^2 \]
\[+ \frac{2}{a^2} \hat{\varphi}_y \Delta Y + \left(\frac{\kappa}{3 \phi_0} \left(\varphi - \phi_0 \right) \right)^2 - \frac{2k}{3} \left(\frac{\kappa}{3 \phi_0} \right) \left(\varphi - \phi_0 \right) \left(\hat{\varphi}_y \right). \] (2.33)

Taking trace of the junction condition and using Eq. (2.13) and the formulas for the gauge transformation, we obtain the equation which determines $\dot{\xi}^{(j)}_{\pm}$:
\[\frac{1}{a_{\pm}} \Delta \dot{\xi}^{(j)}_{\pm} = \pm \frac{k}{6} \left(\frac{\kappa}{a_{\pm}} \right) + \epsilon^{(j)} S^{(j)}_{\xi}, \] (2.34)
where we introduced
\[S^{(j)}_{\xi} = \frac{1}{a_{\pm}} \left(\hat{\xi}^r \partial_r \Delta \hat{\xi}^y_{\pm} + 3 \hat{\xi}^r \Delta Y + \Delta \hat{\xi}^y_{\pm} \right) - \frac{2S_{\Sigma}}{\partial_y} \left(\xi^y \hat{A}_y + \xi^r \hat{A}_r \right) + \frac{4k}{3} \left(\phi_0 \hat{\xi}^r \partial_r - \frac{4k}{3} \left(\phi_0 Y_0 + 2 \phi_0 \hat{\varphi}_y \right) \right) \left(\varphi - \phi_0 \right). \] (2.35)

Let us consider the junction conditions for the scalar field. Integrating the equations of motion for the scalar field across the branes, we obtain the junction conditions for the scalar field as
\[\pm 2 \dot{\phi}_0 = V'_{(\pm)}(\phi_0), \] (2.36)
\[\pm 2 \dot{\varphi}^{(j)} = \varphi^{(j)} V''_{(\pm)}(\phi_0) + \frac{1}{2} \epsilon^{(j)} \left(\varphi^{(1)} \right)^2 V''_{(\pm)}(\phi_0), \]
at $y = y_\pm$. By using Eqs. (2.13), (2.15) and (2.26), the junction conditions for the scalar field in the Newton gauge is obtained as
\[\pm 2 \dot{\phi}_0 = V'_{(\pm)}(\phi_0), \]
\[\frac{2}{\lambda_{\pm}} (\varphi^{(j)} - \phi_0 \phi_{(j)}^{\pm}) = \mp \frac{3}{\kappa a^2 \phi_0} \Delta Y^{(j)} + \epsilon^{(j)} S^{(j)}_{\xi}, \] (2.37)
where we have defined
\[\lambda_{\pm} \equiv \frac{2}{V''_{(\pm)}(\phi_0)} \left(\phi_0 / \phi_0 \right), \] (2.38)
and
Solving these equations for A conditions are given by where the mode function w with the aid of Eq. (2.5), we obtain $\bar{\phi}_0 \partial_y \left(\frac{3 \phi (\phi (1))^2}{2 \phi_0^3} \right)$, (y = y_\pm).

Incorporating the boundary conditions (2.32) and (2.37), the master equations become

$$L^{(TT)} + \frac{1}{a^2} \Delta \left(a^2 A^{(J)} \right) = 2\kappa \sum_{\sigma = \pm} \Sigma_{\sigma}^{(J)} \delta(y - y_\sigma) + \epsilon^{(J)} S_A,$$

$$[\hat{L}^{(Y)} + \Delta] Y^{(J)} = \sum_{\sigma = \pm} \frac{2\kappa \delta_0 \sigma}{3} \delta(y - y_\sigma) K^{(J)}_{\sigma} + \epsilon^{(J)} S_Y,$$

with

$$K^{(J)}_{\sigma}(r) := 2\kappa \left[\frac{3 \lambda \sigma \Delta Y^{(J)}}{2 \kappa a^2 \delta_0^2} + \epsilon^{(J)} \left(\frac{\lambda\sigma}{2} S^{(J)}_{\sigma} - \frac{3}{2\kappa \delta_0} \left[S_\sigma + \partial_y \Delta^{-1} \psi \right] \right) \right]_{y = y_\sigma}.$$

Solving these equations for $A^{(J)}$ and $Y^{(J)}$ as well as Eq. (2.34) for $\hat{\psi}^{(J)}$, and using the gauge transformation Eq. (2.25) with the aid of Eq. (2.5), we obtain $\tilde{A}^{(J)}$, $\tilde{B}^{(J)}$, and $\tilde{C}^{(J)}$, which represent the metric perturbations induced on the branes.

III. GRADIENT EXPANSION

A. Green function

We can write down the formal solution of Eq. (2.40) by means of the Green function,

$$a^2 A^{(J)} = 2\kappa \sum_{\sigma = \pm} \int \frac{d^3 x}{(2\pi)^3} G_A S^{(J)}_{\sigma} + 2\epsilon^{(J)} \int \frac{d^3 x}{(2\pi)^3} \int \frac{dy - y}{y_+} dy G_A S_A,$$

where the $G_A(x, y; x', y')$ is the Green function for the TT part in the static case. The factor 2 in the second term reflects Z_2-symmetry of this brane world model. In the static case, the Green function is given by

$$G_A(x, y; x', y') = -\int \frac{d^3 k}{(2\pi)^3} e^{i k (x - x')} \left[\frac{Na(y)^2 a(y')^2}{k^2 + \epsilon^2} + \sum_i \frac{w_i(y)w_i(y')}{m_i^2 + k^2} \right],$$

where the mode function $w_i(y)$ is given by $w_i(y) \propto J_1(m_i \ell)Y_2(m_i \ell/a) - Y_1(m_i \ell)J_2(m_i \ell/a)$, and its orthonormal conditions are given by

$$\int_{y_+}^{y_-} w_i(y) dy = 0, \quad 2 \int_{y_+}^{y_-} \frac{w_i(y) w_j(y)}{a^2} dy = \delta_{ij}.$$

The normalization factor N is defined by

$$N := \left[2 \int_{y_+}^{y_-} a^2 dy \right]^{-1}.$$

The first term on the right hand side of Eq. (3.2) is the contribution from the zero mode whose 4-dimensional mass eigenvalue is zero. The second term corresponds to the propagator due to the Kaluza-Klein (KK) excitations whose ith excitation has the discrete mass eigenvalue m_{Ki}. We refer to these modes as KK modes.

As for the scalar-type perturbations, it is proved in the linear perturbation by considering the source free equation that there is no physical mode with the zero eigenvalue of the 4-dimensional D’Alembertian [7]. It means that the massless scalar-type mode disappears when the stabilization mechanism are taken into account. The explicit mode function for the lightest mass mode is found in Ref. [7].
By the zero mode truncation, in which we substitute only the first term in Eq. (3.2) into Eq. (3.1), we obtain

\[
\triangle A_0^{(J)}(r, y) = -2\kappa N \sum_{\sigma = \pm} a_\sigma^4 \left(T_\sigma^0 \frac{1}{3} T_\sigma^{(J)} \right) + 2N \epsilon^{(J)} \left[\int_{y^+}^y a^2 S_A dy - \sum_{\sigma = \pm} \sigma a_\sigma^4 S_\Sigma^\pm \right], \tag{3.5}
\]

where we did not assume any truncation for the source terms, \(S_\Sigma^\pm \) and \(S_A \). We assigned the label 0 to indicate the zero mode truncation.

To evaluate the contribution from the second term in Eq. (3.2) for the TT part of metric perturbations, we follow the strategy that is used in Ref. [7]. Rewrite the part coming from KK modes in the Green function as

\[
\int \frac{d^3 k}{(2\pi)^3} e^{i k(x-x')} \sum_i \frac{w_i w_i}{m_{k_i}^2 + k^2} = \sum_i \frac{w_i w_i}{m_{k_i}^2} \delta^3(x-x') - \sum_i \frac{w_i w_i}{m_{k_i}^2} \int \frac{dk^3}{(2\pi)^3} \frac{k^2 e^{i k(x-x')}}{m_{k_i}^2 + k^2}. \tag{3.6}
\]

Under the condition that \(k^2/m_{k_i}^2 \ll 1 \) holds, the first term on the right hand side gives a dominant contribution. One can notice that the first term is nothing but the Green function for Eq. (2.14) with setting \(\triangle = 0 \). Thus to pick up this part of the Green function is equivalent to solve the equation for \(A^{(J)} \) by setting \(\triangle = 0 \) from the beginning. Substituting \(A^{(J)} = A_0^{(J)} + A_S^{(J)} \), where \(A_0 \) is the zero mode part and \(A_S \) is the KK mode part, into Eq. (2.40) and neglecting the \(\triangle \)-term for the KK mode contribution, we obtain

\[
L^{(TT)}(a^2 A_S^{(J)}) \approx -2\kappa \sum_{\sigma = \pm} \Sigma_\sigma^{(J)} \left[Na_\sigma^2 \delta(y - y_\sigma) \right] + \epsilon^{(J)} S_A, \tag{3.7}
\]

where

\[
S_A := S_A - 2N \int_{y^+}^y a^2 S_A dy. \tag{3.8}
\]

