Traditionally, the quantum Brownian motion is described by Fokker-Planck or diffusion equations in terms of quasi-probability distribution functions, e.g., Wigner functions. These often become singular or negative in the full quantum regime. In this paper a simple approach to non-Markovian theory of quantum Brownian motion using true probability distribution functions is presented. Based on an initial coherent state representation of the bath oscillators and an equilibrium canonical distribution of the quantum mechanical mean values of their co-ordinates and momenta we derive a generalized quantum Langevin equation in c-numbers and show that the latter is amenable to a theoretical analysis in terms of the classical theory of non-Markovian dynamics. The corresponding Fokker-Planck, diffusion and the Smoluchowski equations are the exact quantum analogues of their classical counterparts. The present work is independent of path integral techniques. The theory as developed here is a natural extension of its classical version and is valid for arbitrary temperature and friction (Smoluchowski equation being considered in the overdamped limit).

PACS number(s) : 05.40.-a, 05.30.Ch, 02.50.-r

I. INTRODUCTION

A model quantum system coupled to its environment forms the standard paradigm of quantum Brownian motion. The initiation of early development of this stochastic process took place around the middle of this century [1–3]. A major impetus was the discovery of laser in sixties followed by significant advancement in the field of quantum optics and laser physics in seventies where the extensive applications of nonequilibrium quantum statistical methods were made. Various nonlinear optical processes/phenomena were described with the help of operator Langevin equations, density operator methods and the associated quasi-classical distribution functions of Wigner, Glauber, Sudarshan and others centering around the quantum Markov processes [1–6]. Subsequent to this early development the quantum theory of Brownian motion again emerged as a subject of immense interest in early eighties when the problem of macroscopic quantum tunneling was addressed by Leggett and others [7–11] and almost simultaneously quantum Kramers’ problem attracted serious attention of a number of workers [12–15]. The method which received major appreciation in eighties and nineties in the wide community of physicists and chemists in these studies is the real time functional integral [16,17]. This method has been shown to be an effective tool for treatment of quantum transition state [18], dissipative quantum coherence effects [8,19] as well as incoherent quantum tunneling processes [13,14,20] and many related problems [21].

Inspite of this phenomenal success it may, however, noted that compared to classical theory quantum theory of Brownian motion based on functional integrals rests on a fundamentally different footing. While the classical theory is based on the differential equations for evolution of true probability density functions of the particle executing Brownian motion, the path integral methods rely on non-canonical quantization procedure and the evaluation of quantum partition function of the particle interacting with the heat bath and one is, in general, led to the time evolution equations of quasi-probability distribution functions such as Wigner functions [15,22–26]. The question is whether there is any natural extension of classical method to quantum domain in terms of true probability distribution functions. It is therefore worthwhile to seek for a natural extension of the classical theory of Brownian motion to quantum domain in the non-Markovian regime for arbitrary friction and temperature within the framework of a well-behaved true probabilistic description.

Our aim in this paper is thus twofold :

(i) to enquire whether there exists a quantum generalized Langevin equation (QGLE) in c-numbers whose noise correlation satisfies the quantum fluctuation-dissipation relation (FDR) but which (QGLE) at the same time is a natural analogue of its classical counterpart.

(ii) to formulate the exact quantum Fokker-Planck and diffusion equations which are valid for arbitrary temperature and friction. We also intend to look for the overdamped limit to obtain the exact quantum analogue of classical Smoluchowski equation.
Before proceeding further it is important to stress the motivation for the present scheme:

(1) As we have already pointed out that the traditional theories of quantum Brownian motion in optics [1–5] and condensed matter physics [7] are based on quasi-probability functions. Apart from their usual shortcomings that they may become negative or singular [27] in the full quantum regime when the potential is nonlinear, the quasi-probability functions are, in general, not valid for non-Markovian processes with arbitrary noise correlation. While in majority of the quantum optical situations Markovian description is sufficient, non-Markovian effects of noise correlation are strongly felt in the problem of quantum dissipation in condensed matter and chemical physics at low temperature. To include these effects even in the case of a free particle [see for example, Ref. [11]] one has to use a suitable cut-off frequency of the heat bath to avoid intrinsic low frequency divergence. Clearly this poses serious difficulties for studying transient behavior for arbitrary noise correlation and temperature. In what follows we show that the present treatment is free from such difficulties.

(2) Our second motivation is to understand quantum-classical correspondence in the problem of Brownian motion in a transparent way. To this end we note that in the classical theory the Fokker-Planck equation with nonlinear potential contains derivatives of probability distribution functions up to second order. The equations in terms of Wigner functions on the other hand involve higher (than two) order derivatives of distribution functions in the corresponding quantum formulation [28]. The higher derivative terms contain powers of ħ and derivatives of potential signifying purely quantum diffusion in which quantum corrections and nonlinearity of the potential get entangled in the description of the system. Because of the occurrence of higher derivatives the positivity of the distribution function is never ensured and the equation cannot be treated as a quantum analogue of classical Fokker-Planck equation. Any attempt to reduce the order of the derivatives to two amounts to a semiclassical approximation. Again there exists no systematic procedure for this reduction. Keeping in view of these problems we intend to derive exact quantum analogues [Eqs. (42), (47) and (50)] of classical Fokker-Planck, diffusion and Smoluchowski equations, respectively, in terms of true probability distribution function where the equations contain derivatives of distribution functions up to second order only for which the diffusion coefficients are positive definite. Since the equations are classical looking in form but quantum mechanical in their content one can read the quantum drift and diffusion coefficients and also construct the quantum corrections due to the nonlinearity of the system systematically order by order in a straightforward way so that quantum-classical correspondence can be checked simply by taking limit ħ → 0 both in Markovian and in non-Markovian description. We mention in passing that in contrast to a recent treatment [29] of large friction limit in a similar context, the quantum Smoluchowski equation as discussed here retains its validity in the full quantum regime as T → 0.

(3) Since over the last two decades classical non-Markovian theories [30,31] and numerical methods of generating classical noise processes have made a significant progress [32–34], the mapping of quantum theory of Brownian motion into a classical form, as achieved here, suggests that the classical treatment can be extended to quantum domain without much difficulty. Since the present scheme describes the generation of quantum noise [Eqs. (10) and (11)] as classical numbers which follow quantum fluctuation-dissipation relation it is easy to comprehend that the classical numerical techniques of generation of noise and solving stochastic Langevin equation [32–34] can be utilized in the present case in a straightforward way to solve quantum Langevin equation [35]. The procedure is therefore much easy to implement compared to other methods like path integral Monte Carlo techniques [36].

