Comment on “Time-like flows of energy-momentum and particle trajectories for the Klein–Gordon equation”

Roderich Tumulka

February 26, 2002

Abstract

Horton, Dewdney, and Nesteruk [1] have proposed Bohm-type particle trajectories accompanying a Klein–Gordon wave function ψ on Minkowski space. From two vector fields on space-time, W^+ and W^-, defined in terms of ψ, they intend to construct a timelike vector field W, the integral curves of which are the possible trajectories, by the following rule: at every space-time point, take either $W = W^+$ or $W = W^-$ depending on which is timelike.

This procedure, however, is ill-defined as soon as both are timelike, or both spacelike. Indeed, they cannot both be timelike, but they can well both be spacelike, contrary to the central claim of [1]. We point out the gap in their proof, provide a counterexample, and argue that, even for a rather arbitrary wave function, the points where both W^+ and W^- are spacelike can form a set of positive measure.

Let $\psi = e^{P+iS}$ (where P and S are real) solve the Klein-Gordon equation, $-\Box \psi = m^2 \psi$. Set $P_\mu = \partial_\mu P$, $S_\mu = \partial_\mu S$, and

$$\theta = \sinh^{-1} \frac{P_\mu P_\mu - S_\mu S_\mu}{2 P_\mu S_\mu}.$$

That P_μ and S_μ are orthogonal is an exceptional case that we neglect, like the authors of [1]. For W_μ one is supposed to take either $W^+_\mu = e^{\theta} P_\mu + S_\mu$.

*address: Mathematisches Institut der Universität München, Theresienstr. 39, D-80333 München, Germany. E-mail: tumulka@mathematik.uni-muenchen.de
or \(W^- = -e^{-\theta}P_\mu + S_\mu \), depending on which is timelike; they cannot both be timelike since they are orthogonal. The question is, could they both be spacelike?

The authors of \cite{1} declare that \(W^+ \) and \(W^- \) cannot both be spacelike and argue like this: otherwise there exists a Lorentz frame such that \(W^+_0 = 0 \) and \(W^-_0 = 0 \), thus \(e^\theta P_0 = -e^{-\theta}P_0 \), from which they conclude \(e^\theta = -e^{-\theta} \), which is impossible.

There are two mistakes in this argument. On the one hand, that two vectors are both spacelike does not mean they are both contained in a spacelike hyperplane (corresponding to \(x^0 = 0 \) in the appropriate Lorentz frame): think of \((1, 2, 0, 0)\) and \((0, 2, 0, 0)\), two spacelike vectors whose difference is timelike, so they cannot lie in a spacelike hyperplane. On the other hand, even if \(W^+ \) and \(W^- \) do lie in a spacelike hyperplane, no contradiction would arise since in this case \(P_0 \) would be 0 (in the frame described above).

\(W^+ \) and \(W^- \) lying in the same spacelike hyperplane amounts to \(P_\mu \) and \(S_\mu \) lying in that hyperplane. Can this case occur? Clearly: since the Klein–Gordon equation is of second order, one may choose \(\psi \) and \(\partial_0 \psi \) ad libitum on the \(x^0 = 0 \) hyperplane. Can it also occur for the first-order Klein–Gordon equation \(-i\partial_0 \psi = \sqrt{m^2 - \Delta} \psi \), or, equivalently, for functions from the positive-energy subspace? Here is an example: let \(\psi \) be a superposition of three\(^1\) plane waves

\[
\psi(x) = \sum_{i=1}^{3} c_i e^{ik_{\mu}^{(i)} x^\mu}
\]

with wave vectors \(k_{\mu}^{(1)} = (m, 0, 0, 0) \), \(k_{\mu}^{(2)} = (\sqrt{27m}, \sqrt{26m}, 0, 0) \), \(k_{\mu}^{(3)} = (\sqrt{27m}, 0, \sqrt{26m}, 0) \), and \(c_1 = 3, c_2 = -1/\sqrt{3} - i, c_3 = i \). Then, at the coordinate origin, we find \(P_\mu = (0, \alpha, -\alpha, 0) \) and \(S_\mu = (0, -\beta, 0, 0) \) with \(\alpha = \sqrt{26m}/\gamma, \beta = \alpha/\sqrt{3} \) and \(\gamma = 3 - 1/\sqrt{3} \). This example could also be made square-integrable by replacing the plane waves \(\exp(ik_{\mu}^{(i)} x^\mu) \) by positive-energy \(L^2 \) Klein–Gordon functions \(\varphi^{(i)}(x) \) with the properties \(\varphi^{(i)}(0) = 1 \) and \(\partial_\mu \varphi^{(i)}(0) = ik_{\mu}^{(i)} \).

One may suspect, however, that perhaps this particular wave function \(\psi \) is very exceptional, and perhaps even that for this special wave function the coordinate origin is a rather atypical point, so that the sort of situation

\(^1\)Two will not suffice for an example since \(P_\mu \) and \(S_\mu \) are linear combinations of the \(k_\mu \) vectors.
just described can be ignored. After all, we would be willing to ignore the case where P_μ and S_μ are orthogonal because in the 8-dimensional space of all possible pairs of vectors P_μ, S_μ it corresponds to a subset of dimension 7, and therefore one would expect that the space-time points where this happens form a set of measure zero.

But since $W_\mu^+ W^{\mu+}$ and $W_\mu^+ W^{\mu-}$ are continuous functions of P_μ and S_μ, the set of pairs P_μ, S_μ where both W^+ and W^- are spacelike is open and thus has positive measure in 8 dimensions. (The same is true of the set of pairs P_μ, S_μ such that the 2-plane they span contains solely spacelike vectors.)

I know of nothing precluding any pairs P_μ, S_μ from arising from a Klein–Gordon wave function, so it seems reasonable to expect that the space-time points with spacelike W^+ and W^- form a set of positive measure for many wave functions, perhaps for most.

Acknowledgements. I wish to thank Sheldon Goldstein for improvements and simplifications of the arguments.

References