Quantum Information Processing and its Impact on the Measurement Process of the Quantum System

With the advent of quantum information processing, the field of quantum mechanics has entered a new era. The ability to manipulate and process quantum information has led to the development of new technologies and applications that were previously unimagined. This revolution is driven by the unique properties of quantum systems, which allow for operations that are fundamentally different from classical systems.

Quantum Interference in Quantum Caption

In this chapter, we will explore the role of quantum interference in the measurement process of the quantum system. Quantum interference is a fundamental aspect of quantum mechanics, and its study is crucial for understanding the behavior of quantum systems.

Quantum Interference in Quantum Caption

We will begin by introducing the concept of quantum interference and its implications for quantum measurement. We will then discuss the role of quantum interference in the measurement process of the quantum system.

Quantum Interference in Quantum Caption

In summary, quantum interference plays a crucial role in the measurement process of the quantum system. Understanding its effects is essential for the development of new technologies and applications that rely on quantum mechanics.

Quantum Interference in Quantum Caption

1. INTRODUCTION

Quantum Interference in Quantum Caption

In this chapter, we will explore the role of quantum interference in the measurement process of the quantum system. Quantum interference is a fundamental aspect of quantum mechanics, and its study is crucial for understanding the behavior of quantum systems.

Quantum Interference in Quantum Caption

With the advent of quantum information processing, the field of quantum mechanics has entered a new era. The ability to manipulate and process quantum information has led to the development of new technologies and applications that were previously unimagined. This revolution is driven by the unique properties of quantum systems, which allow for operations that are fundamentally different from classical systems.

Quantum Interference in Quantum Caption

In this chapter, we will explore the role of quantum interference in the measurement process of the quantum system. Quantum interference is a fundamental aspect of quantum mechanics, and its study is crucial for understanding the behavior of quantum systems.

Quantum Interference in Quantum Caption

We will begin by introducing the concept of quantum interference and its implications for quantum measurement. We will then discuss the role of quantum interference in the measurement process of the quantum system.

Quantum Interference in Quantum Caption

In summary, quantum interference plays a crucial role in the measurement process of the quantum system. Understanding its effects is essential for the development of new technologies and applications that rely on quantum mechanics.

Quantum Interference in Quantum Caption

1. INTRODUCTION

Quantum Interference in Quantum Caption

In this chapter, we will explore the role of quantum interference in the measurement process of the quantum system. Quantum interference is a fundamental aspect of quantum mechanics, and its study is crucial for understanding the behavior of quantum systems.

Quantum Interference in Quantum Caption

With the advent of quantum information processing, the field of quantum mechanics has entered a new era. The ability to manipulate and process quantum information has led to the development of new technologies and applications that were previously unimagined. This revolution is driven by the unique properties of quantum systems, which allow for operations that are fundamentally different from classical systems.

Quantum Interference in Quantum Caption

In this chapter, we will explore the role of quantum interference in the measurement process of the quantum system. Quantum interference is a fundamental aspect of quantum mechanics, and its study is crucial for understanding the behavior of quantum systems.

Quantum Interference in Quantum Caption

We will begin by introducing the concept of quantum interference and its implications for quantum measurement. We will then discuss the role of quantum interference in the measurement process of the quantum system.

Quantum Interference in Quantum Caption

In summary, quantum interference plays a crucial role in the measurement process of the quantum system. Understanding its effects is essential for the development of new technologies and applications that rely on quantum mechanics.

Quantum Interference in Quantum Caption

1. INTRODUCTION

Quantum Interference in Quantum Caption

In this chapter, we will explore the role of quantum interference in the measurement process of the quantum system. Quantum interference is a fundamental aspect of quantum mechanics, and its study is crucial for understanding the behavior of quantum systems.

Quantum Interference in Quantum Caption

With the advent of quantum information processing, the field of quantum mechanics has entered a new era. The ability to manipulate and process quantum information has led to the development of new technologies and applications that were previously unimagined. This revolution is driven by the unique properties of quantum systems, which allow for operations that are fundamentally different from classical systems.

Quantum Interference in Quantum Caption

In this chapter, we will explore the role of quantum interference in the measurement process of the quantum system. Quantum interference is a fundamental aspect of quantum mechanics, and its study is crucial for understanding the behavior of quantum systems.

Quantum Interference in Quantum Caption

We will begin by introducing the concept of quantum interference and its implications for quantum measurement. We will then discuss the role of quantum interference in the measurement process of the quantum system.

Quantum Interference in Quantum Caption

In summary, quantum interference plays a crucial role in the measurement process of the quantum system. Understanding its effects is essential for the development of new technologies and applications that rely on quantum mechanics.

