FIG. 1: The figure shows the integrated micromagnet and bridge structure. The bridge has length \(l = 300 \, \mu m \), width \(w = 4 \, \mu m \), and thickness \(t = 0.25 \, \mu m \). The micromagnet has length \(L = 400 \, \mu m \), width \(W = 4 \, \mu m \), and height \(H = 10 \, \mu m \), and produces a field gradient of \(\partial B^y / \partial z = 1.4 \, T/\mu m \), uniform over a 100 \(\mu m \) region inside the bridge. The insert shows the structure of the silicon matrix and the terrace edge. The darkened spheres represent the \(^{29}\)Si nuclei, which preferentially bind at the edge of the Si step.

multi-chamber molecular beam epitaxy (MBE) machine equipped with a scanning tunneling microscope (STM) and a pre-heating stage. It has been demonstrated that highly regular arrays of steps can be produced on vicinal Si(111)\(7 \times 7\) using a simple multi-step annealing sequence [12]. Due to the high energy of interrupting or misplacing \(7 \times 7\) domains, this procedure leads to atomically straight step-edges along the (1\(\bar{1}\)0) direction for up to \(2 \times 10^4\) lattice sites. The average terrace width is \(\sim 15\, nm\). Once we verify the straight step edges using the STM, we transfer the wafer to the growth chamber to form atomic chains of \(^{29}\)Si using the step-flow mode at temperatures \(T \sim 850^\circ C\). Arrival of \(^{29}\)Si isotopes at the substrate surface induces a surface transition from \(7 \times 7\) to \(1 \times 1\) [13], i.e., \(^{29}\)Si isotopes travel to the step edges and form atomically straight lines. We terminate the evaporation of \(^{28}\)Si when the atomic chains are one atom wide and run completely along the step. A \(^{28}\)Si capping layer of 15 nm is grown on top of \(^{29}\)Si chains and we repeat the same multi-step annealing, \(^{29}\)Si chain growth, and capping sequence to produce replicas of parallel \(^{29}\)Si chains. The last step in the growth process is the capping of ensembles of \(^{29}\)Si chains by a thick \(^{28}\)Si layer.

Once formation of the \(^{29}\)Si wire block is complete, the narrow bridge is created with e-beam lithography. A plasma etcher removes unprotected silicon down to the buried oxide layer. An HF vapor etch or acid solution removes the exposed oxide to release the structure; it is then dried in a critical point dryer. After etching \(3 \, \mu m\) further into the substrate and through the oxide layer, the dysprosium (Dy) micromagnet can be evaporatively deposited \(s = 2.1 \, \mu m\) from the bridge and defined as a paralleloipiped using a shadow mask.

Calculations similar to those in Ref. [6] show that the magnetic field gradient due to the micromagnet is \(\partial B^y / \partial z = 1.4 \, T/\mu m\), which is present over the thickness of the bridge and is superposed with a large homogeneous field \(B_0\) of \(\sim 7\, T\). The distance in the \(z\)-direction between two \(^{29}\)Si nuclei in an atomic chain, which we denote \(a\), is \(1.9\, \AA\), so the gradient leads to a qubit-qubit frequency difference of \(\Delta \omega = \omega_0 \partial B_z / \partial z = 2\pi \times 2\, kHz\). The active region is a \(100 \, \mu m\) by \(0.2 \, \mu m\) area in the center of the bridge, containing \(N = 10^5\) chains persisting over the bridge thickness. This active region is sufficiently small and the magnetic field sufficiently homogeneous that all equivalent qubits in an atomic plane lie within a bandwidth of \(0.6\, kHz\).

