COMMENT ON “EVIDENCE FOR NEUTRINOLESS DOUBLE BETA DECAY”

1 Pacific Northwest National Laboratory, Richland, WA, 99352, USA
2 Department of Physics and Astronomy, University of South Carolina, Columbia, SC 29208, USA
3 Institute for Theoretical and Experimental Physics, Moscow 117259, Russia
4 Department of Physics, California Institute of Technology, Pasadena, CA 91125, USA
5 Enrico Fermi Institute, University of Chicago, Chicago, IL 60637, USA
6 Center for Experimental Nuclear Physics and Astrophysics, University of Washington, Seattle, WA 98195, USA
7 International Institute for Advanced Studies, Kizu-cho, Kyoto, 619-0025 and JASRI, SPring-8, Hyogo 679-5198, Japan
8 Dipartimento di Fisica dell’ Universita’ di Milano-Bicocca and Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Italy
9 Department of Physics, Brown University, Providence, RI 02912, USA
10 Physics Department, Stanford University, Stanford, CA 94305, USA
11 Emeritus, Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA
12 Laboratory of Nuclear and High Energy Physics, University of Zaragoza, 50009 Zaragoza, Spain
13 Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487, USA
14 Department of Physics, Duke University, Durham, NC 27708, USA

Received (received date)
Revised (revised date)

The recent claim of the experimental observation of neutrinoless double-beta decay is discussed. A number of limitations in the analysis provided in that paper are illuminated. Consideration of these limitations leads to the conclusion that there is no basis for the claim presented in the paper.

1. Introduction

In a paper by Klapdor-Kleingrothaus, Dietz, Harney, and Krivosheina1 (Hereafter referred to as KDHK) evidence is claimed for zero-neutrino double-beta decay in 76Ge. The high quality data, upon which this claim is based, was compiled by the careful efforts of the Heidelberg-Moscow collaboration and is well documented2.

*Corresponding author
However, the analysis in KDHK makes an extraordinary claim and therefore requires very solid substantiation. In this letter, we outline our concerns to the claim of evidence.

Unfortunately, a large number of issues were not addressed in KDHK. Some of these issues are:

- There is no discussion of how a variation of the size of the chosen analysis window would affect the significance of the hypothetical peak.
- There is no relative peak strength analysis of all the ^{214}Bi peaks. Quantitative yield evaluations should be made on the four ^{214}Bi peaks in the region of interest.
- There is no null hypothesis analysis demonstrating that the data require a peak.
- There is no statement of the net count rate of the peaks other than the 2039-keV peak.
- There is no presentation of the entire spectrum. As a result it is difficult to compare relative peak strengths.
- There are three unidentified peaks in the region of analysis that have greater significance than the 2039-keV peak. There is no discussion of the origin of these peaks.
- There is no discussion of the relative peak strengths before and after the single-site-event cut. This is needed to elucidate the model of the peaks’ origins.
- No simulation has been performed to demonstrate that the analysis correctly finds true peaks or that it would find no peaks if none existed. Monte Carlo simulations of spectra with varying numbers of peaks confirming the significance of found peaks are needed.
- There is no discussion of how sensitive the conclusions are to different mathematical models. There is a previous Heidelberg-Moscow publication2 that gives a lower limit of 1.9×10^{25} y (90\% confidence level). This is in conflict with the “best value” of the new KDHK paper of 1.5×10^{25} y. This indicates a dependence of the results on the analysis model and the background evaluation.

Straightforward investigations of several of these issues create doubt as to the validity of the paper’s conclusions. Below we demonstrate this by briefly discussing the first two items in the above list. These concerns indicate that at best, KDHK failed in presenting a strong case for their extraordinary claim. At worst, suspect analyses or assumptions have led to an incorrect claim.

2. The Window Choice and Background

In Fig. 2 of KDHK, the count rate in the region of 2000-2080 keV is $0.168 \text{ c/(keV-kg-yr)}$ and in the 2034-2045 keV region it is $0.167 \text{ c/(keV-kg-yr)}$. These numbers indicate
a flat background and very little signal. However KDHK found numerous peaks in the 2000-2080 keV region during a peak search. Next, they constrained their double-beta decay ($\beta\beta$) analysis to a small region that excluded these peaks. Only an analysis within that limited region is used to indicate a 2039-keV peak at the 2-3 σ level. The conclusion in KDHK depends heavily on the window choice and the number of peaks in the region near the window. In particular, it requires that the other peaks found are real so that the background level will be diminished.