Applying the integration operator \(\int y^- a^{-4} \int^y_y dy a^2 \), this equation is formally solved as

\[
A_S^{(J)}(r, y) = -2\kappa N \sum_{\sigma = \pm} a_\sigma^2 \Sigma_\sigma^{(J)} \left(\int_{y^-}^y dy \frac{\nu^\sigma}{a^4} - C_\sigma \right) + \epsilon^{(J)} \left[\int_{y^+}^y dy \frac{dy'}{a^4} \int_{y^+}^y dy'' a^2 S_A - D(r) \right], \tag{3.9}
\]

where \(C_+ \) and \(C_- \) are constants and \(D(r) \) is a function of \(r \), which are determined later. The function \(v_\pm(y) \) is defined by

\[
v_\pm(y) := \frac{1}{a^2} \int_{y^+}^y dy a(y')^2. \tag{3.10}
\]

From the orthogonality of Eq. (3.3), \(A_S^{(J)} \) must be orthogonal to the zero mode function. This condition fixes the constants \(C_\pm \) and the function \(D(r) \) as

\[
C_\sigma = 2N \int_{y^+}^y dy a^2 \int_{y^-}^y dy \frac{\nu^\sigma}{a^2}, \tag{3.11}
\]

\[
D(r) = 2N \int_{y^+}^y dy a^2 \int_{y^-}^y dy' \frac{dy'}{a^4} \int_{y^+}^y dy'' a^2 S_A.
\]

Integrating by parts and taking \(y = y_\pm \), (3.9) is reduced to

\[
A_S^{(J)}(r, y_\pm) = -4\kappa N^2 \sum_{\sigma = \pm} a_\sigma^2 \Sigma_\sigma^{(J)} \int_{y^+}^y dy' \frac{\nu^\sigma_\pm}{a^2} \pm 2\kappa N a_\pm^2 \Sigma_\pm \int_{y^+}^y dy' \frac{\nu^\pm}{a^2}, \tag{3.12}
\]

\[
+ 2N \epsilon^{(J)} \int_{y^+}^y dy \frac{v^\pm}{a^2} \int_{y^+}^y dy'' a^2 S_A. \tag{3.13}
\]
and we immediately obtain the spatial component \(\bar{\xi} \). It is also necessary to specify the explicit form of the radial gauge parameter at the first order, which we have neglected in the above discussion, is incorporated as the source term. For the TT part, we do not consider further iteration than Eq. (3.9). As we will see later, in the scalar-type perturbations, we need to consider one iteration of the \(\Delta \)-term to obtain results accurate to the same order.

2. Spatial component

Let us turn to the spatial components of the TT part. Since each spatial components depends on the gauge choice of \(\xi \), it is convenient to deal with the gauge invariant combination \[\bar{\xi} = \xi - \frac{1}{2} \partial_r \left[\frac{1}{2} A^{(j)} + \frac{3}{2} \psi^{(j)} + 2 H \xi^{(j)} + \epsilon^{(j)} S_B \right], \quad (y = y_{\pm}), \tag{3.14} \]
where we used Eqs. (2.5) and (2.25), and \(S_B \) is given as

\[S_B = -\frac{1}{2} \bar{\xi}^y \left(B_y + 2 \kappa \partial_y \varphi^{(1)} \right) - \frac{1}{2} \bar{\xi}^\theta \left(\theta_y + 2 \kappa \partial_y \varphi^{(1)} \right), \]

\[= \frac{1}{2} \bar{\xi}^y \left(\partial_r \bar{A}^{(j)} + \frac{3}{2} H \bar{\xi}^y \right) + \frac{3}{2} \bar{\xi}^\theta \left(\partial_r \bar{A}^{(j)} + \frac{3}{2} H \bar{\xi}^\theta \right) + \frac{1}{2} \partial_r \left[\frac{1}{a^2} (\bar{\xi}^y)^2 - (\bar{\xi}^\theta)^2 \right] + \int \frac{dr}{r} \left\{ \bar{\xi}^y \left(\bar{C} - \bar{B} \right)_{,r} + \bar{\xi}^\theta \left(\frac{1}{2} B_{,rr} - \frac{2}{a^2} B_{,rr} - \frac{1}{r^2} B_{,rr} \right) \right\}. \tag{3.15} \]

To fix the gauge degrees of freedom corresponding to the choice of the radial coordinate, we adopt the isotropic gauge that is defined by \(\bar{B} = \bar{C} \) on each brane. With this choice of the gauge, the left hand side of Eq. (3.14) becomes \(r \partial_r \bar{B} \), and we immediately obtain the spatial component \(\bar{B} = \bar{C} \) on the Gaussian normal coordinates:

\[\Delta \bar{B}^{(j)} (r, y_{\pm}) = -\frac{1}{2} \Delta \bar{A}^{(j)} \pm \frac{3}{2} \Delta Y^{(j)} + \frac{1}{2} \bar{\xi}^{(j)} \left[\frac{2}{3} \Delta S_B + 2 S_B \pm 2 H a_y S_{\xi} \right]. \tag{3.16} \]

It is also necessary to specify the explicit form of the radial gauge parameter at the first order, \(\bar{\xi}^{(1)} \), since the second order perturbations \(\bar{A}^{(2)} \) and \(\bar{B}^{(2)} \) depend on it. Substituting Eq. (2.25) into the isotropic gauge condition, \(\bar{\xi}^{(1)} \) is determined as

\[\bar{\xi}^{(1)} \left(r, y_{\pm} \right) = -\frac{r}{4} B^{(1)} (r, y_{\pm}). \tag{3.17} \]

C. Scalar-type perturbation

As mentioned earlier, there is no zero mode in the scalar-type perturbation. To evaluate the contribution from massive modes, we apply the same technique that we have used in the preceding subsection for the KK modes of the TT part. First we consider the equation for \(Y^{(j)} \) by setting \(\Delta = 0 \). The homogeneous solutions of Eq. (2.15) with \(\Delta = 0 \) are given by

\[u_{\pm} (y) = 1 - 2 H (y) v_{\pm} (y), \tag{3.18} \]

where \(v_{\pm} (y) \) is defined in Eq. (3.10). The Green function \(G_Y \), which satisfies

\[\frac{1}{a^2 \phi_0^2} \tilde{J}^{(y)} \left(\frac{G_Y}{a^2} \right) = -\delta (y - y'), \tag{3.19} \]

is constructed as

\[G_Y (y; y') = \frac{3 N a^2 (y) a^2 (y')}{\kappa} \left[u_-(y) u_+(y') \theta (y' - y) + u_-(y') u_+ (y) \theta (y - y') \right]. \tag{3.20} \]
Then using this Green function, Eq. (2.41) with setting $\triangle = 0$ is solved as

$$Y^{(j)}(r, y) = -N \sum_{\sigma = \pm} \sigma u_{\sigma}(y) \left[K_{\sigma}^{(j)} + \epsilon^{(j)} \int_{y_y}^{y} \frac{3u_{-\sigma}S_{Y}}{\kappa \phi_{0}^{2}} dy \right].$$

(3.21)

We assign the label 0 because this term gives a contribution to the metric perturbation at the same order as the zero mode in the TT part perturbations, although it is related to massive scalar-type modes.

Using Eqs. (B5) and (B15), it becomes

$$\triangle Y_{0}^{(j)}(r, y) = -\frac{\kappa N}{3} \sum_{\sigma = \pm} a_{\sigma}^{4} T_{\sigma}^{(j)} u_{\sigma}(y) - \epsilon^{(j)} S_{Y} - 2N \sum_{\sigma} \frac{\sigma u_{\sigma}(y)}{H(y_y)} \triangle L_{\sigma}^{(j)}$$

$$-2N \epsilon^{(j)} \sum_{\sigma} \sigma u_{\sigma}(y) \left[a_{\sigma}^{4} S_{\xi}^{2} + \int_{y_y}^{y} dy a^{2} v_{-\sigma} \triangle S_{\varphi} + \frac{3u_{-\sigma} a^{2} \triangle S_{Y} - a^{2} S_{Y}}{2\kappa \phi_{0}^{2}} \right],$$

(3.22)

where

$$L_{\sigma}^{(j)}(r) := H(y_y) \left[-\sigma \frac{3\lambda_{\sigma}}{2\kappa \phi_{0}^{2}} \triangle Y^{(j)} + \epsilon^{(j)} a_{\sigma}^{2} \left(\frac{\lambda_{\sigma}}{2\phi_{0}^{2}} S_{un} - \frac{3\sigma}{2\phi_{0}^{2}} \lambda_{\sigma} \varphi \right) + 3\sigma \frac{\triangle Y}{2a^{2} \phi_{0}^{2}} \right].$$

(3.23)

As we can see from the first term of Eq. (3.22), this mode of the scalar-type perturbation partly gives long-ranged contributions, as we have anticipated. We refer to this part in scalar-type perturbation as pseudo-long-ranged part to distinguish the remaining short-ranged correction. We associate the subscript S to represent the short-ranged part, although it is also used for the KK mode.

