In the quantum search algorithm, Grover's algorithm can locate the desired element using quantum parallelism and a phase-cancellation technique. The algorithm starts with uniformly distributed phase settings on all elements of the list. Then, through a series of controlled rotations, the phase of the desired element is inverted, making it distinguishable from the others. Finally, a measurement is performed, resulting in a high probability of measuring the desired element. The algorithm's efficiency is due to the exploitation of quantum superposition and interference, allowing it to search an unsorted list in O(√N) operations, significantly faster than classical algorithms for large N.

**Introduction**

The development of quantum computing has opened up new possibilities for solving computational problems, especially those that are intractable for classical computers. Grover's search algorithm is a fundamental result in quantum computation, demonstrating the potential speedup of quantum algorithms over classical ones. In this paper, we will derive Grover's algorithm and analyze its performance. The algorithm is based on the concept of quantum parallelism and interference, which allow for an exponential speedup in certain search problems. We will also discuss the limitations and challenges of implementing Grover's algorithm in practical quantum computers.
only $O(\sqrt{N/r})$ coherent queries of $f$ [5, 6]. This sequence of unitary operations is called Grover’s quantum search algorithm.

To describe the operation of the quantum search algorithm we first introduce a register, $|x\rangle = |x_1 \ldots x_n\rangle$, of $n$ qubits, and an ancilla qubit, $|q\rangle$, to be used in the computation. It will be convenient to sometimes use the label “$q$” for the ancilla. We also introduce a quantum oracle, a unitary operator $O$ which functions as a black box with the ability to recognize solutions to the search problem. (For more details on how an oracle may be constructed, see Chapter 6 of [1].) The oracle performs the following unitary operation on computational basis states of the register, $|x\rangle$, and of the ancilla, $|q\rangle$:

$$O|x\rangle|q\rangle = |x\rangle|q \oplus f(x)\rangle$$

where $\oplus$ denotes addition modulo 2. This definition may be uniquely extended, via linearity, to all states of the register and ancilla.

The oracle recognizes marked states in the sense that if $|x\rangle$ is a marked element of the search space, $f(x) = 1$, the oracle flips the ancilla qubit from $|0\rangle$ to $|1\rangle$ and vice versa, while for unmarked states the ancilla is unchanged. In Grover’s algorithm the ancilla qubit is initially set to the state $|0\rangle - |1\rangle)/\sqrt{2}$. It is easy to verify that, with this choice, the action of the oracle is:

$$O|x\rangle \left( |0\rangle - |1\rangle \right)/\sqrt{2} = (-1)^{f(x)}|x\rangle \left( |0\rangle - |1\rangle \right)/\sqrt{2}.$$  

Thus, the only effect of the oracle is to apply a phase of $-1$ if $x$ is a marked state, and no phase change if $x$ is unmarked. Since the state of the ancilla does not change, it is conventional to omit it, and write the action of the oracle as $O|x\rangle = (-1)^{f(x)}|x\rangle$. Grover’s search algorithm may be summarised as follows:

Algorithm 1: Grover’s quantum search algorithm.

**Inputs:** (i) a black box oracle $O$, whose action is defined by Eq. (1); (ii) $n + 1$ qubits in the state $|0\rangle^n|0\rangle_Q$.

**Outputs:** a candidate for a marked state, $|s\rangle$.

**Procedure:**

1. **Initialization:** Apply a Hadamard gate $H = 1/\sqrt{2}\left( \begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right)$ to each qubit in the register, and the gate $HX$ to the ancilla, where $X = \left( \begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right)$ is the NOT gate, and we write matrices with respect to the computational basis ($|0\rangle, |1\rangle$). The resulting state is:

$$\frac{1}{\sqrt{N}} \sum_{x=0}^{2^n-1} |x\rangle \left( |0\rangle - |1\rangle \right)/\sqrt{2}.$$  

2. **Grover Iterations:** Repeat the following operation $m$ times, where $m$ is an integer whose construction we describe below:

(a) Apply the oracle, which has the effect of rotating the marked states by a phase of $\pi$ radians. Since the ancilla is always in the state $|0\rangle - |1\rangle)/\sqrt{2}$ the effect of this operation may be described by a unitary operator acting only on the register, $I^\pi = \sum_x (-1)^{f(x)}|x\rangle\langle x|$.

