center of the velocity class that experiences a transition.

The two Raman beams are orthogonally linearly polarized and drive the magnetic field independent Raman transition between \(|5S_{1/2}, F = 2, m_F = 0 \rangle \) denoted \([2]\) and \(|5S_{1/2}, F = 3, m_F = 0 \rangle \) denoted \([3]\). A 750 mG magnetic field oriented along the beam propagation direction lifts the degeneracy of the Zeeman levels in the \(F = 2 \) and \(F = 3 \) manifolds. Atoms which are not in the \(m_F = 0 \) state are out of Raman resonance and make no transitions. The Raman beams propagate at 43° with respect to the evanescent wave propagation vector in the \(xz \)-plane. It is therefore necessary to rotate the magnetic field adiabatically while the atoms fall to the mirror in order that they be in an eigenstate of the polarization (nearly circular) of the evanescent wave. After reflection the magnetic field is turned back to coincide with the propagation direction of the Raman beams.

To generate the Raman beams (separated by \(\omega_{32}/2\pi = 3.036 \) GHz), we modulate the injection current of a free running diode laser at 1.5 GHz and inject the \(\pm 1 \) sidebands into two slave laser diodes (each diode is injected by one sideband). Before injection, the laser beam passes through a Fabry-Perot cavity of 3 GHz spectral range, a finesse of 130, and locked to the two sideband wavelengths to filter out the carrier wavelength and the \(\pm 2 \) sidebands. After injection, each Raman beam passes through an acousto-optic modulator (AOM). An arbitrary function generator modulates these AOMs to produce Blackman pulses \([14]\) of the desired duration. Observation of the beat note between the two slave laser beams indicates a relative frequency spread less than 20 Hz (equal to the resolution bandwidth of the spectrum analyser) sufficiently narrow that the Raman transition width is not limited by the Raman phase coherence.

To test our setup, we first make a velocity selection and immediately analyse it with a second Raman pulse. At \(t = 0 \), we prepare the atoms in the \(F = 3 \) state. At \(t = 8 \) ms we apply a Raman \(\pi \) pulse with a detuning \(\delta_\pi \) to transfer atoms to \([2]\). Then comes a pushing beam resonant with the \(5S_{1/2} \rightarrow 5P_{3/2} \) transition which removes all the atoms remaining in \(F = 3 \). At \(t = 22 \) ms we apply a second Raman “analysis” \(\pi \) pulse with a detuning \(\delta_\Delta \) to transfer atoms back to \([3]\). The atoms in the \(F = 3 \) level are detected via the fluorescence induced by a retroreflected probe laser resonant with the \(5S_{1/2} \rightarrow 5P_{3/2} \) transition and collected in a 0.1 sr solid angle on a photomultiplier tube. No repumper is present in order to avoid detection of atoms in the \(F = 2 \) level.

We repeat the sequence with a different value of \(\delta_\Delta \) in order to acquire a linear velocity distribution of incident atoms (Figure 2a). The half width at 1/\(\sqrt{e} \) of the distribution is 7.5 kHz. This width is consistent with what is expected for a 150 \(\mu \)s Blackman pulse. The curve demonstrates a velocity selection width for a single pulse of 0.33 \(v_{\text{esc}} \) (HW at 1/\(\sqrt{e} \)) along the propagation direction of the Raman beams. This is about 20 times narrower than the velocity width in the MOT. Because the analysis sequence has the same resolution as the selection sequence, our velocity resolution is \(\sqrt{2} \) times larger, that is 0.47 \(v_{\text{esc}} \). This resolution is 3 times better than what was used in Ref. [1].

To observe the effect of the reflection on the transverse velocity, we proceed in a manner analogous to that described above (see Fig. 1). At \(t = 0 \) we prepare the atoms in the \(F = 2 \) level. The Raman selection pulse transfers a narrow velocity class to \([3]\) at \(t = 8 \) ms. The atoms then fall onto the mirror. The frequency of the evanescent wave is tuned to the blue of the \(F = 3 \) resonance to the excited state of the \(D_2 \) line, and to the red of the \(F = 2 \) resonance. Atoms in \(F = 2 \) do therefore not reflect from the mirror. After reflection (\(t = 120 \) ms), the analysis pulse transfers some atoms back into \([2]\). Next the pushing beam removes the atoms remaining in the \(F = 3 \) level and finally we detect the atoms transferred to \([2]\) with the probe laser and the repumper.

Atoms which have not been selected by the first Raman selection pulse can contribute to a background if they happen to be pumped into the \([3]\) state (by the evanescent wave, for example) during their trajectory. We measure this background using the same sequence described just above with the selection detuning \(\delta_\pi \) tuned far from resonance. In our data acquisition we alternate between normal and background measurements and subtract the background on each shot. The detuning of the analysis pulse \(\delta_\Delta \) is scanned randomly over the desired values, and we acquire and average about 3 \(\times 10^{5} \) measurements for each value of \(\delta_\Delta \) to acquire a spectrum such as that shown in Fig. 2b. The peak value in Fig. 2b corresponds to about \(10^{5} \) atoms detected per pulse. Typical values of the background in this case correspond to about \(3 \times 10^{5} \) atoms. Despite this substraction, we observe a non-zero background in Figs. 2 and 3. This background appears to be due to atoms which reflect from the mirror but are pumped into the \(F = 2 \) state after reflection.