The source term for the next order correction Y_{S} is given by $\triangle Y_{0}$, which we neglected in the calculation of the pseudo-long-ranged part. Since the Green function G_{Y} is already known, we easily obtain

$$Y_{S}^{(j)}(r, y) = \frac{3N}{\kappa} \sum_{\sigma = \pm} \sigma u_{\sigma}(y) \int_{y_y}^{y} \frac{u_{-\sigma} \triangle Y_{0}^{(j)}(r, y_\pm)}{\phi_{0}^{2}} dy'.$$

(3.24)

Setting $y = y_\pm$ and using Eqs. (B3) and (B6), the expressions for Y_{0} and Y_{S} are summarized as

$$\triangle Y_{0}^{(j)}(r, y_\pm) = -\frac{\kappa N}{3} \sum_{\sigma = \pm} a_{\sigma}^{4} T_{\sigma}^{(j)} + \frac{\kappa H}{3} a_{\pm}^{2} T_{\pm}^{(j)} - \epsilon^{(j)} \left[S_{Y} + 2H a_{\pm} S_{\xi}^{2} \right] - 2N \epsilon^{(j)} \left[\sum_{\sigma = \pm} \sigma a_{\sigma}^{4} S_{\xi}^{2} \right.$$

$$+ \int_{y_y}^{y} \frac{dy}{a_{\pm}^{2} \delta \triangle S_{\varphi} + \frac{3u_{\pm} a^{2} \delta \triangle S_{Y} - a^{2} S_{Y}}{2\kappa \phi_{0}^{2}}} \right] - 2N \sum_{\sigma} \sigma u_{\sigma}(y_\pm) \frac{\triangle Y_{0}^{(j)}(r, y_\pm)}{H(y_y)} \triangle L_{\sigma}^{(j)},$$

(3.25)

$$\triangle Y_{S}^{(j)}(r, y_\pm) = \frac{3N}{\kappa} \int_{y_y}^{y} \frac{u_{\pm} \triangle Y_{0}^{(j)}(r, y_\pm)}{\phi_{0}^{2}} dy'.$$

(3.26)

D. Large coupling limit

In the preceding sections, we derived the formal solutions to evaluate the second order perturbations. However the result is very complicated. To simplify the analysis, we assume $|V''(\pm)| \gg |\phi_{0}/\phi_{0}|$, and take the limit

$$\lambda_{\pm} \rightarrow 0.$$

(3.27)

In the case of Goldberger-Wise stabilization model [12], this limit corresponds to their large coupling constant.

In this limit, the junction condition (2.37) for $J = 1$ becomes

$$\varphi^{(1)}(r, y_{\pm}) \approx \hat{\varphi}_{0}^{(1)} S_{un}^{(1)}.$$

(3.28)

Here we mention that the source term $S_{un}^{(1)}$, which is given by Eq. (2.37) contains $V''(\pm)$ and $V'''.(\pm)$. Hence $\lambda_{\pm} S_{un}^{(\pm)}$ does not vanish even in this limit, and it is reduced to
\[\frac{\lambda_{\pm}}{2} S_{\text{jun}}^{\pm} \approx (\delta \varphi^{(2)} - \dot{\phi}_0 \xi^y), \]
\[(3.29) \]

where we used Eq. (3.28). Therefore the junction condition for the scalar field in this limit is summarized as

\[\varphi^{(J)} - \delta \varphi^{(J)} \approx 0 \quad (y = y_{\pm}). \]
\[(3.30) \]

Under this condition, the last terms enclosed by the square brackets in Eqs. (2.33) and (2.35) vanishes. In particular, Eq. (3.29) gives

\[\frac{\lambda_{\pm}}{2} \dot{\varphi} S_{\text{jun}}^{\pm} = \left(\frac{\varphi_0^2}{2\phi_0^3} - \frac{3\varphi \Delta Y}{2\kappa a^2 \phi_0^3} \right)_{y = y_{\pm}}, \]

and then we obtain the approximation for (3.23)

\[L_{\pm}^{(J)} \approx 0. \]
\[(3.31) \]

IV. RECOVERY OF THE 4D EINSTEIN GRAVITY: 1ST ORDER

A. Linear perturbation

We review the results for the linear perturbations in terms of the notation of the present paper. From Eq. (3.5), the zero mode truncation of the TT part is given as

\[A_0^{(1)} = \frac{8}{3} \sum_{\sigma = \pm} \Phi_\sigma, \quad B_0^{(1)} = -\frac{8}{3} \partial_r \Delta^{-1} \sum_{\sigma = \pm} \Phi_\sigma, \]
\[(4.1) \]

where we have introduced the Newton potential by

\[\Delta \Phi_\pm(r) := 4\pi G \rho_\pm^{(1)}(r), \]
\[(4.2) \]

and \(G \) is the induced 4-dimensional Newton’s constant defined by

\[8\pi G := \kappa N. \]
\[(4.3) \]

From Eq. (3.22), the pseudo-long-ranged part in the scalar-type perturbation is obtained as

\[Y_0^{(1)} = \frac{2}{3} \sum_{\sigma = \pm} u_\sigma(y) \Phi_\sigma(r), \quad \varphi_0^{(1)} = \frac{2}{3} \phi_0 \sum_{\sigma = \pm} v_\sigma(y) \Phi_\sigma(r), \]
\[(4.4) \]

and the gauge transformation is

\[\hat{\xi}_y = \pm \frac{\Phi_\pm}{3Na_{\pm}^2}. \]
\[(4.5) \]

In this paper we concentrate on the gravity on one of the \(Z_2 \)-symmetric branes that carries matter fields on it as a source of gravitational field. We assume that the energy-momentum tensor of the matter fields on the other brane vanishes. By this simplification, the sum of \(\Phi_+ \) and \(\Phi_- \) is replaced as

\[\sum_\sigma \Phi_\sigma \rightarrow \Phi_\pm, \]
\[(4.6) \]

in each case. Here we note that, to avoid confusion in showing the formula for two different situations simultaneously, we are using a different convention for the physical length scale from that used in Ref. [7].

Substituting the above formulas into Eq. (2.25), we obtain

\[\bar{A}_{0\pm}^{(1)}(r, y_{\pm}) = 2\Phi_\pm, \]
\[(4.7) \]

where we attached a subscript \(\pm \) on the perturbation quantities to specify in which case we are working. For instance, \(A_+ \) represents the value of \(A \) when only the matter fields on the positive tension brane is taken into account. The remaining metric functions turn out to be

\[\bar{B}_{0\pm}^{(1)} = \bar{C}_{0\pm}^{(1)} = -2\Phi_\pm, \]
\[(4.8) \]

in the isotropic gauge (3.17). These results coincide with the results for the 4-dimensional Einstein gravity.
To obtain an approximate estimate for the corrections due to the KK mode or the short-ranged part of the scalar-
type perturbations, it is useful to consider the cases in which the back reaction of the bulk scalar field to the background
graphy is weak. Namely,

\[
\frac{|\dot{H}|}{H^2} = \frac{\kappa_0^2}{3H^2},
\]

is not as large as unity. In the weak back reaction, the metric is approximately given by the pure anti-de Sitter form

\[
a(y) \approx e^{-y/\ell},
\]

and we set

\[
y_+ = 0, \quad y_- = d.
\]

Here ℓ is the curvature radius of AdS$_5$.

If we substitute this warp factor, Eqs (3.10) and (3.18) are approximated as

\[
u_\pm(y) \approx a_\pm^2 \pm \frac{a_\pm^2}{a_\pm^2 - 1},
\]

Here one remark is in order. The above expression for u_+ is not a good approximation near the positive tension brane
because $u_+(y_+)$ depends on the difference between N defined in (3.4) and H at $y = y_+$. The value of N in the weak
back reaction limit is $H(a_+^2 - a_-^2)^{-1}$, and the difference between H and N is hierarchically suppressed. However,
unless we consider an extreme case, the deviation of the value of N from this limiting value is not hierarchically small.
As a result, we have

\[
u_+(y_+) = O(1),
\]

instead of $O(a_\pm^2)$. This also means that the y-dependences of $Y_{0_+}^{(1)}$ and $Y_{0_-}^{(1)}$ are different. If the single mode with
the lowest mass eigenvalue dominates the scalar-type perturbation, the y-dependence must be same for both cases.
Therefore, we find that the modes with higher mass eigenvalues also contribute to the behavior of $Y_{0_+}^{(1)}$ near the
positive tension brane.

Let us consider the KK mode contribution (3.9) in the linear perturbation. A straightforward calculation shows [7]

\[
A_{S_\pm}^{(1)}(r, y) \approx -\frac{\ell^2 \Delta \Phi_\pm}{3} \left[a_\pm^2 - \frac{2}{a_\pm^2} + \left(1 - \frac{1}{a_\pm^2} \right) \right],
\]

where we have assumed $d/\ell \gg 1$. Hence, on the brane where the matter fields reside, it becomes

\[
A_{S_+}^{(1)}(r, y_+) \approx \frac{\ell^2 (3 - 4d/\ell)}{3a_+^2} \Delta \Phi_+,
\]

\[
A_{S_-}^{(1)}(r, y_-) \approx -\frac{\ell^2}{3a_-^2} \Delta \Phi_-.
\]

To compare the KK mode contribution with the zero mode one, we evaluate the ratio between them. Then we find
that the KK mode contribution is suppressed by the factor

\[
\beta_\pm := \frac{\ell^2}{a_\pm^2 r_\pm^2} = \begin{cases} \frac{\ell^2}{r_\pm^2}, & (y = y_+), \\ \left(\frac{0.1mm}{r_*} \right)^2 \left(\frac{10^{-16}}{a_-} \right)^4 \left(\frac{\ell}{\ell_{Pl}} \right)^2, & (y = y_-), \end{cases}
\]

where we introduced a typical length scale r_*, and performed a replacement like $\Delta \approx r_*^{-2}$.