(b) Rotate all register states by $\pi$ radians around the average amplitude of the register state. This is done by (i) applying the Hadamard gate to each qubit in the register; (ii) rotating the $|00 \ldots 0\rangle$ state of the register by a phase of $\pi$ radians. This rotation is similar to 2(a), except for the fact that here it is performed on a known state. It takes the form $I^\pi = |0\rangle\langle 0| + \sum_{x \neq s} |x\rangle\langle x|$. (iii) Again applying the Hadamard gate to each qubit in the register.

The combined operation on the register is described by $U_G = H^\otimes n I^\pi H^\otimes n$. $I^\pi$.

3. **Measure the register in the computational basis.**

Mising from this description is a value for $m$. As subsequent Grover iterations are applied, the amplitudes of the marked states gradually increase, while the amplitudes of the unmarked states decrease. There exists an optimal number, $m$, of iterations at which the amplitude of the marked states reaches a maximum value, and thus the probability that the measurement yields a marked state is maximal. Let us denote this probability by $P$. It has been shown [6, 9] that $m$ is bounded above

$$m \leq \frac{\pi}{\sqrt{N}} \frac{\sqrt{N}}{r},$$

where $r$ is the number of marked states. The exact value of $m$ as a function of $N$ and $r$ has been constructed in [9, 10]. Moreover, it has been shown that Grover’s algorithm is optimal in the sense that it is as efficient as theoretically possible [11], and that it is possible to obtain the marked state with very high probability, $P \approx 1 - O(1/\sqrt{N})$, after $m$ iterations [9, 10]. Note that $P \approx 1$ only occurs for the specific starting state described in step 1 of Algorithm 1, above. If the Grover iterations start from an arbitrary state, then $P$ may be bounded away from $1$ [12].

In this paper we are interested in determining what properties of the initial state of the register are responsible for the efficiency of the quantum search algorithm. To this end, we propose modifying the initialization step, as described by the following hypothetical situation: Consider $n$ parties (Alice, Bob, Charlie, . . . , Narelle) sharing a pure quantum state $|\phi\rangle$. For simplicity, we initially assume that $|\phi\rangle$ is a state of $n$ qubits, and each party is in possession of one qubit. The parties wish to cooperate in a joint venture in which they use those particular $n$ qubits to perform a quantum search of the space of $N = 2^n$ elements. The parties are unable to employ
any communication channels. Prior to the search, each
party may perform local unitary operations on the qubit
in their possession. After they complete the local pro-
cessing of their qubits, all parties send (or teleport) their
qubits to the search processing unit. The only processing
available in this unit is Grover’s search iterations and the
subsequent measurement. Thus, the only way the qubits
are allowed to interact is through Grover iterations.

This modified quantum search algorithm, which, with
variations, we study for the remainder of this paper, may
be summarised as follows:

\[ \text{Algorithm 2: Modified quantum search.} \]

\[ \text{Inputs: (i) a black box oracle } O, \text{ whose action is defined by Eq. (1); (ii) } n + 1 \text{ qubits in the state } |\phi\rangle.\]

\[ \text{Outputs: a candidate for a marked state, } |s\rangle.\]

\[ \text{Procedure:} \]

1. Initialization: Apply to the input register-ancilla state, $|\phi\rangle$, a product of arbitrary local operations
   on the register, $V = U_1 \otimes U_2 \otimes \cdots \otimes U_n$, and the gate $HX$ on the ancilla, where $U_j$ is an
   arbitrary local unitary gate acting on the $j$th qubit. The resulting state is
   \[
   |\psi\rangle \otimes \left( \frac{|0\rangle + |1\rangle}{\sqrt{2}} \right)_q = V|\phi\rangle \otimes HX|0\rangle_q. \quad (5)
   \]

2. Grover Iterations: Repeat the following operation $m$ times, where $m$ is chosen as described above:
   (a) Rotate the marked states by a phase of $\pi$ radians, as in Algorithm 1.
   (b) Rotate all register states by $\pi$ radians around the average amplitude of the register state, as
       in Algorithm 1.

   The combined operation on the register is described by
   \[
   U_G = H^\otimes n I_0^R H^\otimes n I_0^R.
   \]

3. Measure the register in the computational basis.

This modification of Grover’s algorithm may appear somewhat ad hoc. However, as we now explain, the
modification allows a connection between Grover’s algorithm and measures of entanglement to be made.