For initialization of the quantum computer, we propose to employ optical pumping, algorithmic cooling, and pseudo-pure state techniques. The premise of optical pumping is that nuclei exchange Zeeman energy with a bath of electrons which have been preferentially excited into a single spin state by circularly polarized light. The nuclei thereby relax thermally to an effective spin temperature corresponding to the non-equilibrium electron-spin polarization. Once those electrons recombine, the nuclei retain their spin polarization for hundreds of “dark” \(T_1\) time, which is extremely long (200 hours in Ref. [10]). In low-field (\(\sim 1\,G\)) experiments at 77 K [10, 14], nuclear polarizations have not exceeded 0.1% due to limited electron spin polarizations and long recombination times, a result of silicon’s indirect bandgap. Improved nuclear polarization in silicon may be observable in higher magnetic fields (\(\sim 10\, T\)) and lower temperatures (\(\sim 1\, K\)), and in silicon nanostructures where rapid recombination of electrons via surface states can help maintain the electron spin polarization [15].

The physical cooling afforded by optical pumping is well suited to complement an algorithmic cooling technique introduced by Schulman and Vazirani [16, 17]. This technique redistributes the entropy among a register of qubits to a subregister that is then discarded (decoupled and ignored) [18]. This method is expensive: it takes time to perform the (classical) logic operations and, worse, it sacrifices many qubits. An initial register of size \(n_{\alpha}\) will, for small initial polarization \(p_0\), shrink to size \(n_{\alpha}p_0^2/2\ln 2\) if the procedure is taken to the entropy limit. However, the very long \(T_1\) affords ample time for the procedure, and the number of available qubits in our configuration before initialization can be thousands. Moreover, the algorithm need not be taken to the entropy limit, since
large but still incomplete polarizations can be handled with pseudo-pure state techniques, the consequences of which will be discussed below in the context of SNR.

The secular component of the dipolar Hamiltonian which couples the ith spin to the jth spin within one chain is written [19]

$$\mathcal{H}_{ij} = \frac{\mu_B^2}{4\pi^2} \frac{3 \cos \theta_{ij}}{r_{ij}^3} \left(I_i^x I_j^x - I_i^y I_j^y - I_i^z I_j^z \right),$$

where r_{ij} is the length of the vector connecting the spins and θ_{ij} is its angle with the applied field. Nearest neighbors along the proposed atomic chains are not exactly parallel to (110), but rather zig-zag with angle $\theta_{i,j+1}$ satisfying $\cos^2 \theta_{i,j+1} = 2/3$, leaving $\delta \omega = \delta \omega_{i,j+1} = 2\pi \times 0.4$ kHz. Other terms of the dipolar Hamiltonian require the exchange of energy in the amount of $\hbar \Delta \omega$ or more. The long T_1 in silicon indicates the inefficiency by which this may be exchanged with degrees of freedom external to the nuclei. In strongly coupled dipolar systems, this can be compensated for by the dipolar bath of identical nuclei[20]. In the present scheme, the members of the nuclear ensemble are so far removed that this energy bath is absent. Hence, we assume these non-secular terms are well suppressed. The Hamiltonian of Eq. (1) may be “switched off” by applying a periodic succession of narrow band π pulses at, for instance, the ith resonant frequency [21]. Simultaneous decoupling of more than two qubits may be accomplished by timing the selective π pulses according to the entries of an appropriately sized Hadamard matrix; a pair of qubits may be selectively recoupled in order to implement two-bit gates [22]. Note that this Hadamard pulse scheme serves the second purpose of refocussing inhomogeneous broadening caused by the in-plane nonuniformity of the field gradient and any small bulk susceptibility effects.

The presence of a large magnetic field gradient provides a natural means for performing MRFM on a magnetization M^z, since this technique is sensitive to the gradient force given by $F^z = M^z \partial B^z / \partial z$. The experiment is performed in high vacuum ($< 10^{-5}$ torr) and at low temperatures (4 K). A coil is used to generate the RF pulses for logic operations and decoupling sequences; it also generates the continuous-wave radiation for readout. An optical fiber-based displacement sensor is used to monitor deflection of the bridge using interferometry. Sub-Angstrom oscillations can be detected; larger oscillations can be damped with active feedback which avoids additional broadening while maintaining high sensitivity [23].