On the positive tension brane the KK mode contribution is suppressed at $r_\ast \gg \ell$ at the linear order. Note that if
one takes the limit $d/\ell \to \infty$, the KK mode (4.14) seems to diverge. In this limit the lowest KK mode mass goes to
zero, and the mass spectrum becomes continuous. Then, our expansion scheme which we call gradient expansion, is
no more a good approximation. Hence, this divergence in large d limit is just due to the breakdown of our expansion scheme.

On the negative tension brane the KK mode becomes dominant only at the length scale $\lesssim 0.1\,\text{mm}$ when the AdS curvature length ℓ and the hierarchy a_+/a_- is set to the Planck length ℓ_{Pl} and 10^{16}, respectively. One may think that the deviation from the 4-dimensional Einstein gravity at sub-millimeter scale provides an observable effect. However, in the KK mode contribution to the gravitational potential, Φ_\pm appears only in the form of $(4\pi G)^{-1}\Delta \Phi_\pm$, which is equal to the matter energy density ρ_\pm. Hence, the KK mode does not contribute to the force outside the matter distribution. Therefore, this effect seems to be hard to observe.

Next, we consider the short-ranged part of the scalar-type perturbation. The short-ranged part (3.24) in the weak back reaction limit is evaluated as

$$Y_S^{(1)}(r, y) \approx 3N a_+^2 a_-^2 \Delta Y_0^{(1)} \int_{y_+}^{y_-} \frac{dy}{a^4 r_0^2} \approx \frac{1}{a_- m_S^2} \Delta Y_0(r, y),$$

where $a^2 Y_0^{(1)} \approx \text{const.}$ is used (Appendix B3). Here we introduced the lowest mass eigenvalue in the scalar-type perturbation $m_S := a_- m_S$ whose order of magnitude is determined by the last equality [7]. We refer to m_S as the radion mass. The reason why m_S defined above gives the lowest mass eigenvalue can be understood as follows. Suppose the mode with the lowest mass squared dominates perturbations in the long wavelength limit. Then the propagator for the scalar perturbation should be proportional to $1/(\Delta - m_S^2)$. In our approximation of gradient expansion, this massive propagator is expanded as $(1/m_S^2) + (\Delta/m_S^2) + \cdots$. The first term gives $Y_0^{(1)}$ while the second $Y_S^{(1)}$. Hence, the ratio between them is Δ/m_S^2. However, again this simple-minded estimate is not correct for $Y_S^{(1)}$ near the positive tension brane for the same reason why the approximate expression for u_+ (4.11) is not valid near the positive tension brane. In fact, the value of $Y_S^{(1)}$ on the brane can be evaluated by using Eq. (3.26). Substituting the estimate given in Eqs. (B21), we obtain $Y_S^{(1)}(r, y) \approx \Delta Y_0^{(1)}/m_S^2$. Taking this into account, we guess that the formula (4.16) is modified as

$$Y_S^{(1)}(r, y) \approx \frac{1}{m_S^2 a_+^2 a_-^2} \Delta \Phi_\pm(r).$$

We give a justification of this formula in Appendix B3. Then, the ratio $Y_S^{(1)}(r, y_\pm)/A_0^{(1)}(r, y_\pm)$, where we compare the short-ranged part to the Newtonian potential, is

$$\gamma_\pm := \frac{1}{a_+^2 m_S^2 r_+^2} = \beta_\pm \left(\frac{1}{m_S^2}\right)^2.$$

When the radius stabilization mechanism proposed by Goldberger and Wise most efficiently works, the mass m_S becomes $O(\ell^{-1})$ [7,12]. In this case the short-ranged part of the scalar-type perturbation is suppressed for the same reason as the KK mode. We have shown that the zero mode and pseudo-long-ranged part reproduce the correct 4-dimensional Einstein gravity. The remaining KK mode and the short-ranged part accompany an extra suppression factors β_\pm and γ_\pm, respectively.

V. RECOVERY OF THE 4D EINSTEIN GRAVITY: 2ND ORDER

We discuss the second order perturbations in the large coupling limit discussed in §III.D. As in the case for the first order perturbation, we iteratively solve the equations of motion by using gradient expansion. In the equations we derive below, we neglect the terms that are relatively suppressed by the factor of $1/r_+^4$ compared to the leading contribution. For convenience, we quote the contribution from the 0-type coupling, which is obtained by substituting Eqs. (2.12), (2.23), (2.34), (3.5) and (3.25) into Eq. (2.25).

$$\Delta A_{0\pm}^{(2)}(r, y_\pm) = 8\pi G\phi_{\pm}^{(2)} + 3P_{\pm}^{(2)} - \Delta \left[\xi_{y_\pm} A_{\pm, y} + \xi_{y_\pm} A_{\pm, r} + \dot{H}(\xi_{y_\pm})\right] \pm 2Na_{\pm}^4(S_{\xi}^{\pm} - S_{\xi})$$

$$+ 2N \int_{y_+}^{y_-} dy \left\{a^2(S_{A\pm} - S_{\psi}) + a^2 v_{\pm} \Delta S_{\varphi_\pm} + \frac{3a_{\pm}^4}{2a_0^2} \Delta S_{Y_{\pm}} \right\}.$$

Here we have used the fact that S_{ξ}^{\pm} and S_{ξ} on the brane without matter distribution vanish, which is easily verified just by noticing that $\xi_{y_\pm}^{(1)} = 0$ and $A_{\pm, y}^{(1)}(y_\pm) = 0$. The contribution from the S-type coupling is
\[\Delta \bar{A}_{s\pm}^{(2)}(r, y_{\pm}) = \Delta \left[A_{s\pm}^{(2)}(r, y_{\pm}) - Y_{s\pm}^{(2)}(r, y_{\pm}) \right], \]
(5.2)

with \(A_{s\pm}^{(2)}(r, y_{\pm}) \) given by (3.13), and \(Y_{s\pm}^{(2)}(r, y_{\pm}) \) by (3.26). Once we know \(\bar{A}^{(2)} \) and \(Y_{s}^{(2)} \), the spatial component of metric perturbations \(\bar{B}_{s}^{(2)} \) is obtained from Eqs. (3.16), (3.25) and (3.26) as

\[\Delta \bar{B}_{s\pm}^{(2)}(r, y_{\pm}) = -\frac{1}{2} \Delta \bar{A}_{s\pm}^{(2)} + 4\pi G_{\pm} a_{\pm}^{2} \tau _{s\pm}^{(2)} - \Delta S_{B\pm} \\
+3N \left[\pm a_{\pm}^{4} S_{s\pm}^{(2)} + \int y_{\pm}^{(2)} dy \left(a^{2} v_{\pm} \Delta S_{\psi \pm} + \frac{3a_{\pm}}{2\phi_{0}^{2}} \Delta S_{\psi} - a^{2} S_{\psi \pm} \right) \right] - \frac{3}{2} \Delta Y_{s\pm}^{(2)}. \]
(5.3)

To identify the order of magnitude of various terms in the second order perturbations, we have to keep track of the powers of both \(r_{\star} \) and \(a_{-} \). Terms with additional inverse power of \(r_{\star} \) are basically suppressed for long wavelength perturbations. However, as we have seen for the KK mode and the short-ranged part in the analysis of the linear perturbations, a complication arises due to the existence of a large non-dimensional hierarchy factor, \(1/a_{-} \). Here we continue to use the convention \(a_{+} = 1 \). The dependencies of perturbation variables on the warp factor and on \(r_{\star} \) are summarized as

\[A_{0\pm}^{(1)} \sim a_{0}^{0}, \quad Y_{0\pm}^{(1)} \sim \frac{a_{0}^{2}}{a_{\pm}^{2}} + 1, \quad \dot{\xi}_{\pm}^{y} \sim \frac{1}{a_{\pm}^{2}}, \]
(5.4)

and

\[A_{s+}^{(1)} \sim \frac{1}{a_{s+}^{2} r_{\star}^{2}}, \quad A_{s-}^{(1)} \sim \frac{1}{a_{s-}^{2} y_{\star}^{2}}, \quad Y_{s+}^{(1)} \sim \frac{1}{a_{s+}^{2} a^{2} y_{\star}^{2}}, \quad Y_{s-}^{(1)} \sim \frac{1}{a_{s-}^{2} a^{2} y_{\star}^{2}}. \]
(5.5)

In the following subsection, we first evaluate the terms from the 0-type coupling, classifying them into three parts; the part to recover the 4-dimensional Einstein gravity, the manifestly suppressed corrections and the unsuppressed corrections. The unsuppressed correction is later shown to be canceled by the contribution from the terms of \(S \)-type. We stress that the weak back reaction is assumed only when we roughly estimate the dependence on \(r_{\star} \) and \(a_{-} \).