The connection follows by asking what is the maximal probability of success, $P_{\text{max}}$, that a marked state is
found, where the maximization is over all possible local unitary operations in the initialization step? We will
analyse this question for the case where there is just a single marked solution, which we denote $s$, to the search
problem. We show that in this case $P_{\text{max}}$ is related to the entanglement present in the initial register state, $|\phi\rangle$.

To make this assertion more precise, let us write $P_{\text{max}}$ in terms of the operator $U_G^m$ representing $m$
Grover iterations. Averaging uniformly over all $N$ possible values for $s$ [29] we see that this probability may be written

\[
P_{\text{max}} = \max_{U_1, \ldots, U_n} \frac{1}{N} \sum_{j=0}^{N-1} \left| \langle s | U_G^m (U_1 \otimes U_2 \otimes \cdots \otimes U_n ) | \phi \rangle \right|^2,
\]

where the maximization is over all local unitary operations $U_1, \ldots, U_n$ on the respective qubits.

To analyse (6) for a general state, $|\phi\rangle$, a simple trick allows us consider only the action of the Grover iterations
on the equal superposition state $|\eta\rangle = \sum_x |x\rangle / \sqrt{N}$ which is usually used as the input to Grover’s algorithm.
Applying $m$ Grover iterates to this state yields

\[
U_G^m|\eta\rangle = |s\rangle + O\left( \frac{1}{\sqrt{N}} \right),
\]

where the second term is a small correction due to the fact that Grover’s algorithm does not yield a solution
with probability 1, but rather with probability $1 - O(1/\sqrt{N})$. Multiplying this equation by $(U_G^m)^\dagger$ and
then taking the Hermitian conjugate gives

\[
\langle s | U_G^m |\eta\rangle = \langle s \rangle + O\left( \frac{1}{\sqrt{N}} \right).
\]

Substituting into Eq. (6) gives, for a general state $|\phi\rangle$,

\[
P_{\text{max}} = \max_{U_1, \ldots, U_n} \frac{1}{N} \sum_{j=0}^{N-1} \left| \langle s | U_1 \otimes U_2 \otimes \cdots \otimes U_n | \phi \rangle \right|^2 + O\left( \frac{1}{\sqrt{N}} \right).
\]

However, $|\eta\rangle$ is a product state, so that $U_1 \otimes U_2 \otimes \cdots \otimes U_n |\eta\rangle$ is another product state. Therefore, the optimization in Eq. (9) may, equivalently, be expressed as an optimization over product states,

\[
P_{\text{max}} = \max_{|\phi_1, \ldots, \phi_n\rangle} \left| \langle e_1, \ldots, e_n | \phi \rangle \right|^2 + O\left( \frac{1}{\sqrt{N}} \right),
\]

where the maximization now runs over all product states,

\[
|e_1, \ldots, e_n\rangle = |e_1\rangle \otimes |e_2\rangle \otimes \cdots \otimes |e_n\rangle,
\]

of the $n$ qubits. In order for the parties Alice, Bob, Charlie, . . . , Narelle to achieve this maximum probability when running Algorithm 2, they apply to the joint state $|\phi\rangle$ local unitary rotations
$U_j$ which have the effect of taking $|e_j\rangle$ to $(|0\rangle + |1\rangle) / \sqrt{2}$. This expression, Eq. (10), takes a suggestive form. Up to corrections of order $1/\sqrt{N}$, it depends monotonically on the maximum of the overlap between all product states and the input state $|\phi\rangle$ [30]. If the input state were a product, $|\phi\rangle = |u_1\rangle \otimes |u_2\rangle \otimes \cdots \otimes |u_n\rangle$, then $P_{\text{max}}$ would be equal to one, again, up to small corrections. If, alternatively, the input state were not a product state, it would never be possible for the modified search algorithm to succeed with probability one. These observations suggest that $P_{\text{max}}$ depends, in some way, on the entanglement of the initial register state, $|\phi\rangle$. 