In what follows we consider the standard system-reservoir model and make use of the coherent state representation of the bath oscillators to derive a GLE for quantum mechanical mean value of position of a particle in contact with a thermal bath whose quantum mechanical properties can be defined in terms of a classical-looking noise term and a canonical distribution of initial quantum mechanical mean values of the co-ordinates and momenta of the bath. This simple approach allows us to show that although the equation is essentially quantum mechanical it is amenable to a theoretical analysis in terms of the classical theory of non-Markovian dynamics [30,31].

The rest of the paper is organized as follows: The system reservoir model, the associated QGLE and the canonical distribution for the bath oscillators have been introduced in Sec. II. This is followed by a general analysis of QGLE in Sec. III and an illustration with an exponential memory kernel in Sec. IV to calculate the variances required for setting up a quantum Fokker-Planck equation and a quantum diffusion equation in sections V and VI, respectively. Section VII is devoted to quantum overdamped limit and Smoluchowski equation. The paper is summarized and concluded in Sec. VIII.

II. THE QUANTUM GENERALIZED LANGEVIN EQUATION (QGLE) IN C-NUMBERS

We consider a particle in a medium. The latter is modeled as a set of harmonic oscillators with frequency \(\{ \omega_i \} \). Evolution of such a quantum open system has been studied over the last several decades under a variety of reasonable assumptions. Specifically our interest here is to develop an exact description of quantum Brownian motion within the
pervious of this model described by the following Hamiltonian [37],
\[\hat{H} = \frac{\hat{p}^2}{2} + V(\hat{x}) + \sum_j \left[\frac{\hat{p}^2}{2} + \frac{1}{2} \kappa_j (\hat{q}_j - \hat{x})^2 \right]. \] (1)

Here \hat{x} and \hat{p} are co-ordinate and momentum operators of the particle and the set \{ \hat{q}_j, \hat{p}_j \} is the set of co-ordinate and momentum operators for the reservoir oscillators coupled linearly to the system through their coupling coefficients κ_j. The potential $V(\hat{x})$ is due to the external force field for the Brownian particle. The co-ordinate and momentum operators follow the usual commutation relation $[\hat{x}, \hat{p}] = i\hbar$ and $[\hat{q}_j, \hat{p}_j] = i\hbar \delta_{ij}$. Note that in writing down the Hamiltonian no rotating wave approximation has been used.

Eliminating the reservoir degrees of freedom in the usual way [1,38–40] we obtain the operator Langevin equation for the particle,
\[\ddot{\hat{x}}(t) + \int_0^t dt' \gamma(t-t') \dot{\hat{x}}(t') + V'(\hat{x}) = \hat{F}(t), \] (2)

where the noise operator $\hat{F}(t)$ and the memory kernel $\gamma(t)$ are given by
\[\hat{F}(t) = \sum_j \{ [\hat{q}_j(0) - \hat{x}(0)] \kappa_j \cos \omega_j t + \hat{p}_j(0) \kappa_j^{1/2} \sin \omega_j t \} \] (3)

and
\[\gamma(t) = \sum_j \kappa_j \cos \omega_j t, \] (4)

with $\kappa_j = \omega_j^2$ (masses have been assumed to be unity).

The Eq.(2) is an exact quantized operator Langevin equation which is now a standard textbook material [1,4] and for which the noise properties of $\hat{F}(t)$ can be defined using a suitable initial canonical distribution of the bath co-ordinates and momenta. Our aim here is to replace it by an equivalent QGLE in c-numbers. Again this is not a new problem so long as one is restricted to standard quasi-probabilistic methods using, for example, Wigner functions [15,22–26]. To address the problem of quantum non-Markovian dynamics in terms of a true probabilistic description we, however, follow a different procedure. We first carry out the quantum mechanical average of Eq.(2)
\[\langle \ddot{x}(t) \rangle + \int_0^t dt' \gamma(t-t') \langle \dot{x}(t') \rangle + \langle V'(\dot{x}) \rangle = \langle \hat{F}(t) \rangle \] (5)

where the average $\langle \ldots \rangle$ is taken over the initial product separable quantum states of the particle and the bath oscillators at $t = 0$, $|\phi\rangle \{ |\alpha_1\rangle |\alpha_2\rangle \ldots |\alpha_N\rangle \}$. Here $|\phi\rangle$ denotes any arbitrary initial state of the particle and $|\alpha_i\rangle$ corresponds to the initial coherent state of the i-th bath oscillator. $|\alpha_i\rangle$ is given by $|\alpha_i\rangle = \exp(-|\alpha_i|^2/2) \sum_{n_i=0}^{\infty} (\alpha_i^{n_i}/\sqrt{n_i!}) |n_i\rangle$, α_i being expressed in terms of the mean values of the co-ordinate and momentum of the i-th oscillator, $\langle \hat{q}_i(0) \rangle = (\sqrt{\hbar/2\omega_i}) (\alpha_i + \alpha_i^{\ast})$ and $\langle \hat{p}_i(0) \rangle = i\sqrt{\hbar\omega_i/2} (\alpha_i^{\ast} - \alpha_i)$, respectively. It is important to note that $\langle \hat{F}(t) \rangle$ of Eq.(5) is a classical-like noise term which, in general, is a non-zero number because of the quantum mechanical averaging over the co-ordinate and momentum operators of the bath oscillators with respect to the initial coherent states and arbitrary initial state of the particle and is given by
\[\langle \hat{F}(t) \rangle = \sum_j \left[\{ \langle \hat{q}_j(0) \rangle - \langle \hat{x}(0) \rangle \} \kappa_j \cos \omega_j t + \langle \hat{p}_j(0) \rangle \kappa_j^{1/2} \sin \omega_j t \right]. \] (6)