Quantum Interference in Quantum Caption

1. INTRODUCTION

Quantum Interference in Quantum Caption

In this chapter, we will explore the role of quantum interference in the measurement process of the quantum system. Quantum interference is a fundamental aspect of quantum mechanics, and its study is crucial for understanding the behavior of quantum systems.

Quantum Interference in Quantum Caption

With the advent of quantum information processing, the field of quantum mechanics has entered a new era. The ability to manipulate and process quantum information has led to the development of new technologies and applications that were previously unimagined. This revolution is driven by the unique properties of quantum systems, which allow for operations that are fundamentally different from classical systems.

Quantum Interference in Quantum Caption

In this chapter, we will explore the role of quantum interference in the measurement process of the quantum system. Quantum interference is a fundamental aspect of quantum mechanics, and its study is crucial for understanding the behavior of quantum systems.

Quantum Interference in Quantum Caption

We will begin by introducing the concept of quantum interference and its implications for quantum measurement. We will then discuss the role of quantum interference in the measurement process of the quantum system.

Quantum Interference in Quantum Caption

In summary, quantum interference plays a crucial role in the measurement process of the quantum system. Understanding its effects is essential for the development of new technologies and applications that rely on quantum mechanics.

Quantum Interference in Quantum Caption

1. INTRODUCTION

Quantum Interference in Quantum Caption

In this chapter, we will explore the role of quantum interference in the measurement process of the quantum system. Quantum interference is a fundamental aspect of quantum mechanics, and its study is crucial for understanding the behavior of quantum systems.

Quantum Interference in Quantum Caption

With the advent of quantum information processing, the field of quantum mechanics has entered a new era. The ability to manipulate and process quantum information has led to the development of new technologies and applications that were previously unimagined. This revolution is driven by the unique properties of quantum systems, which allow for operations that are fundamentally different from classical systems.

Quantum Interference in Quantum Caption

In this chapter, we will explore the role of quantum interference in the measurement process of the quantum system. Quantum interference is a fundamental aspect of quantum mechanics, and its study is crucial for understanding the behavior of quantum systems.

Quantum Interference in Quantum Caption

We will begin by introducing the concept of quantum interference and its implications for quantum measurement. We will then discuss the role of quantum interference in the measurement process of the quantum system.

Quantum Interference in Quantum Caption

In summary, quantum interference plays a crucial role in the measurement process of the quantum system. Understanding its effects is essential for the development of new technologies and applications that rely on quantum mechanics.
FIG. 1: (a) An idealized quantum interrogation and the labeling of logical qubits. \(|0\rangle_a\) and \(|1\rangle_a\) are the logical states of the probe particle and \(|0\rangle_o\) and \(|1\rangle_o\) are the logical states of the object. (b) An optical implementation of high-efficiency quantum interrogation. The probe particle is a photon for which horizontal and vertical polarization represent the target qubit state and the presence or absence of an absorbing object represents the control qubit state.

CNOT gate. That is we have the mapping \(Q:\)

\[
Q: \begin{pmatrix}
|00\rangle & |01\rangle & |10\rangle & |11\rangle \\
\end{pmatrix} \rightarrow \begin{pmatrix}
|00\rangle & |01\rangle & |11\rangle & |\text{boom!}\rangle \\
\end{pmatrix}
\]

(1)

where the first mode represents the state of the object and the second the state of the photon. We could equally have flipped the interpretation of the two ports so that with the object in we would have \(|11\rangle \rightarrow |10\rangle\) and \(|10\rangle \rightarrow |\text{boom!}\rangle\), we shall represent this alternative map as \(Q_r\). It should be noted that since only a single combination of the terms in the map (1) fails, if we can detect the failure event (detecting the bomb exploding) then we could in principle recreate the appropriate state.

We shall, however, assume that this is not possible for the purposes of this paper.

Despite not having access to the full logic table for a CNOT, the device proves remarkably useful as can be seen from some of the quantum circuits that can be constructed using it depicted in figure 2. There are three principal obstructions to performing these ideal circuits:

2. The potential inability to switch the roles of the control and target. For instance, it is much easier to have an interferometer using photons (the target) and a suitable atom as the quantum object (the control), than to have an atom interferometer repeatedly probing the state of a single photon.

FIG. 2: Several quantum circuits constructed using a perfect efficiency quantum interrogation measurement, \(Q\), and, \(Q_r\), which are explained in the text. \(H\) is a Hadamard gate.

Circuit (i) creates Bell states. Circuit (ii) is a quantum bus, which swaps a qubit from one channel to another. Circuit (iii) creates a GHZ state.