III. AN ENTANGLEMENT MEASURE FROM
THE QUANTUM SEARCH ALGORITHM

In the last section we suggested that the maximum success probability, $P_{\text{max}}$, of Algorithm 2, depended on the entanglement of the initial state of the register. In this section, we show that $P_{\text{max}}$ can be used to define an entanglement measure, the Groverian entanglement, for arbitrary pure multiple qubit states. We show that the Groverian entanglement is closely related to an entanglement measure introduced previously by Vedral, Plenio, Rippin and Knight [8] (see also Vedral and Plenio [13], and Barnum and Linden [14]). This connection enables us to understand some properties of the Groverian entanglement making it a good entanglement measure.

Before defining the Groverian entanglement, we briefly overview some common approaches taken to the definition of entanglement measures. Broadly speaking there are two main approaches, an operational approach, and an axiomatic approach. In the operational approach [15], measures of entanglement are related to physical tasks that can be performed with a quantum state, like quantum communication. The axiomatic approach (see, for example, [7, 8]) starts from desirable axioms that a "good" entanglement measure should satisfy, and then attempts to construct such measures.

The Groverian entanglement is an example of an entanglement measure defined in operational terms, namely, how well a state serves as the input to Algorithm 2. We define the Groverian entanglement of a state $|\psi\rangle$ by:

$$G(\psi) \equiv \sqrt{1 - P_{\text{max}}}. \quad (11)$$

Note that we will freely interchange the notations $|\psi\rangle$ and $\psi$. Since $P_{\text{max}}$ takes values in the range $0 \leq P_{\text{max}} \leq 1$, it follows that $0 \leq G(\psi) \leq 1$. However, it is not immediately clear that $G(\psi)$ is a good measure of entanglement. We show that this is the case by using the results of the previous section to connect $G(\psi)$ to a measure of entanglement introduced in [8], following the axiomatic approach.

To demonstrate the connection between the Groverian entanglement and [8], we substitute Eq. (10) into Eq. (11), and move the maximization outside the square root, where it becomes a minimization. Neglecting terms of $O(1/\sqrt{N})$ this gives

$$G(\psi) \equiv \min_{\{\epsilon_1, \ldots, \epsilon_n\}} \sqrt{1 - F^2(\psi, \epsilon_1 \cdots \epsilon_n, \psi)}, \quad (12)$$

where $F(\cdot, \cdot)$ is the fidelity [1, 16, 17], defined in general by $F(\rho, \sigma) \equiv \text{tr}\sqrt{\sqrt{\rho} \sigma \sqrt{\rho}}$. Special cases of interest are the pure state fidelity, $F(\rho, \sigma) = |\langle \psi| \sigma \rangle|$, and the case where one state is pure and one state is mixed, $F(\sigma, \alpha) = |\langle \alpha| \sigma \rangle|^{1/2}$. We now show that we can extend the range of the minimization in Eq. (12) to a minimization over the space $S$ of all separable density matrices, that is, density matrices which can be written in the form $\sigma = \sum_j p_j \rho_j^1 \otimes \cdots \otimes \rho_j^n$,

$$G(\psi) \equiv \min_{\sigma \in S} \sqrt{1 - F^2(\sigma, \psi)}. \quad (13)$$

To see this, simply note that by linearity of $F^2(\sigma, \psi)$ in $\sigma$, and convexity of $S$, the maximal value of $F^2(\sigma, \psi)$, and thus the minimum in $\sqrt{1 - F^2(\sigma, \psi)}$, can always be obtained at an extreme point of $S$, that is, when $\sigma$ is a pure product state.

The expression Eq. (13), for the Groverian entanglement should be compared with the following definition of an entanglement measure, introduced in [8] by Vedral, Plenio, Rippin and Knight [31]:

$$E(\psi) \equiv 2 - 2 \max_{\sigma \in S} F(\sigma, \psi). \quad (14)$$

This definition is essentially equivalent to ours, in that $G(\psi)$ is a monotonic function of $E(\psi)$, and vice versa. Vedral et al introduced their definition motivated primarily by axiomatic concerns; we have shown that, in fact, there is a close connection between this measure and the utility of the state as an input to Grover’s algorithm.

We now briefly describe several useful properties of the Groverian entanglement. The proofs are the same as those given in [8] (see also [13, 14]); what is new is the connection between this measure of entanglement and Grover’s algorithm. It is clear that $G(\psi) = 0$ iff $|\psi\rangle$ is a product state, and that local unitary operations on the qubits leave $G(\psi)$ invariant. What is more surprising in the context of Grover’s algorithm, and is the main result of this paper, is that $G(\psi)$ is an entanglement monotone. That is, $G(\psi)$ cannot be increased by local operations and classical communication:

**Theorem:** Let $|\psi\rangle$ and $|\phi\rangle$ be $n$-qubit pure states such that it is possible to transform $|\psi\rangle$ to $|\phi\rangle$ by local operations on the qubits, and classical communication. Then $G(\psi) \geq G(\phi)$, up to corrections of order $1/\sqrt{N}$.