Readout is performed using cyclic adiabatic inversion [19], which modulates the magnetization of a plane of nuclei at a frequency near or on resonance with the bridge. The spins of resonant frequency ω_i are irradiated with the RF field $B^\circ = 2 B_1 \cos \omega_m t / (\omega_m - \Omega / \omega_m)$, where ω_m is the modulation frequency chosen to be near the resonance of bridge oscillations, and Ω is the frequency excursion, which should be much smaller than $\Delta \omega$ [8].

The force resolution for MRFM is limited by thermal fluctuations of the mechanical oscillator [24]. Force resolutions of 5.6×10^{-19} N/√Hz have been reported for single crystal silicon cantilevers at 4 K [25]. The thermal noise threshold of the bridge structure in Fig. 1 is estimated to be $\sim \frac{1}{2 \sqrt{2}} \times 10^{-17}$ N/√Hz based on a lumped harmonic oscillator model and assuming a modest quality factor Q of 10^4 [26]. This model yields an estimated spring constant of $k \approx 0.0042$ N/m and a resonance frequency $\omega_0 / 2\pi \approx 23$ kHz. The detectable signal will depend upon the initial polarization p after optical pumping and achieve cooling. The force from the subensemble magnetization corresponding to a pseudo-pure state is estimated [4, 27] as

$$F^z = \frac{\hbar \Delta \omega}{2a} N \left[\left(\frac{1 + p}{2} \right)^n - \left(\frac{1 - p}{2} \right)^n \right].$$

The number of qubits available in this scheme may be found by maximizing n in Eq. (2) such that the force exceeds the thermal noise threshold; the results of such maximization are shown in Fig. 2. At low p, exponential improvements in n are needed to increase the number of measurable qubits n. Once p exceeds about 60%, however, we find $n \sim (1 + p)(1 - p)$, escaping the exponential downscaling which plagues solution NMR.

There are several possible sources of decoherence in this proposal: magnetic fluctuations in the dysprosium, thermal currents in the dysprosium, fluctuations of paramagnetic impurities in the silicon, thermal motion of the bridge, and uncontrolled dipolar couplings between nuclei. We estimate that the latter two sources are the most important, so we limit our present discussion to them.

A calculation using the thermal noise statistics of a high-sensitivity mechanical oscillator [24] estimates the T_2 timescale due to the bridge’s thermal drift as $T_2^\circ \approx k \omega_0 Q a^2 / \Delta \omega^2 k_B T \approx 25$ s. Active feedback stabilization is expected to increase this timescale by as many as four orders of magnitude, bringing it close to the lengthy T_1 timescale.

There are two sorts of uncontrolled dipolar couplings to consider. There are the in-plane couplings, in which the participating nuclei have equal Larmor frequencies and can thus participate in spin flip-flop processes. Since the average distance between chains is ~ 15 nm, these processes cause decoherence on a time scale of order $T_2^\circ \approx 4\pi(15 \text{ nm})^3 / \gamma^2 k_B T \sim 100$ s. This already lengthy timescale may be increased by the addition of dipolar refocussing sequences such as WAUHU [21].
FIG. 2: A plot showing the scalability of the present scheme. The solid curve, corresponding to the left axis, shows the polarization p needed in order for a number of qubits n to be measurable. The dashed lines, corresponding to the right axis, plot the number of logic gates (decoherence time T_2 divided by the pulse sequence cycle time t_c) times the length of a “block” of the decoupling sequence L against n for several values of T_2. The inset, showing $F(m)$, is explained in the text.