A. \(\bar{A}_{0} \)

Let us consider \(\bar{A}_{0} \) given in Eq. (5.1). From Eqs. (2.33) and (2.35) with the large coupling limit (3.30), \((S_{\xi}^{\pm} - S_{\zeta}^{\pm}) \) becomes

\[a_{\pm}^{4} (S_{\xi}^{\pm} - S_{\zeta}^{\pm}) = a_{\pm}^{4} \left(3a_{\pm}^{2} \int dB_{y} Y_{y} - 3 \int dB_{y} \Delta Y + a_{\pm}^{2} A_{y}(Y - 4H \hat{\xi}_{y} + \hat{\xi}_{y} \Delta Y - 2H (\hat{\xi}_{y}^{r})^{2} \right) \]

\[+a_{\pm}^{2} \left[2\hat{\xi}_{y} \partial_{r} - \Delta \hat{\xi}_{y} \right] Y_{y}^{r} + B \Delta \hat{\xi}_{y}^{y} - \hat{\xi}_{y} \Delta A + \hat{\xi}_{y}^{y}(B - A) + \hat{\xi}_{y}^{y}(a_{+}^{2} A_{y} + \Delta \hat{\xi}_{y}) \right] \]

\[-a_{\pm}^{2} \left(2B_{y} A_{y} + \frac{r}{4} B_{y} y(B + 3A), r \right) dr. \]

As for \(S_{\varphi} \), the last two terms in Eq. (2.18) is rewritten as

\[(a^{2} v_{\pm}) \left(HY^{2} - \frac{\kappa}{3} \partial_{y} (\varphi)^{2} \right) = \partial_{y} \left[\frac{a^{2}}{2 \phi_{0}^{2}} \varphi Y - \frac{\kappa a^{2}}{3} \varphi^{2} v_{\pm} \right] + \frac{3Y_{y} \Delta Y}{4r_{\star}^{2}} - \frac{1}{a^{2}} a^{2} Y_{y}^{2}. \]

The expression (5.1) starts with the terms of \(\mathcal{O}(1/r_{\star}^{2}) \), hence we start our discussion with these leading order terms. Here, to understand the absence of the terms of \(\mathcal{O}(r_{\star}^{0}) \), we need to notice that \(\partial_{y} A^{(1)} \) and \(\partial_{y} B^{(1)} \) do not have contribution from the zero mode, and hence they are \(\mathcal{O}(1/r_{\star}^{2}) \). Let us identify the dependence on hierarchy \(a_{-} \) of each term, concentrating on the case that the matter fields are on the negative tension brane. For this purpose, we can use Eq. (5.4). As for \(\partial_{y} A^{(1)} \) and \(\partial_{y} B^{(1)} \), we use Eq. (5.5) instead because the zero mode contribution exactly vanishes. The terms in the second line of Eq. (5.1) possess \(y \)-integration. This integration is basically dominated by the contribution from the neighborhood of the negative tension brane. One exception is the case in which the integrand has the quadratic form of the zero mode contribution of the TT variables \((A_{0} + B_{0} \text{ multiplied by } a^{2} \text{ like } a^{2} A_{0} \times A_{0}) \). This integration does not have inverse power of \(a_{-} \). The other is the case in which the integrand
contains the factor of $u_- / \kappa \delta_0^2$. The formulas for this case are summarized in Eqs. (B21) and we find that only the terms with the integrand proportional to $u_0^3 / \kappa \delta_0^2$ give the correction which behaves as $1 / a_-^6$. The other terms are at most $O(1 / a_-^4)$. Hence, we can pick up the terms with a large power of $1 / a_-$ just by looking at the behavior of the integrand near the negative tension brane. Then, we find that, among the terms of $O(1 / r_+^2)$, the terms associated with single underline or with double underlines behave as $1 / a_-^4$ or $1 / a_-^6$. Since the usual post-Newtonian correction in the 4-dimensional Einstein gravity is of $O(a_-^4 / r_+^2)$, we expect that the terms with underlines cancel with each other, and we show that, in fact, this is the case. The terms with a single underline completely cancel with each other. For example, the term $a_-^2 H^r_\nu$ in S_Y is canceled with the last term of Eq. (5.7). Here, it is worth mentioning that the cancellation occurs separately within the terms of different types: the terms quadratic in the TT variables, those bi-linear in the TT variables and the scalar-type variable (Y, φ and ξ^ν), and those quadratic in the scalar-type variables. The terms with double underlines do not vanish completely, but they are, in total, combined to terms of $O(a_-^4 / r_+^2)$ with the aid of Eqs. (B12) and (B13) when we consider the long-ranged part. The contributions from the short-ranged part cannot be combined to reduce the power of the warp factor, but they are at most $O(\ell^2 / a_-^4 r_+^2)$. After a straightforward calculation, the remaining terms give the usual post-Newtonian term in the 4-dimensional Einstein gravity (Appendix C). This result also applies for the case that the matter field is on the positive tension brane because any term of $O(1 / r_+^2)$ irrespective of the power of a_- was not discarded in the above computation. Namely, we obtain in the isotropic gauge (3.17)

$$\nabla A^{(2)}_{0\pm}(r, y_\pm) = 8\pi G(R^{(2)}_\pm + 3P^{(2)}_\pm) - 4\Phi_\pm \Delta \Phi_\pm + O\left(\frac{\ell^2}{r_+^2}\right).$$ (5.8)

Next, we consider the terms of $O(1 / r_+^4)$. Again, we begin with considering the case that the matter fields are on the negative tension brane. As we have done for the terms of $O(1 / r_+^2)$, we can identify the dependence on hierarchy a_- of these terms using the estimates (5.4), (5.5) and (B21). Then, the terms with the highest inverse power of a_- start with $1 / a_-^2$, which we refer to as F-terms. They are given by

$$F_\pm := -\nabla (\xi_\pm^y \Delta A_\pm) + F_{3, y} S_Y \pm,$nabla \left(\frac{3}{2\kappa^2} \right) \left[\left(2k \phi \Delta_\varphi \right) - 3 Y_{-\nu} \Delta Y_{\nu} \right] + Y(\Delta Y)_{-\nu} + 2a^4 B_{S,Y} \left(\frac{Y_{-\nu}}{a^4} \right) - a^2 v_{-\nu} B_{S,Y},$$ (5.9)

where we have taken into account Eqs. (B12) and (B13). The first term in the curly brackets in $F_{3, y} S_Y \pm$ comes from S_Y and the second term from S_{ϕ}. The remaining terms are at most $O(\ell^2 / a_-^4 r_+^2)$. The relative amplitude of these remaining terms compared to the ordinary post-Newtonian corrections is $O(\beta_- / a_-^2)$ or $O(\gamma_- / a_-^2)$. Therefore, only the F-terms have a possibility to introduce a non-negligible correction. However, we will show in the succeeding subsection that the contribution from the F-terms is also completely canceled by that from the couplings of the S-type.

Now we consider the case that the matter fields are on the positive tension brane. In counting the order of each term with respect to a_-, we will notice that the inverse power of a_- can appear only from the contribution near the negative tension brane. Furthermore, from the estimates (5.4) and (5.5), we find that the variables at the first order perturbation are at most of $O(1 / a_-^2)$, and such enhanced variables are associated with the factor $1 / r_+^2$. With this notion and the estimate (B21), it will be easy to verify that all the terms quartic in $1 / r_+$ in $\nabla A^{(2)}_0$ are, at most, $O(\ell^2 / a_-^2 r_+^2)$. Namely, they are suppressed compared to the ordinary post-Newtonian corrections by the factor of $O(\beta_+/a_-^2)$ or $O(\gamma_+/a_-^2)$. The suppression factors that we encounter at the second order are not as small as those in the linear perturbation, β_+ and γ_+. These are natural consequence of our approximation of gradient expansion. Near the negative tension brane, the conditions that the scale of spatial gradient is larger than the typical length scales ℓ and m_ϕ^2, respectively, become $(\beta_+/a_-^2) = (\ell^2 / a_-^2 r_+^2) \ll 1$ and $(\gamma_+/a_-^2) = (1 / m_\phi^2 a_-^2 r_+^2) \ll 1$. Although the correction seems to become large when we consider the case with large $1 / a_-$, we think that this is an artifact due to the limitation of the present approximation. When we do not have a bulk scalar field, it is proved that the correction to the 4-dimensional Einstein gravity in the $(1 / a_-) \rightarrow \infty$ limit stays small [6].

B. A_S and Y_S

In this subsection, we discuss the terms $A_S^{(2)}$ and $Y_S^{(2)}$. The contribution of these terms completely cancels the correction due to the F-terms.

From Eq. (3.9), we obtain
\[A^{(2)}_{S_{\pm}}(r, y_{\pm}) = 4N^2 a_{\pm}^4 \left[\frac{\kappa}{2} \left(P_{\pm}^{(2)} + \frac{2}{3} \rho_{\pm}^{(2)} \right) \right] \int_{y_{\pm}}^{y_{\pm}'} v_{\pm}^2 dy' \]
\[+ 2N \int_{y_{\pm}}^{y_{\pm}'} dy \frac{v_{\pm}^2}{a_{\pm}^3} \int_{y_{\pm}}^{y_{\pm}''} dy'' a^2 S_{A_{\pm}} - (2N)^2 \left(\int_{y_{\pm}}^{y_{\pm}'} v_{\pm}^2 dy \right) \int_{y_{\pm}}^{y_{\pm}'} a^2 S_{A_{\pm}} dy, \]
(5.10)
where we have performed an integration by parts by using Eqs. (B1), and also we have used again the fact that \(S_{E} \) on the vacant brane is zero as well as Eqs. (B2) and (B3).