This theorem has the remarkable implication that the probability $P_{\text{max}}$ of success for our modified Grover’s algorithm can never decrease under local operations and classical communication. The proof of the theorem follows easily by rewriting Eq. (13) in terms of the Bures metric [18], which is defined by [32]:

$$B(\rho, \sigma) \equiv \sqrt{1 - F^2(\rho, \sigma)}, \quad (15)$$

which results in

$$G(\psi) \equiv \min_{\sigma \in S} B(\sigma, \psi). \quad (16)$$

Suppose $|\psi\rangle$ can be transformed into $|\phi\rangle$ by a process of local operations and classical communication, whose effect is represented by the quantum operation $|\mathcal{E}\rangle$. Let $\sigma$ be the state for which the minimum in Eq. (16) is achieved, $G(\psi) = B(\sigma, \psi)$. It can be shown [19] that the Bures distance between two states can never be increased by a quantum operation, so

$$G(\psi) \equiv B(\sigma, \psi) \quad (17)$$

$$\geq B(\mathcal{E}(\sigma), \mathcal{E}(|\psi\rangle \langle \psi|)) \quad (18)$$

$$= B(\mathcal{E}(\sigma), 0). \quad (19)$$
But $\sigma$ is separable, so $\mathcal{E}(\sigma)$ is also separable, since it can be obtained by local operations and classical communication from $\sigma$. Thus

$$G(\psi) \geq B(\mathcal{E}(\sigma), \phi) \geq G(\phi),$$

which completes the proof that $G(\cdot)$ is an entanglement monotone.

IV. EXTENSIONS OF THE GROVERIAN ENTANGLEMENT

In this section we investigate three scenarios generalizing the earlier results about $n$-qubit pure state entanglement. Subsection IV A addresses systems whose subsystems are not qubits but instead have arbitrary (finite) dimensionality. Subsection IV B specializes to the case of a bipartite quantum system, where the two subsystems have arbitrary finite dimensionalities. Finally, in Subsection IV C we consider whether the Groverian entanglement is a good measure of entanglement for mixed states.

A. Groverian entanglement for subsystems of arbitrary dimensionality

As described earlier, Algorithm 2 is applied to a system of $n$ qubits, and thus the Groverian entanglement is only defined for such a system. However, with a small modification the algorithm we described can be extended to the case of $n$ systems of arbitrary finite dimensionalities, $d_1, d_2, \ldots, d_n$.

The only change is in the inversion about the average, step 2(b). To achieve the analogous operation, we need to find a replacement for the Hadamard gate. Suppose $V_j$ is any $d_j \times d_j$ unitary operator such that $V_j |0\rangle = \sum_{x=0}^{d_j-1} |x\rangle / \sqrt{d_j}$, where $|0\rangle, \ldots, |d_j-1\rangle$ forms an orthonormal basis for the state of the $j$th system. For example, $V_j$ could be the matrix representation of the Fourier transform over the integers modulo $d_j$. Then the inversion about the average can be achieved by (i) applying the operation $V_j$ to each system; (ii) rotating the $|00\ldots0\rangle$ state of the register by a phase of $\pi$ radians. This rotation takes the form $I_n \otimes -|0\rangle\langle 0| + \sum_{x \neq 0} |x\rangle\langle x| \otimes V_j$; (iii) applying the inverse operation $V_j^\dagger$ to each system.

With this modification, the Grover iterate can be used to perform quantum searches using systems of arbitrary dimensionality. Proceeding as before, we find that Eq. (10) holds even for systems of arbitrary dimensionality, that is,

$$P_{\text{max}} = \max_{|e_1, \ldots, e_n\rangle} [\langle e_1, \ldots, e_n| \phi \rangle]^2 + O\left(\frac{1}{\sqrt{N}}\right),$$

Similarly, if we define the Groverian entanglement by $G(\psi) \equiv \sqrt{1 - P_{\text{max}}}$ then the same argument as before shows that the Groverian entanglement is an entanglement monotone, up to corrections of $O(1/\sqrt{N})$, and can thus be regarded as a good measure of entanglement for composite systems of arbitrary dimensionality.