3. The Relative Strength of the ^{214}Bi Peaks

The KDHK paper provides data only in the 2000-2080 keV region. However a recent paper by the Heidelberg-Moscow collaboration2 (hereafter referred to as HM) shows the entire spectrum from 100-2700 keV, which permits a relative-intensity peak analysis. Although the two data sets are not entirely congruent, they are very similar having 47.4 kg-y of data (HM) and 46.5 kg-y of data (KDHK). They both quote comparable backgrounds in the 2000-2080 keV region.

The table below summarizes an analysis of the ^{214}Bi peak intensities as given in HM and compared to KDHK. The first column gives the peak energy of seven of the ^{214}Bi lines: three major lines spanning the region of interest and the four weak lines that might appear in the region of interest. KDHK claims to have observed lines at the positions of the 4 weak ^{214}Bi lines.

Table 1. A comparison of the intensities of the ^{214}Bi lines. The count rates for the peaks labeled as Ref. Peak come from Ref.2. The relative efficiency for the peaks in the 2000-2080 keV region is an interpolated value based on the 3 reference peaks.

<table>
<thead>
<tr>
<th>Peak (keV)</th>
<th>Rate (c/(kg·yr))</th>
<th>Branching Ratio3</th>
<th>Relative Efficiency</th>
<th>Expected Rate (c/(kg·yr))</th>
</tr>
</thead>
<tbody>
<tr>
<td>609.3</td>
<td>10.92</td>
<td>44.8%</td>
<td>1</td>
<td>Ref. Peak</td>
</tr>
<tr>
<td>1764.5</td>
<td>4.06</td>
<td>15.36%</td>
<td>1.08</td>
<td>Ref. Peak</td>
</tr>
<tr>
<td>2010.7</td>
<td>-</td>
<td>0.05%</td>
<td>1.11</td>
<td>0.0135</td>
</tr>
<tr>
<td>2016.7</td>
<td>-</td>
<td>0.0058%</td>
<td>1.11</td>
<td>0.0016</td>
</tr>
<tr>
<td>2021.8</td>
<td>-</td>
<td>0.02%</td>
<td>1.11</td>
<td>0.0054</td>
</tr>
<tr>
<td>2052.9</td>
<td>-</td>
<td>0.078%</td>
<td>1.11</td>
<td>0.021</td>
</tr>
<tr>
<td>2204.2</td>
<td>1.34</td>
<td>4.86%</td>
<td>1.13</td>
<td>Ref. Peak</td>
</tr>
</tbody>
</table>

The rates for the 3 major peaks given in Column 2 were calculated by integrating the spectrum in HM. For those 3 peaks, the fourth column is the relative peak count rate divided by the branching fraction. If the efficiency were the same for all peak energies, these should all have the same value. In fact, peak efficiency is rarely independent of energy, and here it actually slightly increases with increasing energy.

Since the relative counting efficiency is virtually flat as a function of energy, all peaks in the 2000-2080 keV region are assigned the same interpolated number. The last column uses the measured ^{214}Bi disintegration rate from the three major (and prominent) peaks and calculates the expected count rate for the four minor ^{214}Bi peaks in KDHK. These rates are all ≤ 0.02 c/(kg·yr) and therefore much too low
to be observed as peaks superimposed upon a background of 0.17 c/(keV·kg·yr) in Fig. 2 of KDHK. One is led to conclude that there are no observable 214Bi peaks in the 2000-2080 keV region. That is, the 214Bi peaks found by KDHK in the region of interest appear to be spurious.

4. Conclusions

A simple analysis of the 214Bi peaks demonstrates that the peak finding procedure used by KDHK produced spurious peaks near the $\beta\beta(0\nu)$ endpoint. However, the existence of these claimed peaks is crucial to the KDHK claim of a peak at 2039 keV interpreted as zero-neutrino double-beta decay. Hence, all the peaks claimed in the 2000-2080 keV region may be spurious leaving the entire count rate due to a flat uniform background. Alternatively, if all the peaks are real but unidentified, the putative 2039-keV feature may be simply another of those unidentified lines.

These two examples emphasize the importance of addressing all the items listed in the Introduction. By failing to address these issues, the KDHK paper does not support its claim of evidence for $\beta\beta(0\nu)$.

5. Acknowledgements

We would like to acknowledge supportive discussions with Dale Anderson, Laura Baudis, Theodore Bowyer, David Jordan, Bela Majorovits, William Pitts, Eric Smith, Bob Thompson, Albert Young, and Igor Kirpichnikov.

The preprint by Feruglio, Strumia, and Vissani with criticisms of the KDHK result became available during the preparation of this manuscript.

6. References