First, we concentrate on the case with the matter fields on the negative tension brane. The first term in the square brackets is suppressed by a factor of \(\ell^2/r_0^2 \) compared with the first term on the right hand side in Eq. (5.8), and hence can be neglected. The other terms in \(\Delta A^{(2)}_{S_{\pm}} \) are quartic in \(1/r_* \) or smaller. Hence, we have only to study the terms that give a correction of \(O(\ell^2/a_0^4 r_0^4) \). Neglecting the terms higher order in \(1/r_* \), the contribution from \(S_{E} \) becomes

\[-4N^2 a_{\pm}^4 \left(\int v^2 dy \right) \left(- \int B_{-y} Y_{-y} dr - 3Y_{-y} + \frac{2}{a_{\pm}^2} \int \frac{1}{r} Y_{-r} \hat{v}_{-r} dr \right) + O\left(\ell^2/a_0^4 r_0^4 \right) \]
(5.11)
where we dropped the terms proportional to \(Y + 2H \hat{\xi}^{(y)}_y \) because Eq. (B13) shows that this combination becomes higher order in \(1/a_{-} \). As for the terms containing \(S_A \) in Eq. (5.10), the contribution of \(O(\ell^2/a_0^4 r_0^4) \) comes from the terms with underline in (2.19). For these terms, the integral of \(a^2 S_{A_{-}} \) can be performed explicitly as

\[\int_{y_{\pm}}^{y_{\pm}'} a^2 S_{A_{-}} dy = a_{\pm}^2 \left(3a^2 Y_{-y} - 2 \int \frac{dr}{r} \phi_{-r} \right). \]
(5.12)
Here, note that the contribution from the boundary at \(y = y_{+} \) vanishes. Using this equation (5.12), we find that the last term in Eq. (5.10) cancels the leading order contribution from \(S_{E} \) of Eq. (5.11). Then, the remaining parts in Eq. (5.10) give

\[\Delta A^{(2)}_{S_{-}}(r, y_{-}) = 2N \Delta \int_{y_{+}}^{y_{-}} dy v_{-} \left(3a^2 Y_{-y} + \int dr a^2 B_{-y} - 2 \int \frac{dr}{r} \phi_{-r} \right) + O\left(\ell^2/a_0^4 r_0^4 \right). \]
(5.13)

The other correction that we have not considered yet comes from \(Y^{(2)}_{S_{-}} \). To evaluate the expression presented in Eq. (3.26), first we need to evaluate \(\Delta Y_{0} \) given in Eq. (3.22). Only the leading terms of \(O(1/a_0^4 r_0^4) \) in \(\Delta Y_{0} \) are relevant, and they are evaluated as

\[-\Delta Y_{0}^{(2)}(r, y) \approx \int dr \left[\frac{3}{2r^{s/3}} \partial_r \left(r^{s/3} \{ (Y_{-r})^2 + \frac{2\kappa}{3} (\varphi_{-r})^2 \} \right) \right] - 3a^2 B_{-y} Y_{-y}, \]

\[+ 2N a_{0}^2 \sum_{\sigma} \sigma u_{\sigma}(y) \left[\frac{\kappa}{2} \partial_{r} \left(Y_{-r} \varphi_{-r} \right) - \frac{\kappa}{3} u_{\sigma} \right], \]
\[+ \int dr \left(2a^2 Y_{-r} B_{-y} - \frac{3}{2} \varphi_{-r} \right). \]
(5.14)
Note that the terms from \(S_{E} \) in Eq. (3.22) cancel the terms obtained by setting \(y = y_{\sigma} \) after the \(y \)-integration in Eq. (3.22). Substituting (5.14) into (3.26), we obtain

\[-\Delta Y_{S_{-}}^{(2)}(r, y_{-}) = 3N \Delta \left\{ \int_{y_{+}}^{y_{-}} dy \right. \frac{u_{-}}{\kappa \phi_{0}^2} \left[(3Y_{-y} \Delta Y_{-} - \frac{2\kappa}{3} \varphi_{-r} \Delta \varphi_{-}) + \frac{4\kappa}{3r} (\varphi_{-r})^2 - 2a^4 B_{-y} \left(\frac{Y_{-r}}{a^2} \right)_{y} \right. \]

\[+ \left. \int_{y_{+}}^{y_{-}} dy \frac{u_{-}}{\kappa \phi_{0}^2} \left(Y_{-y} \Delta Y_{-} + H_{\phi} \left(\varphi_{-} (\Delta Y_{-})_{y} + Y_{-} (\Delta \varphi_{-})_{y} \right) - \frac{2}{r} Y_{-y} \left(Y_{-r} + \frac{2H \varphi_{-r}}{\phi_{0}} \right) \right) \right\} + O\left(\ell^2/a_0^4 r_0^4 \right). \]
(5.15)
From Eq. (B12) the terms inside the second integral turn out to be \(O(\ell^2/a_0^4 r_0^4) \).

Combining (5.9), (5.13) and (5.15), we obtain
\[F_+ + \Delta (A^{(2)}_+ - Y^{(2)}_+) = \Delta \left\{ -\dot{\xi}^y A_{-y} + 4N \int dy \left[u_- \int \frac{dr}{r} \frac{(\varphi_-)_r^2}{\phi_0^2} + v_- \left(\frac{3}{2} a^2 Y_{-y} - \int \frac{dr}{r} Y_{-r} \frac{\varphi_-}{\phi_0} \right) \right] \right\} + \mathcal{O}\left(\frac{\ell^2}{a^4 r^2_+} \right). \] (5.16)

After writing the above expression in terms of \(u_- \) and \(v_- \), we can perform the integration with respect to \(y \) by using Eq. (B1). Then, with the aid of Eq. (B3), we find that they reduce to the terms higher order in \(1/r^2_+ \) or those of \(\mathcal{O}(\ell^2/a^4 r^2_+) \). Hence, our conclusion is

\[F_+ + \Delta (A^{(2)}_+ - Y^{(2)}_+) = \mathcal{O}\left(\frac{\ell^2}{a^4 r^2_+} \right). \] (5.17)

The weak back reaction was assumed only for evaluating the order of the residual terms.

In the case with the matter fields on the positive tension brane, the corrections both from \(A^{(2)}_+ \) and from \(Y^{(2)}_+ \) are suppressed by either \((\beta_+/a^2_+)\) or \((\gamma_+/a^2_+)\) for the same reason as before.

C. Spatial components of TT part

Now the evaluation of \(\bar{B}^{(2)} \) in the isotropic gauge is straightforward. Substituting the first order quantities and the result of \(\bar{A}^{(2)} \) into Eq. (5.3), we basically obtain

\[\nabla \bar{B}^{(2)}(r, y_\pm) = -8\pi G \rho^{(2)} \pm 4 \Phi_{\pm} \nabla \Phi_{\pm} - \left(\Phi_{\pm, r} \right)^2 + \cdots, \] (5.18)

which is identical to the result for the 4-dimensional Einstein gravity in the isotropic coordinates except for the residual denoted by \((\cdots)\) [34].

In the case with the matter field on the negative tension brane, these residual terms are

\[F_{S_+} = \frac{3}{2} \left(F_{S_+ S_y} - \Delta Y^{(2)}_+ \right) + \mathcal{O}\left(\frac{\ell^2}{a^4 r^2_+} \right), \] (5.19)

where we introduced

\[F_{S_\pm} = \frac{1}{9 N^2 a_\pm^4} \Delta \left[\int \frac{dr}{r} (\Phi_{\pm, r})^2 \right]. \] (5.20)

In the same way as for \(\bar{A}^{(2)} \), cancellation occurs for the leading order in \(1/a_- \) as

\[\text{Eq. (5.19)} = \Delta \left\{ F_{S_-} + 3N \int_{y_+}^{y_-} dy dr \left[\frac{2 u_- (\varphi_-)_r^2}{\phi_0^2} - a^2 v_- B_{-y} Y_{-r} \right] \right\} + \mathcal{O}\left(\frac{\ell^2}{a^4 r^2_+} \right), \] (5.21)

In the case with the matter fields on the positive tension brane, the residual terms represented by \((\cdots)\) in Eq. (5.18) are, at most, \(\mathcal{O}(\ell^2/a^2_+ r^2_+) \) as before. To conclude, the 4-dimensional Einstein gravity is approximately recovered under the assumption of the large coupling limit. The corrections to the 4-dimensional Einstein gravity are suppressed by the factor of \(\mathcal{O}(\beta_+/a^2_+) \) or \(\mathcal{O}(\gamma_+/a^2_+) \).

VI. SUMMARY

In this paper, we have considered the second order gravitational perturbations in the RS two branes model with the radius stabilization mechanism. As a model for the radius stabilization, we have assumed a scalar field that has the potential in the bulk and the potential on the brane. From the 5-dimensional Einstein equations, the master equations for the TT part of the metric perturbations and for the scalar-type perturbation are derived assuming static axisymmetric configurations. We have presented formal solutions of these equations by means of the Green function. We have shown a iterative scheme to obtain approximate solutions by applying the derivative expansion method for
The correction in the second order perturbation is \(O)\) is the ratio between the warp factors on the positive and negative tension branes. When this ratio \((a_+/a_-) \) is \(O(10^{16}) \), the hierarchy between Planck and electro-weak scales can be explained. With this choice of the hierarchy, the correction to the metric in the linear perturbation appears at the relative order of \(H \). Hence, the effect due to this correction is almost impossible to detect.