B. Two-party Groverian entanglement

In this section we specialize our study of the Groverian entanglement to bipartite quantum systems and derive an analytic expression for the Groverian entanglement in that case. We suppose that the two component systems have arbitrary finite dimensionalities, $d_1$ and $d_2$. In the bipartite case the optimization in Eq. (21) is equivalent to the maximization of the fidelity,

$$F(U \otimes V |0\rangle_A |0\rangle_B, \phi)$$

where we use the fact that any product state may be written as a product of two local unitaries operating on some fiducial state $|0\rangle_A |0\rangle_B$. This problem has been considered in [20, 21], where it was shown that the solution may be obtained in terms of the Schmidt decomposition [1] of $|\phi\rangle$,

$$|\phi\rangle = \sum_i \sqrt{\lambda_i} |v_i\rangle_A |w_i\rangle_B,$$

where $|v_i\rangle_A$ and $|w_i\rangle_B$ are each orthonormal sets of vectors, and the Schmidt coefficients $\sqrt{\lambda_i}$ are non-negative real numbers. [20, 21] showed that the maximum occurs when $\lambda_i = \max\{\lambda_i\}$, which is chosen so that $\sqrt{\lambda_i} = \lambda_{\text{max}}$ is the maximal Schmidt coefficient. Substituting into Eq. (21) gives

$$G(\psi) = \sqrt{1 - \lambda_{\text{max}}}.$$
Suppose a mixed state $\rho$ is used as the input in Algorithm 2, replacing the pure state $|\phi\rangle$. Then it is not difficult to show that the corresponding maximal probability of success is given by

$$P_{\text{max}} = \max_{|\epsilon_1, \ldots, \epsilon_n\rangle} \langle \epsilon_1, \ldots, \epsilon_n | \rho | \epsilon_1, \ldots, \epsilon_n \rangle + O\left(\frac{1}{\sqrt{N}}\right),$$

which is the linear extension of the expression in Eq. (10) to a general density matrix. Suppose we define

$$G(\rho) \equiv \sqrt{1 - P_{\text{max}}}$$

For pure states this agrees with the earlier definition of the Groverian entanglement.

Suppose $\rho = \rho_1 \otimes \cdots \otimes \rho_n$, and that $\lambda_j$ is the largest eigenvalue of $\rho_j$. Then from Eq. (25), $P_{\text{max}} = \lambda_1 \cdot \lambda_2 \cdot \cdots \cdot \lambda_n$, and thus

$$G(\rho_1 \otimes \cdots \otimes \rho_n) = \sqrt{1 - \prod_{j=1}^n \lambda_j}.$$  

In the case when $\rho_1, \ldots, \rho_n$ are pure states, all the $\lambda_j = 1$, and $G(\rho) = 0$. However, when the $\rho_j$ are mixed, the values of $G(\rho)$ may span the entire range from $G(\rho)$'s minimal value of 0, right up to its maximal possible value of $\sqrt{1 - 1/N}$. It follows that $G(\rho)$ cannot be an entanglement monotone.

From these observations we conclude that $G(\rho)$ is not a good measure of entanglement for mixed states. The essential problem is that $G(\rho)$ is linear in $\rho$, and many states that we ordinarily think of as not being entangled can be represented as a mixture of entangled states. For example, the completely mixed state $I \otimes I/4$ of two qubits can be written as an equal mixture of maximally entangled states. By linearity, $G(I \otimes I/4)$ therefore takes the same value as for a maximally entangled state.