3. The effect of a semi-transparent object, for instance see reference [36, 37].

In this paper we shall examine the first two issues and leave the third for a subsequent work. In the schemes that follow we shall restrict ourselves to using the state of some atom as the control qubit and the state of a photon as the target qubit. In section II we present a simple model of a quantum interrogation measurement of a specific quantum object. In section III we propose three conditional schemes to generate \(\text{Bell}\), \(W\), and GHZ type entanglement in the state of two and three atoms using photons as mediators. In section IV we propose using an atom to generate Bell and GHZ type entanglement between separate photons.

II. THE MODEL

We can represent the quantum interrogation apparatus as a series of \(N\) Mach-Zender interferometers laid end on end as in figure 3 where it is understood that the absorbing object labelled \(\hat{A}\) in the figure is the same object each
if necessary.

The effects of the atom and beam splitters on the modes (in the logical basis) are then:

\[
\hat{\mathbf{A}}:
\begin{align*}
|1\rangle_p |0\rangle_a \to |1\rangle_p |0\rangle_a \\
|1\rangle_p |1\rangle_a \to |0\rangle_p |\phi_a\rangle
\end{align*}
\]

\[
\hat{\mathbf{B}}_a:
\begin{align*}
|0\rangle_p \to \cos \theta |0\rangle_p + \sin \theta |1\rangle_p \\
|1\rangle_p \to \cos \theta |1\rangle_p - \sin \theta |0\rangle_p
\end{align*}
\]

where the reflectivity \(R = \cos^2 \theta \), and \(|\phi_a\rangle \) represents a scattered photon. Note that a photon being absorbed and scattered by the atom removes the system from the logical basis (there will be no photon in either \(p_1 \) or \(p_2 \)) and in writing the state \(|\phi\rangle \) we are using a convenient shorthand to denote this event.

After \(N \) cycles within the quantum interrogation, with the atom and photon initially in state \(|\phi_a\rangle \), we will evolve to the state,

\[
|\phi_N\rangle = \hat{\mathbf{S}} \hat{\mathbf{A}}_N \hat{\mathbf{B}}_a \hat{\mathbf{A}}_{N-1} \ldots \hat{\mathbf{B}}_1 \hat{\mathbf{P}}_1 |\phi_a\rangle
\]

where \(\hat{\mathbf{P}} \) is a 180° phase shift and \(\hat{\mathbf{S}} \) represents the final swap of the modes — these operations are done to achieve a “nice” logic structure.

With the atom in state \(|0\rangle_a \) (object-out) after \(N \) cycles we have:

\[
|0\rangle_p \to \cos (N \theta) |1\rangle_p + \sin (N \theta) |0\rangle_p
\]

\[
|1\rangle_p \to - \cos (N \theta) |0\rangle_p + \sin (N \theta) |1\rangle_p
\]

We choose \(\theta = \pi/2N \) so that \(|0\rangle_p \to |0\rangle_p \) and similarly \(|1\rangle_p \to |1\rangle_p \).

Now consider the atom initially in the state \(|1\rangle_a \) (object-in). After \(N \) cycles equation (4) yields

\[
|1\rangle_a |0\rangle_p \to \cos^N \theta |1\rangle + \sin \theta \sum_{j=0}^{N-1} \cos^j \theta |0_{s_j}\rangle
\]

\[
|1\rangle_a |1\rangle_p \to \sin \theta \cos^{N-1} \theta |1_{11}\rangle - \cos \theta |0_{s_j}\rangle + \sin^2 \theta \sum_{j=0}^{N-2} \cos^j \theta |0_{s_j}\rangle
\]

where we have dropped the subscripts for the kets on the right.

In the limit that \(N \to \infty \) then all the terms with a \(\sin \theta \) disappear and equations (5)-(8) show the logic given in (1).

III. ATOM ENTANGLEMENT PREPARATION

In this section, we present schemes for generating several types of entangled states between atoms of the type described in II using photons as a mediating particle. These schemes allow the entanglement of separated atoms without ever bringing them into direct interaction.
with each other. All the schemes are non-deterministic in that they will work only a certain percentage of the time, when a specific result is obtained upon measuring the photon. This is a limitation that is common to many entanglement generation schemes. There is an added advantage in using a conditioned scheme in our case. Detecting the final state of the photon in either $|0\rangle_p$ (photon in mode p_0) or in $|1\rangle_p$ (photon in mode p_1) means we condition out those cases where the atom absorbs a photon since the photon will be removed from both modes of the interferometer. This guarantees that we generate a pure, entangled state.