When we consider the case in which the matter fields are on the positive tension brane, the correction to the 4-dimensional Einstein gravity appears at the relative order of \(O((\ell/r_*)^2) \). While the correction in the second order perturbation is \(O((a_+/a_-)^2(\ell/r_*)^2) \) compared to the usual post-Newtonian terms. Hence, it seems that the deviation from the 4-dimensional Einstein gravity appears at a larger scale in the second order perturbation. However, this is likely to be an artifact due to the limitation of our approximation scheme.

To give a complete proof of the recovery of the 4-dimensional Einstein gravity, further extension of the present analysis will be necessary. Here we considered the large coupling limit. It will be interesting to evaluate the correction depending on the coupling strength. Furthermore, to take into account the contributions from the matter fields on the other brane will be interesting. To investigate these issues, the formulation along the line of this paper will be promising. Through this second order calculation, we have encountered many miraculous cancellations. This might be due to our possibly bad choice of gauge. We would like to defer to pursue a more simplified derivation in our future publication, in which we will discuss the unsolved issues mentioned above.

Acknowledgments

We would like to thank Takashi Nakamura and Hideo Kodama for informative comments. T.T. would like to thank IFAE, where this work was partly done, for cordial hospitality. This work is supported by the Monbukagakusho Grant-in-Aid No. 1270154 and the Yamada Foundation.

APPENDIX A: 4D EINSTEIN GRAVITY

We have used the isotropic gauge (3.17) to fix the radial gauge coordinates because it is easy to compare with the 4-dimensional Einstein gravity. However the calculation of the second order perturbation becomes slightly easier by taking \(\xi^r = 0 \), although we do not know previously the corresponding 4-dimensional Einstein gravity. In this Appendix we derive the expression for the result of the metric perturbations in the 4-dimensional Einstein gravity in an arbitrary choice of the radial gauge, which corresponds to the various choice of \(\xi^r \) in Eq. (2.25).

In general, the radial gauge transformation from the isotropic gauge \(A_{IS} \) to an arbitrary gauge \(A_{\xi^r} \) is given by

\[
A_{\xi^r}^{(2)} = A_{IS}^{(2)} - \xi^r A_{IS,r}^{(1)},
\]

where the generator \(\xi^r \) is related to the quantities at the first order perturbation by the gauge transformation law,

\[
A_{\xi^r}^{(1)} - B_{\xi^r}^{(1)} = A_{IS}^{(1)} - B_{IS}^{(1)} + 2\xi^r r_0^2 + 2\xi^r r_0^2.
\]

On the other hand, these bared quantities are also related to the quantities in “Newton gauge” as

\[
A_{\xi^r}^{(1)} - B_{\xi^r}^{(1)} - 2\xi^r r_0 = A^{(1)} - B^{(1)} = A_{IS}^{(1)} - B_{IS}^{(1)} - 2\xi^r r_0^2,
\]

where \(\xi^r_{IS} \) is defined by Eq. (3.17). Therefore, we find that \(\xi^r \) is simply given by \(\xi^r = \xi^r - \xi^r_{IS} \). Substituting this relation into Eq. (A1), we obtain
\[\tilde{A}^{(2)}_\xi = \tilde{A}^{(2)}_{1S} + \tilde{A}^{(1)}_{1S,r}(\xi^{1S} - \xi^r). \]

By this equation, the metric perturbation of the 4-dimensional Einstein gravity in an arbitrary gauge \(\xi^r \) is determined.

APPENDIX B: USEFUL FORMULAE

In the calculation of the second order perturbations, we often use some relations and results, which are easily derived from the original definitions and equations, but we have not derived explicitly. It is convenient to summarize such results, and so we devote this Appendix to give the useful relations and formulæ.

1. \(u_\pm \) and \(v_\pm \)

We gives some properties of the functions \(u_\pm \) and \(v_\pm \) which are defined by Eqs. (3.10) and (3.18). Differentiations of these functions with respect to \(y \) are

\[\partial_y (a^2 u_\pm) = -2a^2 \dot{H} v_\pm, \quad \partial_y (a^2 v_\pm) = a^2, \quad \partial_y v_\pm = u_\pm. \]

The last equation is particularly useful to integrate \(S_\varphi \) and \(S_Y \) with respect to \(y \). From the definition, \(v_+ \) and \(v_- \) are related as

\[v_- - v_+ = \frac{1}{2Na^2}. \]

On the branes \(u_\pm \) and \(v_\pm \) becomes

\[u_\pm (y_\pm) = 1 \pm \frac{H(y_\pm)}{a^2 N}, \quad u_\pm (y_\mp) = 1, \]

\[v_\pm (y_\pm) = \mp \frac{1}{2a^2 N}, \quad v_\pm (y_\mp) = 0. \]

From Eqs. (B1) and (B3), we obtain

\[\int_{y_+}^{y_-} dy \ u_\pm v_\pm^2 = \frac{1}{24N^3 a^6}. \]

Sums of + and − modes are

\[\sum_{\sigma} \sigma u_\sigma(y) = \frac{H}{Na^2}, \quad \sum_{\sigma} \sigma v_\sigma(y) = -\frac{1}{2Na^2}, \]

\[\sum_{\sigma} \sigma u_\sigma(y) u_{-\sigma}(y) = 0, \quad \sum_{\sigma} \sigma u_\sigma(y) v_{-\sigma}(y) = \frac{1}{2Na^2}, \]

and also

\[\sum_{\sigma = \pm} u_\sigma(y_\pm)f(y_\sigma) = \pm \frac{H}{a^2 N} f(y_\pm) + \sum_{\sigma = \mp} f(y_\sigma), \]

\[N \sum_{\sigma = \pm} \sigma a^2 u_\sigma(y_\pm)f(y_\sigma) = H(y_\pm)f(y_\pm) + N \sum_{\sigma = \pm} \sigma a^2 f(y_\sigma), \]

\[\sum_{\sigma} \sigma v_\pm(y_\sigma) f(y_\sigma) = -\frac{a^2 N}{2Na^2}, \]

\[u_\pm(y_\sigma) = u_{\sigma}(y_\pm). \]

19
2. Equations

From Eqs. (2.14) and (2.25) the derivatives of $\bar{A}^{(1)}$ with respect to y are

\[
\bar{A}^{(1)}_{,y}(r, y) = A_{,y} - \frac{2\kappa}{3} \phi_0 (\varphi^{(1)} - \dot{\phi}_0 \xi^y),
\]

(B7)

\[
\bar{A}_{yy}^{(1)}(r, y) = \frac{\Delta}{a^2} (Y - A) - 4HA_{,y} - \frac{4\kappa}{3} \phi_0 (\varphi^{(1)} - \dot{\phi}_0 \xi^y),
\]

(B8)

and using this result we obtain

\[
\partial_y [\xi^y \bar{A}_{,y} + \xi^r \bar{A}_{,r}] = A_{,y} (Y - 4H \xi^y) + \xi^y \frac{\Delta}{a^2} (Y - A) - \frac{1}{a^2} \xi^y \bar{A}_{,r} + \xi^r \bar{A}_{,ry}.
\]

(B9)

We have often evaluated $A_{,y}$ and $B_{,y}$ on the brane, that is determined by the junction condition (2.32). These quantities are purely KK mode contributions. Equation (3.9) gives

\[
A_S^{(1)}_{,y}(r, y) = -\frac{8}{3a^2} \sum_\sigma v_\sigma \Delta \Phi_\sigma, \quad B_S^{(1)}_{,y}(r, y) = \frac{8}{3ra^2} \sum_\sigma v_\sigma \partial_r \Phi_\sigma,
\]

(B10)

and taking $y = y_\pm$,

\[
A_S^{(1)}(r, y_\pm) = \pm \frac{4}{3Na_\pm^2} \Delta \Phi_\pm, \quad B_S^{(1)}(r, y_\pm) = \pm \frac{4}{3Na_\pm^2} \frac{1}{r} \partial_r \Phi_\pm,
\]

(B11)

which are the same with Eq. (2.32).