Is there any sensible way of resolving this difficulty with mixed states? At present, we are not aware of any natural resolution that preserves the elegant operational interpretation of the Groverian entanglement. It is interesting to note, however, that Vedral et al's [8] proposed measure of entanglement applied equally well to either pure or mixed states. In particular, for a general mixed state $\rho$ of a composite system one can define

$$\tilde{G}(\rho) \equiv \min_{\sigma \in \mathcal{S}} \sqrt{1 - F(\rho, \sigma)},$$

where the minimization is over all separable states $\sigma$ of the system, and $F(\rho, \sigma)$ is the fidelity, as defined earlier. This is a generalization of our measure for pure states, however we have not succeeded in obtaining a good operational interpretation of $\tilde{G}(\rho)$ along lines similar to the pure state case. Another possible resolution, following a similar line of thought to [14], is to define

$$G(\rho) \equiv \min_j \sum_j p_j G(\psi_j),$$

where the minimum is over all ensembles $\{p_j, |\psi_j\rangle\}$ such that $\rho = \sum_j p_j |\psi_j\rangle \langle \psi_j|$. It is not difficult to show that $G(\rho)$ is an entanglement monotone, locally unitarily invariant, and is equal to zero if and only if $\rho$ is separable. However, once again, a good operational interpretation of $G(\rho)$ is presently unknown to us.

V. SUMMARY, DISCUSSION, AND FUTURE DIRECTIONS

In this paper we have investigated the relationship between the success probability of a modified form of Grover's quantum search algorithm, and the amount of entanglement present in the initial state used for the algorithm. We have proposed an entanglement measure for $n$-party pure states, the Groverian entanglement, based on the maximal success probability of the algorithm. Furthermore, we showed that the Groverian entanglement is essentially equivalent to a measure of entanglement introduced by Vedral, Plenio, Rippin and Knight [8], and used this to argue that the Groverian entanglement and $P_{\text{max}}$ are entanglement monotones.

Our work suggests several directions for future research. It would be interesting to investigate other variants of Grover's algorithm, including:

1. Allowing multiple solutions in the search space, rather than a single solution, as we have considered.
2. Replacing the two Hadamard transforms in the Grover iterate by an arbitrary unitary transform $U$ and its inverse $U^\dagger$, respectively.
3. Tracking the evolution of the entanglement present in intermediate stages of the algorithm. Investigations along these lines, but in a somewhat different context, have been reported in [25, 26, 27].
4. Determining the effect noise has on the performance of the algorithm, and entanglement measures derived from the algorithm.

It would also be interesting to investigate other quantum algorithms, such as Shor's algorithm, quantum simulation, and adiabatic quantum computation [28]. We hope that by pursuing such investigations insight will be obtained into the fundamental question of what makes quantum computers powerful, and further elucidate the role entanglement plays in quantum information processing.

VI. ACKNOWLEDGEMENTS

Thanks to Nick Bonesteel for discussions that stimulated this work, and to Guifre Vidal for providing comments on the manuscript. Special thanks to Jennifer Dodd for an exceptionally thorough reading of the
manuscript, and many helpful suggestions on how to improve it. OB thanks the Centre for Quantum Computer Technology and the Department of Physics at the University of Queensland for hospitality during a sabbatical leave when this work was done. This research was supported, in part, by an Australian Postgraduate Award to TJO, and by the National Science Foundation under Grant No. PHY99-07949. Preliminary work at the Hebrew University in Jerusalem was supported by the EU fifth framework program Grant No. IST-1999-11234.

[29] One might wonder what happens if a non-uniform distribution of values for $s$ is used. The analysis below shows that the value of $P_{\text{max}}$ is the same for any prior distribution on the search space. However, a priori assuming a uniform distribution seems the most sensible way of defining $P_{\text{max}}$, so for clarity and notational simplicity we have used the uniform distribution.
[30] The correction term in Eq. (7) may actually be removed by an additional modification of Grover’s algorithm in which the rotations in the Grover iterate are not by $\pi$ radians, but rather by some other angle close to $\pi$. For the sake of clarity we do not concern ourselves with this issue, and will mostly be content to ignore the corrections of order $1/\sqrt{N}$ in any case.
[31] Note that the conventions for the fidelity used in [8] differ slightly from ours. The quantity they call the fidelity is the square of the quantity we call fidelity. We have rewritten their expressions to take this difference into account.
[32] The Bures metric is sometimes written with an extra constant factor $\sqrt{2}$ out the front. Note that [8, 13] erroneously describes the function $2 - 2F(\rho, \sigma)$ as the Bures metric. If we choose $\psi = |0\rangle, \phi = (|0\rangle + |1\rangle)/\sqrt{2}, \tau = |1\rangle$ then the triangle inequality $2 - 2F(\psi, \tau) \leq 2 - 2F(\psi, \phi) + 2 - 2F(\phi, \tau)$ is violated, so this function cannot be a metric.