To characterize the success of a scheme in generating a particular entangled state we shall use the Fidelity[41] F which is simply

$$ F = |\langle \psi_{\text{desired}} | \psi_{\text{actual}} \rangle| $$

and the tangle τ, which is the square of the concurrence [17] from which the entanglement of formation can be calculated. For a mixed state ρ of two qubits, the concurrence C if given by

$$ C = \max(\lambda_1 - \lambda_2 - \lambda_3 - \lambda_4, 0) $$

where the λ_i are the square roots of the eigenvalues, in decreasing order, of $\rho \rho^\dagger - \rho^\dagger \rho$ and ρ^\dagger denotes the complex conjugation of ρ in the computational basis $\{|00\rangle, |01\rangle, |10\rangle, |11\rangle\}$.

The tangle is valid for two qubits; for three qubits in a pure state we will use the 3-tangle [39] which gives the purely three way entanglement of the system:

$$ \tau_3 = \tau_{A(BC)} - \tau_{AB} - \tau_{AC} $$

and can be understood loosely to embody the amount of entanglement of qubit A with qubits B and C over and above the amount of entanglement of qubits A and B of and of A and C.

Consider the scheme depicted in figure 5. Two atoms are initially placed into a superposition state. A photon makes a Q1 of the first atom, and is then used to make another Q1 of the second atom, where upon it's measured in the state $|0\rangle_p$ (i.e. exiting in mode p_0 of the last Q1). In the limit of high efficiency Q1, the two atoms will be left in a maximally entangled Bell state.

If initially we let the atoms be in arbitrary superposition states, i.e. we have

$$ |\psi_0\rangle = (\alpha_1|0\rangle_a_1 + \beta_1|1\rangle_a_1)(\alpha_2|0\rangle_a_2 + \beta_2|1\rangle_a_2)|0\rangle_p $$

then after N cycles within each Q1, the final state of the system conditioned on a successful measurement of the state $|0\rangle_p$ is

$$ |\psi_N\rangle = N\{\alpha_1 \alpha_2|00\rangle + \beta_1 \beta_2 c^{2N}|11\rangle + s c^{N-1} \alpha_1 \beta_2|01\rangle\} \quad \text{(13)} $$

where $c = \cos \theta$, $s = \sin \theta$; and the normalization N is determined by the requirement that $\langle \psi_N | \psi_N \rangle = 1$ after the state is conditioned on a successful measurement.

![FIG. 5: Non-deterministic generation of the Bell state $(|00\rangle + |11\rangle)/\sqrt{2}$](image)

In figure 6 we plot the probability of successful operation P, the fidelity F and the tangle τ against the number of cycles in each Q1 for generating the Bell state $(|00\rangle + |11\rangle)/\sqrt{2}$ with $\alpha_{1,2} = \beta_{1,2} = 1/\sqrt{2}$.

We can access the other Bell states $\left([|01\rangle \pm |10\rangle] / \sqrt{2}\right)$ by either swapping the second quantum interrogation from Q to Q_p and conditional on the detection of $|1\rangle_p$, which amounts to swapping the ports of one of the quantum interrogations, or by using local operations on the final state. We can therefore tune our device to produce a desired type of entanglement.

We can extend the technique to three atoms, and generate an entangled three-qubit state. We will present two schemes to generate two types of three-qubit entanglement, which are inequivalent under local operations and classical communication (LOCC) [40].

Firstly we will examine the scheme in figure 7 for generating the W entangled state, $|W\rangle = (|001\rangle + |010\rangle + |100\rangle)/\sqrt{3}$. With three atoms initially in superpositions,
the photon probes each atom in turn with a QI before being detected in the state $|1\rangle_p$.

The $|W\rangle$ state has only pair-wise entanglement, so we plot the tangle between pairs of qubits in figure 8, together with the probability of success and the fidelity. For an ideal $|W\rangle$ state the tangle between pairs of qubits is $\tau = 4/9$.

If each atom starts in an arbitrary superposition of $|0\rangle + \beta_j |1\rangle$, where j indexes the atoms, then after N cycles in each QI following the scheme in figure 7, we obtain

$$\langle \psi_N \rangle = \sum_{\beta_1, \beta_2} N^2 \left(\alpha_1 \alpha_2 a_3 |100\rangle + \alpha_1 \beta_2 a_3 |010\rangle + \alpha_1 \alpha_2 a_3 |001\rangle \right)$$

In figure 8 are plotted various performance parameters against N for generating the $|W\rangle$ state starting with a symmetric superposition in each atom.