It is convenient to rewrite the c-number equation (5) as follows;
\[\langle \ddot{x}(t) \rangle + \int_0^t dt' \gamma(t-t') \langle \dot{x}(t') \rangle + \langle V'(\dot{x}) \rangle = F(t) \] (7)

where we let the quantum mechanical mean value $\langle \hat{F}(t) \rangle = F(t)$. We now turn to the second averaging. To realize $F(t)$ as an effective c-number noise we now assume that the momenta $\langle \hat{p}_j(0) \rangle$ and the shifted co-ordinates $\{ \langle \hat{q}_j(0) \rangle - \langle \hat{x}(0) \rangle \}$ of the bath oscillators are distributed according to a canonical distribution of Gaussian forms as
so that for any quantum mechanical mean value \(\langle O_j(\hat{\rho}_j(0)), \{\hat{q}_j(0) - \langle \hat{x}(0) \rangle \} \rangle \) the statistical average \(\langle \ldots \rangle_S \) is

\[
\langle O_j \rangle_S = \int O_j(\langle \hat{\rho}_j(0) \rangle, \{\hat{q}_j(0) - \langle \hat{x}(0) \rangle \} \rangle \times P_j(\langle \hat{\rho}_j(0) \rangle, \{\hat{q}_j(0) - \langle \hat{x}(0) \rangle \} \rangle) \ d\langle \hat{\rho}_j(0) \rangle \ d\{\hat{q}_j(0) - \langle \hat{x}(0) \rangle \} .
\]

Here \(\bar{n}_j \) indicates the average thermal photon number of the \(j \)-th oscillator at temperature \(T \) and \(\bar{n}_j = 1/\exp(\hbar \omega_j/k_B T) - 1 \) and \(\mathcal{N} \) is the normalization constant.

The distribution (8) and the definition of statistical average (9) imply that \(F(t) \) must satisfy

\[
\langle F(t) \rangle_S = 0
\]

and

\[
\langle F(t) F(t') \rangle_S = \frac{1}{2} \sum_j \kappa_j \hbar \omega_j \left(\coth \frac{\hbar \omega_j}{2k_B T} \right) \cos \omega_j(t - t') .
\]

That is, the c-number noise \(F(t) \) is such that it is zero centered and satisfies the standard quantum fluctuation-dissipation relation (FDR) as known in the literature [38] in terms of quantum statistical average of the noise operators.

To proceed further we now add the force term \(\gamma(t) X(t') \) on both sides of Eq.(7) and rearrange it to obtain formally

\[
\dot{X}(t) + \int_0^t dt' \gamma(t - t') X(t') + V'(X) = F(t) + Q(X, t)
\]

where we let \(\langle \hat{x}(t) \rangle = X(t) \) for simple notational convenience and

\[
Q(X, t) = V'(\langle \hat{x} \rangle) - \langle V'(\hat{x}) \rangle
\]

represents the quantum mechanical dispersion of the force operator \(V'(\hat{x}) \) due to the system degree of freedom. Since \(Q(t) \) is a quantum fluctuation term Eq.(12) offers a simple interpretation. This implies that the classical looking QGLE is governed by a c-number quantum noise \(F(t) \) which originates from the quantum mechanical heat bath characterized by the properties (10) and (11) and a quantum fluctuation term \(Q(t) \) due to the quantum nature of the system characteristic of the nonlinearity of the potential. In Sec. VII we give a recipe for calculation of \(Q(t) \).

Summarizing the above discussions we point out that it is possible to formulate a QGLE (12) of the quantum mechanical mean value of position of a particle in a medium, provided the classical-like noise term \(F(t) \) satisfies (10) and (11) where the ensemble average has to be carried out with the distribution (8). It is thus apparent that to realize \(F(t) \) as a noise term we have split up the standard quantum statistical averaging procedure into a quantum mechanical mean \(\langle \ldots \rangle \) by explicitly using an initial coherent state representation of the bath oscillators and then a statistical average \(\langle \ldots \rangle_S \) of the quantum mechanical mean values. Two pertinent points are to be noted: First, it may be easily verified that the distribution of quantum mechanical mean values of the bath oscillators (8) reduces to classical Maxwell-Boltzmann distribution in the thermal limit, \(\hbar \omega_j \ll k_B T \). Second, the vacuum term in the distribution (8) prevents the distribution of quantum mechanical mean values from being singular at \(T = 0 \); or in other words the width of distribution remains finite even at absolute zero, which is a simple consequence of uncertainty principle.

III. GENERAL ANALYSIS: DAMPED FREE PARTICLE

It is now convenient to rewrite QGLE (12) of quantum mechanical mean value of position of a particle in the absence of any external force field in the form

\[
\dot{X}(t) + \int_0^t dt' \gamma(t - t') \dot{X}(t') dt' = F(t)
\]

\(\gamma(t) \) is the dissipative memory kernel as given by Eq.(4) and \(F(t) \) is the zero centered stationary noise, i.e.,

\[
\langle F(t) \rangle_S = 0 \quad \text{and} \quad \langle F(t) F(t') \rangle_S = C(|t - t'|) = C(\tau)
\]
where $C(t)$ is the correlation function which in the equilibrium state is connected to the memory kernel $\gamma(t)$ through FDR of the form [7]

$$C(t - t') = \frac{1}{2} \int_0^\infty d\omega \kappa(\omega) \varrho(\omega) h \omega \left(\coth \frac{h \omega}{2k_B T} \right) \cos \omega(t - t') \quad (16)$$

Eq.(16) is the continuum version of Eq.(11). $\varrho(\omega)$ denotes the density of modes of the bath oscillators. Here it is important to note that Eq.(16) is the generalized FDR valid at any arbitrary temperature T. $\gamma(t - t')$ is the continuum version of Eq.(4) and is given by

$$\gamma(t - t') = \int_0^\infty d\omega \kappa(\omega) \varrho(\omega) \cos \omega(t - t'). \quad (17)$$