There will also be spurious couplings between nuclei in one homogeneous plane and copies of nuclei in the next. Such couplings occur when two qubits are recoupled for a logic gate, and they cause a small error in each logic gate. To estimate this error, suppose we recouple one qubit to another qubit in m planes away. The strongest coupling seen by a nucleus is the in-chain coupling, and its rate is $\sim \delta \omega/m^3$. The couplings to all of the neighbors may be treated as a T_2 decoherence process, with

$$\left(\frac{1}{T_{2m}^2} \right)^2 = \frac{1}{16} \left(\frac{\delta \omega}{m^3} \right)^2 \sum_i \left(\frac{\lambda_i^2/m^2}{m^2 + 1} \right)^2$$

(3)

Here, T_2 has been estimated as the inverse square root of the second moment $[21]$ and λ_i is the lateral distance to the ith chain normalized by a. The ratio of the approximate gate time $m^3/\delta \omega$ to T_{2m}^2 is plotted in the inset of Fig. 2. This function, $F(m)$, represents the approximate error in the gate when attempting to couple qubits in m planes apart. To keep gate errors low, the computer should couple only nearby neighbors and handle more distant couplings by bit swapping. In this way, gate errors due to unrecoupled nuclear couplings between chains is limited to approximately $F(1) \approx 10^{-6}$.

These cross-couplings also influence the clock speed of this computer, as we now explain. When qubits are decoupled by the Hadamard scheme mentioned above, the resulting pulse sequence has a clock time $t_c = N \tau^2/2 \Delta \omega$, where N is the number of qubits being decoupled and $L/\Delta \omega$ is the amount of time devoted to one π pulse [22]. As qubits are added, the amount of time needed to recouple them grows. For very large N, however, some qubits in the chain become so distant that the N^3 factor in Eq. (1) renders their interaction negligibly small. In this case the Hadamard pulse scheme can be truncated to decouple qubits only in sets of L, and a new decoherence process is introduced with $T_{2f}^2 = \delta \omega \left[1 + N^2(L/L)^{-1} \right]$. If we compare the total decoherence time $T_2 = (1/T_2^2 + 1/T_{2f}^2)^{-1}$, where T_2^2 combines all other decoherence processes, to the clock speed t_c, we find that there is an optimum L at which to truncate the Hadamard pulse scheme. The effective number of logic gates T_2/t_c, therefore, at first decreases as N^2 and then flattens once n reaches this optimum L, as shown in Fig. 2.

By consulting Fig. 2, we see that this scheme can, for sufficiently large T_2 and sufficiently high polarizations, allow substantially more qubits than solution NMR, without the need for single-spin measurement or unrealistic advances in fabrication, measurement, or control technologies.

The work at Stanford was partially supported by NTT Basic Research Laboratories. T. D. L was supported by the Annie and John Hertz Foundation. The work at Keio was partially supported by Grant-in-Aid for Scientific Research from JSPS and the KAST Research Grant. We would like to thank fruitful discussions with A. Verhulst, A. Dana, T. Ishikawa, O. D. Dubon, and Y. Saito.

* Electronic address: tladd@stanford.edu
† Also at NTT Basic Research Laboratories, 3-1 Morinosato-Wakamiya Atsugi, Kanagawa, 243-0198, Japan.
‡ Also at PRESTO-JST.

11 A similar fabrication scheme has been proposed for a Kane-type quantum computer: I. Shimak, V. I. Safarcev, and I.D. Wagner, J. Phys.: Condens. Matter 13, 6059 (2001).
14 N. T. Bagrav, L. S. Vlasenko, and R. A. Zhiltzikov, JETP Lett. 25, 190 (1977), and references therein.
ch. 7.

[18] Alternatively, the "hot" qubits could be recooled if their $^{\text{T}}$ can be made substantially less than the other qubits. This allows the restrictive entropy limit to be escaped [17]. Such rapid cooling may be possible in this proposal if the optical pumping field can be limited to a very small (~100 nm) depth from the silicon surface.

[27] This equation assumes the maximal signal from the initial distribution. For large mlad p, it is nearly identical to similar equations specific to the pseudo-pure state technique, such as that in Ref. [17].