With this system, we first checked that the atoms obey the law of reflection, that is the reflected angle is equal to the incident one. We vary the mean velocity of the initial distribution by choosing an appropriate \(\delta_\pi \), and verify that the center of the reflected velocity distribution varies by the same amount. We have noted a non-zero intercept of this linear dependence which we attribute to a slight tilt (about 1°) in the mirror relative to the horizontal.

For a reflection to be regarded as truly specular, the velocity distribution must remain unchanged after reflection. Figure 2b shows the velocity distribution (the number of atoms detected in the \(F = 2 \) state after the Raman analysis pulse) after the bounce. One distinguishes a narrow peak whose width appears identical to the initial one, and a broad pedestal whose center is shifted by 7.9 kHz, an amount corresponding to a 0.5% \(k_\pi \) momentum transfer with respect to the narrow one along the observation direction. This transfer is in the same direction as the evanescent wave propagation vector, and remains so when the evanescent wave (Ti:S laser direction is re-
versed (that is it also reverse).

In an attempt to understand the origin of the pedestal, we acquired several reflected velocity distributions under differing conditions; two examples are shown in Fig. 3. Each such distribution is fitted to a sum of two Gaussians plus a flat background. We first examined the parameters of the pedestal as a function of the evanescent wave detuning Δ_{EW}. We observed little variation of the width and the shift relative to the narrow peak. To simplify the study of the relative contribution of the two components, we fixed the width of the narrow peak at the measured width of the resolution function. We also fixed the width of the pedestal and the shift at the average values of our preliminary fits: the pedestal width was fixed to be that of the convolution of our resolution function and a Gaussian of 18 kHz rms and the shift to be 7.9 kHz. Using this analysis we can measure the fraction S of atoms detected in the narrow peak as a function of Δ_{EW}. (See Fig. 4.) The data are well fit by $S = \exp(-\alpha/\Delta_{EW})$ with $\alpha = 1.1$ GHz.

The above detuning dependence immediately suggests spontaneous emission within the evanescent wave which reduces the number of speckularly reflected atoms by a factor of $\exp(-N_{SE})$. A simple estimate of N_{SE}, the average number of spontaneous emissions, is given by $N_{SE} = 2\pi/(\lambda_{nm} R) \times \Gamma/\Delta_{EW}$, where $\Gamma/2\pi = 5.0$ MHz is the natural linewidth of the atomic transition. [8, 15]. A better estimate includes the modification of the potential due to the van der Waals interaction [16], the modification of the spontaneous emission rate close to the surface [17], and an average of these effects over the mirror surface. We find, in our range of detunings, that N_{SE} still varies as Δ_{EW}^{-1} to a good approximation but with a probability about 1.5 times higher. To calculate S one must also take into account the fact that at large detunings the branching ratio for falling back into the $F = 3, m_F = 0$ state, the only one we detect, is 2/3. This factor cancels the increase in N_{SE} due to the effects of the dielectric surface. One predicts therefore $S = \exp(-\alpha_{SE}/\Delta_{EW})$ with $\alpha_{SE} = 0.55$ GHz. There appears to be too little spontaneous emission (by a factor of 2) to entirely explain our results.

In addition, spontaneous emission in the evanescent wave should result in an average momentum transfer of $\hbar k_x$ along x, that is, a shift of the broad pedestal of $\hbar k_x \cos(45^\circ) = 1.1 k_{EL}$ along the Raman beam direction instead of the $0.5 k_{EL}$ that we observe. This observation confirms the above conclusion that spontaneous emission in the evanescent wave is only partly responsible for our observations. This is in contrast to the study of Ref. [8] which used a very small value of κ to get a large number of spontaneous emissions in the evanescent wave.

Another mechanism which causes diffuse reflection is discussed in Ref. [12]. It involves scattered Ti:S light which interferes with the evanescent wave. The interference produces a rough potential which diffusely scatters the atoms. This mechanism does not involve spontaneous emission. The scattered light could come either from the surface roughness, inhomogeneities in the bulk of the prism or some other object such as a prism edge. Using the results in Ref. [12] one can show that the propagating modes of the scattered light would cause S to vary as $\exp(-\alpha_{R}/\Delta_{EW})$. Where α_{R} depends on the amount of scattered light. The pedestal due to this effect should exhibit no shift relative to the specular peak. Since spontaneous emission is responsible for about one half the pedestal, we expect a pedestal shifted by about one half of the shift due to spontaneous emission alone in good agreement with our observations. Since both effects have the same Δ_{EW} dependence the observed shift should not depend on the detuning.