In the high temperature limit, i.e., for $h \omega \ll k_B T$ we arrive at the well-known classical FDR of the second kind [41]

$$C(t - t') = k_B T \gamma(t - t'). \quad (18)$$

The general solution of Eq.(14) is given by

$$X(t) = \langle X(t) \rangle_S + \int_0^t H(t - \tau) F(\tau) \, d\tau \quad (19)$$

where

$$\langle X(t) \rangle_S = X_0 + V_0 h(t) \quad (20)$$

with $X_0 = X(0)$ and $V_0 = \dot{X}(0)$ being the initial quantum mechanical mean values of position and velocity of the particle, respectively. $H(t)$ is the inverse form of the Laplace transform

$$\tilde{H}(s) = \frac{1}{s^2 + s \tilde{\gamma}(s)} \quad (21)$$

with

$$\tilde{\gamma}(s) = \int_0^\infty \gamma(t) e^{-st} \, dt \quad (22)$$

is the Laplace transform of dissipative memory kernel $\gamma(t)$. The time derivative of Eq.(19) gives

$$V(t) = \langle V(t) \rangle_S + \int_0^t h(t - \tau) F(\tau) \, d\tau \quad (23)$$

where

$$\langle V(t) \rangle_S = V_0 \tilde{h}(t) \quad (24)$$

and

$$\tilde{h}(t) = \frac{dH(t)}{dt}. \quad (25)$$

Hence

$$\tilde{h}(s) = \frac{1}{s + \tilde{\gamma}(s)}. \quad (26)$$

Before proceeding further it is important to recall the physical significance of the two function $H(t)$ and $h(t)$. It has already been assumed that the initial quantum mechanical velocity V_0 is independent of the random force $F(t)$,

$$\langle V_0 F(t) \rangle_S = 0. \quad (27)$$

Thus multiplying Eqs. (19) and (23) by V_0 and using relation (27) we obtain,
Hence $H(t)$ and $h(t)$ are the two relaxation functions; $h(t)$ measures how the quantum mechanical mean velocity forgets its initial value and $H(t)$ measures how the quantum mechanical mean displacement forgets the initial velocity. As a result quantum mechanical mean velocity of the particle relaxes to a stationary state with zero statistical average of the quantum mechanical mean velocity.

Now using the symmetry property of the correlation function

$$\langle F(t)F(t')\rangle_S = C(t-t') = C(t'-t)$$

and using the solution for $X(t)$ and $V(t)$ we obtain the following expressions of the variances,

$$\sigma^2_{XX}(t) \equiv \langle [X(t) - \langle X(t) \rangle_S]^2 \rangle_S$$

$$= 2 \int_0^t H(t_1) \, dt_1 \int_0^{t_1} H(t_2) \, C(t_1 - t_2) \, dt_2 , \quad (30a)$$

$$\sigma^2_{VV}(t) \equiv \langle [V(t) - \langle V(t) \rangle_S]^2 \rangle_S$$

$$= 2 \int_0^t h(t_1) \, dt_1 \int_0^{t_1} h(t_2) \, C(t_1 - t_2) \, dt_2 \quad \text{and} \quad (30b)$$

$$\sigma^2_{XV}(t) \equiv \langle [X(t) - \langle X(t) \rangle_S] [V(t) - \langle V(t) \rangle_S] \rangle_S = \frac{1}{2} \sigma^2_{XX}(t)$$

$$= \int_0^t H(t_1) \, dt_1 \int_0^t h(t_2) \, C(t_1 - t_2) \, dt_2 . \quad (30c)$$

The above three expressions are valid for arbitrary temperature and friction and include quantum effects. However in the high temperature classical limit (i.e., $h\omega \ll k_B T$) one can derive simplified versions of the variances

$$\sigma^2_{XX}(t) = k_B T \left[2 \int_0^t H(t') \, dt' - H^2(t) \right] , \quad (31a)$$

$$\sigma^2_{VV}(t) = k_B T \left[1 - h^2(t) \right] \quad \text{and} \quad (31b)$$

$$\sigma^2_{XV}(t) = k_B T \, H(t) [1 - h(t)] . \quad (31c)$$

Before closing this section we emphasize a pertinent point at this stage. The (30a)-(30c) are the expressions for statistical variances of the quantum mechanical mean values X and V. These are not to be confused with the standard quantum mechanical variances which are connected through uncertainty relations.

IV. A SPECIFIC EXAMPLE : EXponentially CORRELAted MEMORY KERNEL

The very structure of $\gamma(t)$ given in Eq.(17) suggests that it is quite general and a further calculation requires a prior knowledge of the density of modes $\rho(\omega)$ of the bath oscillators. As an explicit case we consider in the continuum limit,

$$\kappa(\omega) \rho(\omega) = \frac{2}{\pi} \frac{\gamma_0}{1 + \omega^2 \tau_c^2}$$

so that $\gamma(t)$ takes the well-known form,

$$\gamma(t) = \frac{\gamma_0}{\tau_c} \, e^{-t/\tau_c} ,$$

where γ_0 is the damping constant and τ_c refers to correlation time of the noise. Once we get an explicit expression of $\gamma(t)$ in closed form and its Laplace transform, it is possible to make use of Eq.(21) to calculate the relaxation function $H(t)$, which for the present case is given by

$$H(t) = \frac{1}{\gamma_0} \left[1 - A e^{-t/2\tau_c} \sin(\omega t + \alpha) \right]$$

(34)
\[
\mathcal{A} = \frac{\gamma_0}{\lambda}, \quad \lambda = \left(\frac{\gamma_0}{\tau_c} - \frac{1}{4\tau_c^2}\right)^{1/2} \quad \text{and} \quad \alpha = \tan^{-1}\left(\frac{2\lambda \tau_c}{1 - 2\gamma_0 \tau_c}\right). \tag{35}
\]

Now making use of the expressions for \(H(t)\) and the correlation function \(C(t)\) in Eqs.(30a)-(30c) we calculate explicitly after a long but straightforward algebra the time dependent expressions of the variances of the quantum mechanical mean value of position and momentum of the particle,

\[
\sigma_{XX}^2(t) = \frac{2\hbar}{\pi} \int_0^{\infty} \frac{\omega}{1 + \omega^2 \tau_c^2} \left(\coth \frac{\hbar \omega}{2k_B T}\right) \mathcal{F}_X(\omega, t) \, d\omega \tag{36}
\]

\[
\sigma_{VV}^2(t) = \frac{2\gamma_0 \hbar}{\pi \lambda^2} \int_0^{\infty} \frac{\omega}{1 + \omega^2 \tau_c^2} \left(\coth \frac{\hbar \omega}{2k_B T}\right) \mathcal{F}_V(\omega, t) \, d\omega \tag{37}
\]

and

\[
\sigma_{XV}^2(t) = \frac{1}{2} \dot{\sigma}_{XX}^2(t). \tag{38}
\]

In Appendix-A we provide the explicit structures of \(\mathcal{F}_X(\omega, t)\) and \(\mathcal{F}_V(\omega, t)\).