As before we can access other W-states either by changing a Q to a Q_F and conditioning on $|1\rangle_p$, or by using local operations on the final state. By extending the circuit in figure 7 in the obvious way to more modes we can create higher order W-states such as $(|1000\rangle + |0100\rangle + |0010\rangle + |0001\rangle)/2$.

Finally we can use this technique to induce a GHZ state in three separated atoms by using two auxiliary photons as depicted in figure 9. Here, with the atoms prepared in superposition states, the first photon probes atoms one and two in turn, and the second photon probes atoms two and three in turn, before both photons are detected in the joint state $|00\rangle_{a_1a_2}$.

With the atoms each initially in the arbitrary superposition states $\alpha_j |0\rangle + \beta_j |1\rangle$, where j indexes the atoms, then after N cycles in each QI we get

$$\langle \psi_N \rangle = \sum_{\beta_1, \beta_2} N^2 \left(\alpha_1 \alpha_2 a_3 |000\rangle + \alpha_1 \beta_2 a_3 |011\rangle + \alpha_1 \alpha_2 a_3 |101\rangle \right)$$

In figure 10 we characterize the success of generating the state $(|100\rangle + |111\rangle)/\sqrt{2}$ with the three-way tangle τ_3, and the fidelity F, for atoms initially in equal superposition states.

It should be noted that the circuit in figure 5 is embedded within the circuit in figure 9 and in fact the construction can be extended recursively to generate states of the form $(|000\rangle + |111\rangle)/\sqrt{2}$ and higher. Also, as in the previous cases we can access other GHZ states.

It should be emphasized that in the three schemes presented in this section, the post selection ensures that the final states are pure states, as it selects specifically the cases where incoherent evolution has not occurred.
FIG. 10: The conditional generation of a GHZ state following the scheme in figure 9. Plotted as a function of the number cycles N through each QI is (i) the probability of successful operation P which has a limiting value of 2/64, (ii) the fidelity against the target Bell state F, and (iii) the 3-tangle τ_3 of the output state.

FIG. 11: Using a measurement with a classically conditioned Z gate (Pauli σ_z) to replace one of the quantum interrogations.

IV. PHOTON ENTANGLEMENT PREPARATION

In the previous section we used a photon to entangle separate atoms, in this section we’ll present a scheme to use an atom to entangle independent photons. With an atom in a superposition state we probe its state using n photons, in n consecutive QI’s as in figure 11. Measurement of the final state of the atom can be used to classically condition a gate (a Pauli σ_z transformation) on one of the photons.

An advantage of this scheme is that in the ideal quantum interrogation limit, it works deterministically — it is not conditioned on the detection of a particular result.

For this scheme and for finite N we have a more limited group of measures of how close we are to the ideal scheme. Where as in the previous, atom entangling, schemes the post selection ensured the final states would be pure; this is not the case for the photon entangling scheme. This means that not only will we end up with mixed states if we trace over the environment but some of those states will be outside our logical basis (for instance the case where there are no photons in either the top or the bottom mode). For this reason we shall only plot the fidelity against the desired state (in the ideal case where there are no absorptions). In figure 12 we plot the fidelity of the output state compared with the desired state, for circuits to generate a Bell state $((|00\rangle + |11\rangle) / \sqrt{2})$ and a GHZ state $((|000\rangle + |111\rangle) / \sqrt{2})$. Although the convergence is not as rapid as for the atom-entangling schemes we still approach the desired state in relatively few cycles.

V. CONCLUSIONS

To conclude, in this paper we have described how high efficiency quantum interrogation can be used to generate entangled particles. The protocols provide a mechanism by which two or more atoms can be entangled via a mediating photon (the photon can be thought of acting as a bus) or alternatively how two or more photons can be entangled via a mediating atom.

The attractive aspects of the proposal are the entanglement is created without making use of prior entangled states; the entanglement is tunable (i.e. using the same apparatus allows you to set the degree and type of entanglement, including accessing different classes of higher-order entanglement); and that for the atoms the entanglement is achieved in-situ, without needing to bring the atoms in proximity of each other.

Although the scheme presented here is idealised (perfect optical elements and no losses) a high degree of entanglement is achieved in remarkably few cycles in the quantum interrogation, leading to a hope that in real applications, entanglement by these schemes may be achievable with current technology.
Acknowledgements

This research was supported by the New Zealand Foundation for Research, Science and Technology under grant UQSL0001, AG would like to thank G.J. Milburn for stimulating and helpful discussions. AGW wishes to acknowledge D.F.V. James for previous discussions.

[41] It is also possible to define the Fidelity as $F = (\langle \psi_{\text{dashed}} | \psi_{\text{actual}} \rangle)^2$, and both definitions are used in the literature. Here we've chosen to follow the convention in [1].