As for the scalar mode, we obtain from Eqs. (4.1), (4.4) and (4.5)

\[
Y^{(1)}(r, y) + \frac{2H}{\phi_0} \varphi^{(1)}_{,r}(r, y) = \frac{2}{3} \sum_\sigma \Phi_\sigma,
\]

(B12)

\[
(y^{(1)}_0 + 2H \xi^y)_{y=y_\pm} = \frac{2}{3} \sum_\sigma \Phi_\sigma.
\]

(B13)

From Eqs. (2.13) and (2.15),

\[
(Y_{,r})^2 + \frac{2\kappa}{3} (\varphi_{,r})^2 = \frac{1}{a^2} \partial_y \left(a^2 Y_{,r} \frac{\varphi_{,r}}{\phi_0} \right) + \frac{3Y_{,r} (\Delta Y)_{,r}}{2 \kappa a^2 \phi_0^2}.
\]

(B14)

Integrating by parts, we derive

\[
\int_{y_\sigma}^y dy \partial_y (a^2 u_{-\sigma}) \left(\frac{3}{2\kappa \phi_0^2} \partial_y S_\psi \right) = a^2 v_{-\sigma} (y) S_\psi - \int_{y_\sigma}^y dy a^2 S_\psi.
\]

(B15)

3. Goldberger-Wise mechanism

In the text, we assumed that the y-integration containing the factor $1/\phi_0^2$ is dominated by the contribution near the negative tension brane. To justify this assumption, we discuss the behavior of the bulk scalar field ϕ_0. For definiteness, we adopt the model proposed by Goldberger and Wise [12], in which the scalar field potentials are

\[
V_B(\bar{\varphi}) = \frac{M^2 \bar{\varphi}^2}{2}, \quad V_{(s)}(\bar{\varphi}) = \gamma (\bar{\varphi}^2 - \bar{\varphi} (y_\sigma)^2)^2,
\]

(B16)

where M and γ are the mass and the coupling constant, respectively. The scalar field is solved in the weak back reaction approximation as

\[
\phi_0(y) = B_1 e^{\nu_1 y} + B_2 e^{\nu_2 y},
\]

(B17)
where $\nu_1 = 2\ell^{-1} + \sqrt{4\ell^{-2} + M^2}$, $\nu_2 = 2\ell^{-1} - \sqrt{4\ell^{-2} + M^2}$, and
\[
B_1 \approx e^{-\nu_1 d} (\phi_0 (y-) - e^{\nu_2 d} \phi_0 (y+)) ,
B_2 \approx \phi_0 (y+) - e^{-\nu_1 d} \phi_0 (y-). \quad (B18)
\]

According to Ref. [7], the mass squared corresponding to the lowest eigen mode in scalar-type perturbation, m_Σ^2, is estimated by
\[
N \int_0^d \frac{dy}{\kappa a m_\Sigma^2} \approx \frac{1}{3a^2 \ell^{-2} m_\Sigma^2} . \quad (B19)
\]
Since $\kappa \phi_0^2 \lesssim \ell^{-2}$ for the assumption of the weak back reaction to be consistent, m_Σ^2 is at most $O(\ell^{-2} a_\Sigma^2)$. The dominant contribution to this integral comes from the minimum of ($a^4 \phi_0^2$) at $y = y_c = (\ell \log[\nu_2 B_2/(\nu_1 B_1)])/4\sqrt{1 + (M^2 / 4)}$ or $y = d$ when $y_c > d$. For the convenience, we define a quantity of $O(\ell^{-2})$ by $\tilde{m}_\Sigma^2 := a_\Sigma^2 m_\Sigma^2$ absorbing the factor a_Σ^2.

Following the argument given in Ref. [7], we obtain the estimate
\[
N \int_{y_c}^d \frac{dy}{\kappa \phi_0^2} \lesssim O\left(\frac{1}{a^2 a_\Sigma^2 \tilde{m}_\Sigma^2}\right) , \quad (B20)
\]
where α and β are $+1$ or -1. Here we used the fact that $a^2 u_\pm$ is a slowly changing function for $y > y_c$ in the weak back reaction case. From this relation, with the aid of inequalities $u_- \lesssim a_\Sigma^2$ and $a_\Sigma^2 < u_+ \lesssim 1$, we obtain
\[
N \int_0^d \frac{dy}{\kappa \phi_0^2} \lesssim O\left(\frac{1}{a^2 a_\Sigma^2 \tilde{m}_\Sigma^2}\right) , \quad (for \ i, j \geq 0, i + j \geq 2,). \quad (B21)
\]

The estimate for Eq. (4.17) can be obtained by approximating Eq. (3.24) as
\[
Y^{(1)}_S (r, y) \approx 3N u_\mp(y) \int_{y_c}^d \frac{dy}{\kappa \phi_0^2} = (for \ y \lesssim y_c). \quad (B22)
\]

APPENDIX C: EXPLICIT EVALUATION OF THE LEADING ORDER

To derive the leading order of Eq. (5.8), we give the result of the explicit evaluation of Eq. (5.1). We use Eqs. (4.1), (4.4), (4.5) and the junction condition (2.32) that is rewritten in terms of KK mode as Eq. (B11). Keeping the terms of $O(r_\star^{-2})$, each term is given as follows;
\[
- \Delta \left\{ \hat{\xi}_\pm A_y + \hat{\xi}_\pm A_r + \hat{H} (\hat{\xi}_\pm^2) \right\} = - \Delta \left\{ \hat{\xi}_\pm A_y + 6 \Phi_{\pm, r} \hat{\xi}_\pm^r + \frac{\hat{H}}{9N a_\pm^2} \Phi_{\pm}^2 \right\} . \quad (C1)
\]
\[
\pm 2Na_\pm^4 \xi^\pm_\Sigma = \frac{16}{9} \int dr \left\{ \left(\frac{3\Phi_{\pm, r}}{r^5} - \frac{\Phi_{\pm, r}}{r^4} \right) \int r^2 \Phi_{\pm, r} dr - \frac{\Phi_{\pm, r} \circ r}{r^2} + \frac{\Phi_{\pm, r} \circ r}{3r} + \frac{4(\Phi_{\pm, r})^2}{3r} - \Phi_{\pm, r} \Delta \Phi_{\pm} + \frac{2H}{9Na_\pm^2} \left(\Phi_{\pm, r}^2 - 2\Phi_{\pm} \Delta \Phi_{\pm} + 2 \int dr \left(\frac{4}{r} \Phi_{\pm, r}^2 + \Phi_{\pm, r} (\Delta \Phi_{\pm})_r \right) \right) \right\} \quad (C2)
\]
\[
\pm 2Na_\pm^4 \xi^\pm_\xi = - \frac{2}{3} \int dr \left\{ \Phi_{\pm, r} \Delta \Phi_{\pm} \right\} + \frac{2H}{9Na_\pm^2} \left(\Phi_{\pm, r}^2 + \frac{4}{r} \Phi_{\pm, r} \bar{\Phi}_{\pm, r} + \frac{64}{9} \int dr \left\{ \Phi_{\pm, r} + \frac{6}{r} \Phi_{\pm, r} \right\} \right) + \frac{2H}{9Na_\pm^2} \Phi_{\pm, r} \Delta \Phi_{\pm} + \frac{2H}{9Na_\pm^2} \left(\Phi_{\pm, r}^2 + \frac{6}{r} \Phi_{\pm, r} \right) \int r^2 \Phi_{\pm, r} dr \right\} . \quad (C3)
\]
Substituting these results into Eq. (5.1), we obtain the leading term of Eq. (5.8).

\[2N \int dya^2 S_{A^\pm} = \frac{64}{9} \int dr \left\{ -\frac{5\Phi^2_r}{3r^3} + \frac{20\Phi \Phi_{\pm,r}^\pm}{3r^2} - \frac{3(\Phi_{\pm,r})^2}{2r} - \frac{2\Phi_{\pm,\Phi,\pm}}{r} + \int r^2 \Phi_{\pm,dr} \left(-\frac{15}{r^9} \Phi_{\pm,dr}^2 + \frac{10\Phi_{\pm,dr}^2}{r^6} \right. \right. \\
+ \frac{20\Phi_{\pm,r}}{r^4} - \frac{6\Phi_{\pm}}{r^4} - \frac{(\Delta \Phi_{\pm})_r}{r^3} \right) \left. \right\} + \frac{16}{3} \left(1 \pm \frac{H}{Na^2} \right) \left(\int \frac{(\Phi_{\pm,r})^2}{r^9} - \Phi_{\pm,\Phi,\pm} \right) + \mathcal{O} \left(\frac{1}{r^4} \right), \tag{C4} \]

\[2N \int dya^2 S_{\Phi^\pm} = \frac{64}{9} \int dr \left\{ \frac{3\Phi_{\pm,r}\Delta \Phi_{\pm}}{4} - \frac{3(\Phi_{\pm,r})^2}{4r} - \frac{\Phi_{\pm,\Phi,\pm}}{3r^2} + \frac{17\Phi_{\pm,\Phi,\pm}}{12r^2} - \frac{5\Phi_{\pm}}{3r^3} \right. \right. \\
+ \left. \left. \left[\frac{3\Phi_{\pm}}{4r^4} + \frac{17\Phi_{\pm}}{4r^5} + \frac{2\Phi_{\pm}}{5r^6} + \frac{15}{r^9} \right] \right\} + \left[\frac{1}{r^9} \right] - \frac{16}{9} \int \frac{dr}{r} (\Phi_{\pm,r})^2 + \mathcal{O} \left(\frac{1}{r^4} \right), \tag{C5} \]

\[2N \int_{y_-}^{y^+} dy^u \Phi_{\pm}^2 \Delta S_{\Phi^\pm} = \Delta (\Phi_{\pm}^2) \left\{ \frac{2}{9} \left(1 \pm \frac{H}{Na^2} \right) + \frac{H}{9N^2a^2_{\pm}} - \frac{4N}{9} \int dya^2 u_{\pm} \right\} + \mathcal{O} \left(\frac{1}{r^4} \right), \tag{C6} \]

\[3N \int_{y_-}^{y^+} dy^u \frac{u_{\pm} \Delta S_{\Psi^\pm}}{\kappa \phi_0^2} = \frac{4N\Delta (\Phi_{\pm}^2)}{9} \int dya^2 u_{\pm}^3 + \mathcal{O} \left(\frac{1}{r^4} \right). \tag{C7} \]

Substituting these results into Eq. (5.1), we obtain the leading term of Eq. (5.8).