To examine the consistency of our calculation we check long time behaviour of the classical high temperature Ohmic limit of the variances \(\sigma_{XX}^2(t)\) and \(\sigma_{VV}^2(t)\). In this limit we have

\[
\sigma_{XX}^2(t) = \frac{4k_B T}{\pi} \int_0^{\infty} d\omega \frac{1}{1 + \omega^2 \tau_c^2} \mathcal{F}_X(\omega, t)
\]

Only the first term of \(\mathcal{F}_X(\omega, t)\) gives the long time behaviour of \(\sigma_{XX}^2(t)\) in the Markovian limit, contribution of the rest of the terms being zero. Taking this leading order contribution we have

\[
\sigma_{XX}^2(t) = \frac{4k_B T}{\pi \gamma_0} \int_0^{\infty} d\omega \frac{1}{1 + \omega^2 \tau_c^2} \frac{1}{\omega^2} (1 - \cos \omega t) = \frac{8k_B T}{\pi \gamma_0} \left. \left(\frac{1}{1 + \omega^2 \tau_c^2}\right) \right|_{\omega=0} \int_0^{\infty} d\omega \frac{\sin \frac{1}{2} \omega t}{\omega^2}
\]

which gives

\[
\sigma_{XX}^2(t) = \frac{2k_B T \gamma_0}{t} \quad \text{for} \quad t \to \infty. \tag{39}
\]

Similarly one can show that for classical high temperature Markovian limit

\[
\sigma_{VV}^2(t) = k_B T \quad \text{for} \quad t \to \infty. \tag{40}
\]

Since we are unable to evaluate analytically further the explicit time dependent structures of the variances in the general case, we take resort to numerical integration of Eqs.(36) and (37). In Figs.(1) and (2) we show the short time and long time behaviour of the variances \(\sigma_{XX}^2(t)\) as functions of time for different values of temperature but for a fixed value of correlation time, \(\tau_c\). It is apparent that while the short time dynamics has a simple \(t^2\) behaviour, asymptotic dependence is linear in \(t\) with a clear cross-over around some intermediate time. Fig.(3) exhibits the asymptotic constancy of \(\sigma_{VV}^2(t)\) as a function of time for different temperatures. The effect of correlation time \(\tau_c\) on the variance \(\sigma_{XX}^2(t)\) has been examined in Fig.(4) for a fixed high temperature \(k_B T = 10.0\). It is interesting to note that the cross-over region gets longer for larger correlation time.

Figs.(5) and (6) illustrate the zero temperature situation. In this regime non-Markovian effects are strong which is evident from vacuum fluctuations growing in time in an oscillatory fashion at early stages for different values of correlation time as shown in Fig.(5). In Fig.(6) we show how the initial growth of variance \(\sigma_{VV}^2(t)\) finally settles down to a constant non-thermal energy value.
We now return to our general analysis as carried out in Sec. III. To write down the Fokker-Planck description for the evolution of probability density function of quantum mechanical mean values of co-ordinate and momentum of the particle it is necessary to consider the statistical distribution of noise which we assume here to be Gaussian. For Gaussian noise processes we define the joint characteristic function in terms of the standard mean values and variances as follows:

\[
\tilde{P}(\mu, \rho, t) = \exp \left[i\mu \langle X(t) \rangle_s + i\rho \langle V(t) \rangle_s - \frac{1}{2} \left\{ \sigma_{XX}^2(t) \mu^2 + 2\sigma_{XV}^2(t) \mu \rho + \sigma_{VV}^2(t) \rho^2 \right\} \right].
\] (41)

Using the standard procedure [30,31] we write down below the Fokker-Planck equation (FPE) obeyed by the joint probability density function \(P(X, V, t)\) which is the inverse Fourier transform of the characteristic function:

\[
\left(\frac{\partial}{\partial t} + V \frac{\partial}{\partial X} \right) P(X, V, t) = \xi(t) \frac{\partial}{\partial V} VP(X, V, t) + \varphi(t) \frac{\partial^2}{\partial V^2} P(X, V, t)
\]

\[
+ \psi(t) \frac{\partial^2}{\partial X \partial V} P(X, V, t),
\] (42)

where

\[
\xi(t) = -\dot{h}(t)/h(t),
\]

\[
\varphi(t) = \xi(t) \sigma_{VV}^2(t) + \frac{1}{2} \sigma_{VV}^2(t) \quad \text{and}
\]

\[
\psi(t) = -\sigma_{VV}^2(t) + \xi(t) \sigma_{VV}^2(t) + \sigma_{XX}^2(t).
\] (43c)

The above FPE is the exact quantum mechanical version of the classical non-Markovian FPE and is valid at any arbitrary temperature and friction.

The decisive advantage of the present approach is again noteworthy. We have mapped the operator generalized Langevin equation into a generalized Langevin equation in \(c\)-numbers (14) and its equivalent Fokker-Planck equation (42). The present approach bypasses the earlier methods of quasi-probabilistic distribution functions employed widely in quantum optics over the decades [1–5] in a number of ways. First, unlike the quasi-probabilistic distribution functions, the probability distribution function \(P(X, V, t)\) is valid for non-Markov processes. Second, while the corresponding characteristic functions for quasi-probabilistic distribution functions are operators, we make use of characteristic functions which are numbers. Third, as pointed out earlier the quasi-distribution functions often become negative or singular in the strong quantum domain and pose serious problems. The present approach is free from such shortcomings since the probability density function, \(P(X, V, t)\) behaves here as a true probability function rather than a quasi-probability function.