Another possible explanation for the pedestal is spontaneous emission induced by the stray light above the prism while the atoms fall towards the mirror. Indeed, in experiments in which we left the evanescent wave laser on for 40 ms while the atoms fell towards the mirror, we observed an optical pumping of the atoms from their initial hyperfine state (F=3) to the other hyperfine state (F=2) (about 10% of the atoms were lost in this way at $\Delta_{EW} = 940$ MHz). This mechanism predicts that S should vary as $\exp(-\beta/\Delta_{EW})$, where β is a constant which depends on the mean light intensity experienced by the atoms. As shown in Fig. 4 the data are not consistent with this dependence.

Thus we believe that we have identified the source of the diffuse reflection in our experiment as the sum the effects of the scattering of atoms from a potential induced by the random interference pattern of the evanescent wave and stray light, and spontaneous emission in the evanescent wave. According to this interpretation we have 1.1 GHz = $\alpha_{R} + \alpha_{SE}$ and we can work out the effective mirror roughness associated with α_{R}. We find $\sigma \approx 0.3$ nm, a value much larger than the prism’s measured surface roughness (0.07 nm). Since the effective mirror roughness due to light scattering by the prism surface is of the order of the surface roughness itself [12], we presume that most of the stray light is from other sources.

We turn now to an analysis of the narrow peak. Since the area under the broad peak can be reduced by increasing the detuning Δ_{EW}, the essential question is “How faithfully is the initial velocity distribution reproduced in the narrow peak?”. To characterize this effect, we compare the width of the narrow peak to that of the resolution function (atomic experimental velocity distribution before the bounce) for 36 runs acquired at different values of Δ_{EW}. We now fit the experimental curves by a sum of two Gaussians with all parameters adjustable except for the width and center of the broad peak. Averaging over 36 measurements, we find $\sigma_{\text{meas}}^2 - \sigma_{\text{res}}^2 = - (0.13 \text{ cm s}^{-1})^2 \pm (0.08 \text{ cm s}^{-1})^2$, where σ_{meas} and σ_{res} are the half widths at 1/8 of the two curves after the bounce, and the uncertainty is the standard deviation of the weighted mean of our 36 measurements. A negative sign in the result is not necessarily unphysical because it could be due for example, to a slightly con-
cave reflecting surface which collimates the atoms. We do not consider this deviation from zero to be statistically significant, however. We conclude that the observed reflection is consistent with a specular reflection to within about 0.1 \(\text{r.m.s.} \). Our limit is a factor of 10 better than our previous best result [1].

To compare our results with those of Refs. [2] and [4], we calculate the rms angular deviation of an effective reflecting surface from perfectly plane: \(\sigma_\theta = \frac{1}{\sqrt{2} \, v_{\text{in}}} \), where \(v_{\text{in}} \) is the incident atomic velocity on the mirror and \(v_{\text{rms}} \) is the rms transverse velocity added by the mirror. Using the upper limit \(v_{\text{rms}} < 0.1 \text{ r.m.s.} \), we find that the effective mirror surface is flat to within uncertainty of 0.5 mrad.

Thus, we conclude that at sufficiently large detunings, it is possible to produce a highly specular mirror for atomic de Broglie waves. By analogy with photonic optics, the double structure we observe suggests that we are in the regime where the roughness of the atomic mirror is small compared to the wavelength of the reflected matter wave. In that regime, the specular peak corresponds to a "perfectly" coherent reflection, and it should be possible to test this property in an atom interferometer. Interferometric experimental studies are in progress.

Acknowledgments

We acknowledge the assistance of C. Aussibal and thank C. Henkel and J. Thywissen for useful discussions. This work was supported by the European Union under grants IST-1999-11055, and HPRN-CT-2000-00125, and by the DGA grant 99.34.050.

FIG. 1: a) Level diagram for velocity selective stimulated Raman transitions. The frequencies ω_a and ω_b of the two counterpropagating laser beams are separated by the ^{85}Rb hyperfine frequency ω_{23} plus the Raman detuning δ. b) Sequence used in our experiment to select and analyze a narrow velocity class. The selection Raman pulse is applied as the atoms begin to fall toward the mirror and the analysis pulse comes at the top of their trajectory after the bounce. The Raman beams propagate at 45° to the x-axis in the xz-plane.

b) FIG. 2: Transverse atomic velocity distribution before (a) and after reflection (b) with $\Delta_{SW} = 2.4$ GHz. We scan the detuning δ of the second Raman pulse. The solid line of (a) is a Gaussian fit to the data (the half width at 1/\sqrt{e}$ corresponds to 0.47 v_{rms}). In (b), in addition to the data, we have plotted the same Gaussian as in (a), normalized to the height of the data in (b) in order to emphasize the presence of a pedestal.
FIG. 3: Atomic velocity distribution for two different values of Δ_{EW}. The solid lines show a fit using two Gaussian curves as described in the text. Both the individual Gaussians as well as their sum are shown. Each atom results in about 100 detected photons.

FIG. 4: Variation of S the fraction of atoms in the narrow peak as a function of the evanescent wave detuning Δ_{EW}. The solid line (slope -1) corresponds to $S = \exp(-\alpha/\Delta_{EW})$. The dashed line (slope -2) corresponds to $S = \exp(-\beta/\Delta_{EW}^2)$. Here α and β are fit parameters.