VI. GENERALIZED QUANTUM DIFFUSION EQUATION

In their landmark paper on classical Brownian motion Ornstein and Uhlenbeck [42] solved the classical Markovian FPE to find \(P(X, V, t)\) and then in a bid to obtain Einstein’s diffusion equation tried to evaluate \(p(X, t)\), the probability density function in configuration space by integrating over \(V\). It was shown that it is difficult, if not impossible to obtain a differential equation for \(P(X, V_0, t)\) from the classical Markovian FPE which for \(t \gg 1/\gamma_0\) would become a diffusion equation. However, for the classical non-Markovian case Mazo [30] in late seventies addressed this problem by considering an initial Maxwellian distribution \(\Phi(V_0)\) of the initial velocity \(V_0\) and then derived the exact differential equation satisfied by \(P(X, t)\) where

\[
p(X, t) = \int P(X, V_0, t) \Phi(V_0) \, dV_0.
\]

The resulting equation thus reduces to the diffusion equation for \(t \gg 1/\gamma\). We follow Mazo’s procedure to derive an exact quantum mechanical version of the classical non-Markovian case, a differential equation which for \(t \gg 1/\gamma\) goes over into a quantum diffusion equation. To this end we proceed as follows; from Eq.(41) for \(\rho = 0\) case we have
\[\dot{\tilde{p}}(\mu, t) = \int \tilde{p}(\mu, t) \Phi(V_0) \, dV_0 \]
\[= \exp\left(-\frac{1}{2} \mu^2 \sigma^2_{2X}(t)\right) \exp(i\mu X_0) \\int \exp[i\mu V_0 H(t)] \Phi(V_0) \, dV_0 . \]

Here we take the initial Gaussian distribution of the quantum mechanical mean values of the velocity of the particle,
\[\Phi(V_0) = \left(\frac{1}{2\pi \Delta_0}\right)^{1/2} \exp\left(-\frac{V_0^2}{2\Delta_0}\right) \]

where
\[\Delta_0 = \varphi(\infty)/\xi(\infty) . \]

It is not difficult to note that the above choice is dictated by the stationary solution of the QFPE (42), i.e., (45) satisfies (42) at equilibrium. The explicit time-dependent expressions for \(\varphi(t) \) and \(\xi(t) \) have been given in (43a) and (43b). Inserting Eq.(45) in (44) and then performing the inverse Fourier transform after integration over \(V_0 \) we arrive at the following equation after little algebra,
\[\frac{\partial p(X,t)}{\partial t} = D_q(t) \frac{\partial^2 p(X,t)}{\partial X^2} . \]

This is the quantum analogue of Einstein’s diffusion equation where the explicit structure of the time-dependent quantum diffusion coefficient, \(D_q(t) \) is given by,
\[D_q(t) = \sigma^2_{2X}(t) + \Delta_0 H(t)h(t) . \]

The required variances, the relaxation functions and other related quantities in Eq.(48) are given in (30c), (25), (21) and (46). We now discuss the limiting cases. For classical Markovian limit the variance \(\sigma^2_{2X}(t) \) gives \(k_B T/\gamma_0 \) for \(t \gg 1/\gamma_0 \) and the second term in \(D_q(t) \) vanishes in the long time limit, so that we recover Einstein’s diffusion coefficient in configuration space. In the low temperature, however, the quantum effects begin to dominate. It is interesting to note that based on Feynman-Vernon path integral technique [16,17], Hakim and Ambegaokar [11] had considered explicit quantum corrections to classical diffusion to examine the differential behavior of high and low temperature dependence in the dynamics for Leggett-Caldeira initial conditions. The non-Markovian nature of the dynamics is taken into account by considering the frequency dependence of the bath with a suitable low frequency cut-off. The transient behavior in the quantum correction to classical diffusion is therefore only observable on the timescales longer than the inverse cut-off frequency. The present treatment being exact, equipped to deal with arbitrary noise correlation at all temperatures and free from divergences does not require any such cut-off. The quantum diffusion coefficient can be followed arbitrarily from transient to the asymptotic regions. To explore the associated non-Markovian nature of the dynamics in the present case it is necessary to go over to numerical evaluation of \(D_q(t) \). In Fig.(7) \[\text{compare with Fig. 1 of Ref. [11]} \] we plot the variation of quantum diffusion coefficient \(D_q(t) \) for several values of temperatures as a function of time for the exponential memory kernel considered in our example in Sec. IV. It is apparent that while the short time behaviour is characterized by a sharp increase followed by a maximum, the diffusion coefficient settles down to a constant value in the asymptotic limit. The short time behaviour is dominated by the second term in (48) due to the relaxation functions \(H(t) \) and \(h(t) \) of which the latter vanishes in the long time limit. Again the first term in (48) offers no contribution to diffusion coefficient from its classical part in the vacuum limit at \(T = 0 \). The solid curve in Fig.(7) thus shows the evolution of a non-thermal diffusion coefficient of pure quantum origin.

VII. QUANTUM SMOLUCHOWSKI EQUATION

We now consider the diffusion of a particle in an external potential \(V(X) \) as described by QGLE (12). In the overdamped limit we drop the inertial term \(\dot{X}(t) \) and the damping kernel \(\gamma(t - t') \) is reduced to \(\gamma_0 \delta(t - t') \) for vanishing \(\tau_c \) in (33). \(\gamma_0 \) is the Markovian limit of dissipation. Eq.(12) then assumes the following form
\[\dot{X} + \frac{1}{\gamma_0} [V'(X) - Q(X,t)] = \frac{F(t)}{\gamma_0} . \]

Expressing \(V'(X) - Q(X,t) \) as a derivative of an effective quantum potential \(V_{\text{quant}}(X,t) \) with respect to \(X \), the equivalent description in terms of true probability distribution function \(p(X,t) \) is given by
\[
\frac{\partial p(X,t)}{\partial t} = \frac{1}{\gamma_0} \frac{\partial}{\partial X} \left[V_{quant}^{\prime}(X,t)p(X,t) \right] + D_{qo} \frac{\partial^2 p}{\partial X^2}. \tag{50a}
\]

with

\[
V_{quant}^{\prime}(X,t) = V'(X) - Q(X,t) \tag{50b}
\]

where \(Q(X,t)\) is defined in (13). Here \(D_{qo}\) is the quantum diffusion coefficient in the overdamped limit which can be obtained with the help of the following definition [1]

\[
2D_{qo} = \frac{1}{\Delta t} \int_{t}^{t+\Delta t} dt_1 \int_{t}^{t+\Delta t} dt_2 \frac{1}{\gamma_0} \langle F(t_1)F(t_2) \rangle_S. \tag{51}
\]

Here the correlation function \(\langle F(t_1)F(t_2) \rangle_S / \gamma_0^2\) of the c-number quantum noise is given by Eq. (16) in the continuum limit. We then make use of Eq. (32) for vanishing \(\tau_c\) in (51) to obtain after explicit integration

\[
D_{qo} = \frac{1}{2\gamma_0} \hbar \bar{\omega} [2\hbar \bar{\omega} + 1] \tag{52}
\]

where the frequency \(\bar{\omega}\) in (52) refers to linearized frequency of the nonlinear system [1]. We now discuss the classical and vacuum limits of the quantum Smoluchowski equation (50a). It is easy to check that in the limit \(\hbar \bar{\omega} \ll k_B T\), \(D_{qo}\) reduces to Einstein’s classical diffusion coefficient \(k_B T/\gamma_0\). At the same time \(Q(X,t)\) vanishes so that \(V_{quant}^{\prime}(X,t)\) goes over to \(V'(X)\) and one recovers the usual classical Smoluchowski equation. In the opposite limit as \(T \to 0\), however, both quantum noise due to nonlinearity of the system and vacuum fluctuation originating from the heat bath make significant contribution. \(D_{qo}\) in this limit assumes the form \(\hbar \bar{\omega}/2\gamma_0\). In this context we refer to a recent treatment on large friction limit in quantum dissipative dynamics [29] to point out that the latter theory does not retain its full validity as \(T \to 0\) since the quantum noise of the heat bath disappears in the vacuum limit.

The second noteworthy feature about the quantum Smoluchowski equation (50a) is that unlike Wigner function based equations [28] it does not contain higher order (higher than second) derivatives of \(p(X,t)\). The positive definiteness of the probability distribution function is thus ensured.

It is important to emphasize at this juncture that so far as the general formulation of the theory is concerned, Eq. (50a) contains quantum corrections to all orders. In this sense Eq. (50a) is formally an exact quantum analogue of classical Smoluchowski equation. To make it more explicit we return to the quantum mechanics of the system in Heisenberg picture to write the operators \(\hat{x}\) and \(\hat{p}\) as

\[
\hat{x}(t) = \langle \hat{x}(t) \rangle + \delta \hat{x} \quad \text{and} \quad \hat{p}(t) = \langle \hat{p}(t) \rangle + \delta \hat{p}. \tag{53}
\]

\(\langle \hat{x}(t) \rangle\) and \(\langle \hat{p}(t) \rangle\) are the quantities signifying quantum mechanical averages and \(\delta \hat{x}\) and \(\delta \hat{p}\) are quantum corrections. By construction \(\langle \delta \hat{x} \rangle\) and \(\langle \delta \hat{p} \rangle\) are zero and they obey the commutation relation \(\delta \hat{x}, \delta \hat{p} = i\hbar\). Using (53) in \(\langle V'(\hat{x}) \rangle\) and a Taylor expansion around \(\langle \hat{x} \rangle\) it is possible to express \(Q(X,t)\) as [see Eq. (13)]:

\[
Q(X,t) = -\sum_{n \geq 2} \frac{1}{n!} V_{n+1}(X) \langle \delta \hat{x}^n(t) \rangle \tag{54a}
\]

where \(V_n(X)\) is the \(n\)-th derivative of the potential at \(X(\equiv \langle \hat{x} \rangle)\). Eq. (54a) suggests a simple expression for an effective potential \(V_{quant}(X,t)\) as

\[
V_{quant}(X,t) = V(X) + \sum_{n \geq 2} \frac{1}{n!} V_n(X) \langle \delta \hat{x}^n(t) \rangle \tag{54b}
\]

where the classical potential \(V(X)\) gets modified by the quantum corrections to all orders. To solve quantum Smoluchowski equation it is therefore necessary to calculate \(\langle \delta \hat{x}^2(t) \rangle\), \(\langle \delta \hat{x}^3(t) \rangle\), etc. To the lowest order \(\langle \hat{x} \rangle\) and \(\langle \delta \hat{x}^2 \rangle\) follow a coupled set of equations as given below

\[
\frac{d}{dt} \langle \hat{x} \rangle = \langle \hat{p} \rangle \tag{55a}
\]

\[
\frac{d}{dt} \langle \hat{p} \rangle = -V'(\langle \hat{x} \rangle) - \frac{1}{2} V'''(\langle \hat{x} \rangle) \langle \delta \hat{x}^2 \rangle \tag{55b}
\]

\[
\frac{d}{dt} \langle \delta \hat{x}^2 \rangle = \langle \delta \hat{x} \delta \hat{p} + \delta \hat{p} \delta \hat{x} \rangle \tag{55c}
\]

\[
\frac{d}{dt} \langle \delta \hat{x} \delta \hat{p} + \delta \hat{p} \delta \hat{x} \rangle = 2 \langle \delta \hat{p}^2 \rangle - 2V''(\langle \hat{x} \rangle) \langle \delta \hat{x}^2 \rangle \tag{55d}
\]

\[
\frac{d}{dt} \langle \delta \hat{p}^2 \rangle = -V''(\langle \hat{x} \rangle) \langle \delta \hat{x} \delta \hat{p} + \delta \hat{p} \delta \hat{x} \rangle. \tag{55e}
\]
The above set of equations can be derived [43] from the Heisenberg’s equation of motion. If one is interested in the local dynamics around a point (say, at the bottom or top of the potential well), the set of equations get decoupled and it is easy to obtain simple analytic solutions of (55a)-(55c) for \(\langle \hat{x} \rangle \) and \(\langle \delta \hat{x}^2 \rangle \) for (54a). The higher order estimates (e.g., fourth order) of the quantum corrections can be obtained from the solutions of the equations of successive higher order derived earlier by Sundaram and Milonni [43] or otherwise [44]. Since the quantum corrections due to the system are calculated by different sets of equations for successive orders, the measure of accuracy of truncation can be understood easily. It is, therefore, obvious that the present scheme provides a simple, systematic and quantitative estimate of the mean field and other decorrelation methods on the basis of quantum-classical correspondence.

VIII. CONCLUSIONS

The main purpose of this paper is to enquire whether a stochastic differential equation in \(c \)-numbers in the form of a generalized Langevin equation and its corresponding Fokker-Planck equation and diffusion equation and Smoluchowski equation in terms of true probability functions are viable for description of non-Markovian quantum Brownian motion. Based on an initial coherent state representation of bath oscillators and an equilibrium distribution of quantum mechanical mean values of their co-ordinates and momenta, which satisfy the essential properties of the associated noise of the bath degrees of freedom, we derive a QGLE for quantum mechanical mean value of the position of the particle. The main conclusions of this study are the following:

(i) Our QGLE (14) is amenable to analysis in terms of the methods developed earlier for the treatment of classical non-Markovian theory of Brownian motion.

(ii) The generalized Langevin equation (12), the corresponding Fokker-Planck equation (42) and the diffusion equation (47) and also the Smoluchowski equation (50a) are the exact quantum analogues of their classical versions [30,31]. The probability distribution functions as employed here bear the true notion of statistical probability rather than that of quasi-probability.

(iii) The theory of quantum Brownian motion developed here is valid for arbitrary noise correlation and temperature and is free from divergences.

(iv) The realization of noise as a classical-looking entity which satisfies quantum fluctuation-dissipation relationship (11) allows ourselves to envisage quantum Brownian motion as a natural extension of its classical counterpart. The method is based on canonical quantization procedure and makes no reference to path integral formulations.

We conclude by mentioning that the method discussed here is promising for simple differential equation based approaches [15] to quantum activated processes, tunneling problems as shown elsewhere [45], quantum ratchet [46–48] and in problems relating to the motion in periodic fields [49–52] and allied issues.

ACKNOWLEDGMENTS

The authors are indebted to the Council of Scientific and Industrial Research (C.S.I.R.), Government of India for financial support.

APPENDIX A: THE EXPLICIT FORMS OF \(F_X(\omega, T) \) AND \(F_V(\omega, T) \)

\(F_X(\omega, t) \) consists of eleven terms which are given below:

\[
F_X(\omega, t) = F_X^{(1)}(\omega, t) + F_X^{(2)}(\omega, t) + F_X^{(3)}(\omega, t) + F_X^{(4)}(\omega, t) + F_X^{(5)}(\omega, t) + F_X^{(6)}(\omega, t) + F_X^{(7)}(\omega, t) + F_X^{(8)}(\omega, t) + F_X^{(9)}(\omega, t) + F_X^{(10)}(\omega, t) + F_X^{(11)}(\omega, t).
\]

(A1)

The explicit structures of \(F_X^{(i)}(\omega, t) \) (\(i = 1, \ldots, 11 \)) are given by

\[
F_X^{(1)}(\omega, t) = \frac{1}{\gamma_0 \omega^2} (1 - \cos \omega t),
\]

(A2)
\[F^{(2)}_{\chi}(\omega, t) = \frac{AA_3^{(\omega)}}{\gamma_0 \omega} [\cos(\alpha + \omega t) - \cos \alpha] - \frac{AA_4^{(\omega)}}{\gamma_0 \omega} [\cos(\alpha - \omega t) - \cos \alpha] \\
- \frac{AA_5^{(\omega)}}{\gamma_0 \omega} [\sin(\alpha + \omega t) - \sin \alpha] + \frac{AA_6^{(\omega)}}{\gamma_0 \omega} [\sin(\alpha - \omega t) - \sin \alpha], \quad (A3) \]

\[F^{(3)}_{\chi}(\omega, t) = -\frac{AA_1^{(\omega)}}{2\gamma_0^2} \left[e^{t/2\tau_c} \{\sin(\lambda t + \alpha) + 2\lambda \tau_c \cos(\lambda t + \alpha)\} \right. \\
- \{\sin \alpha + 2\lambda \tau_c \cos \alpha\}, \quad (A4) \]

\[F^{(4)}_{\chi}(\omega, t) = -\frac{AA_2^{(\omega)}}{2\gamma_0^2} \left[e^{t/2\tau_c} \{\cos(\lambda t + \alpha) - 2\lambda \tau_c \sin(\lambda t + \alpha)\} \right. \\
- \{\cos \alpha - 2\lambda \tau_c \sin \alpha\}, \quad (A5) \]

\[F^{(5)}_{\chi}(\omega, t) = \frac{A^2 A_3^{(\omega)}}{8\gamma_0^2} \left[e^{t/2\tau_c} \{\sin(2(\lambda t + \alpha) + 2\lambda \tau_c \cos(2(\lambda t + \alpha))\} \right. \\
- \{\sin 2\alpha + 2\lambda \tau_c \cos 2\alpha\}, \quad (A6) \]

\[F^{(6)}_{\chi}(\omega, t) = A^2 A_1^{(\omega)} \left(\frac{\tau_c}{2\gamma_0} \right) \left[e^{t/\tau_c} + \frac{e^{t/\tau_c}}{4\gamma_0^2 \tau_c} \{2\lambda \tau_c \sin(2(\lambda t + \alpha) - \cos 2(\lambda t + \alpha))\} \right. \\
- \left\{ 1 + \frac{1}{4\gamma_0^2 \tau_c} (2\lambda \tau_c \sin 2\alpha - \cos 2\alpha) \right\}, \quad (A7) \]

\[F^{(7)}_{\chi}(\omega, t) = -\frac{A}{\gamma_0 \omega} A_3^{(\omega)} \left[e^{-t/2\tau_c} (2\tau_c (\lambda - \omega) \sin[\alpha + (\lambda - \omega)t] - \cos[\alpha + (\lambda - \omega)t]) \\
- 2\tau_c (\lambda - \omega) \sin \alpha + \cos \alpha \right. \\
- A_4^{(\omega)} \left\{ e^{-t/2\tau_c} (2\tau_c (\lambda + \omega) \sin[\alpha + (\lambda + \omega)t] - \cos[\alpha + (\lambda + \omega)t]) \right\} \\
- 2\tau_c (\lambda + \omega) \sin \alpha + \cos \alpha \right\}, \quad (A8) \]

\[F^{(8)}_{\chi}(\omega, t) = \frac{A^2 A_3^{(\omega)}}{\gamma_0} \left[A_4^{(\omega)} \left\{ e^{-t/2\tau_c} (2\tau_c (\lambda - \omega) \sin(\lambda - \omega)t - \cos(\lambda - \omega)t) + 1 \right\} \\
- 2\tau_c (\lambda - \omega) \sin \alpha + \cos \alpha \right. \\
- A_4^{(\omega)} \left\{ e^{-t/2\tau_c} (2\tau_c (\lambda + \omega) \sin[2\alpha + (\lambda + \omega)t] - \cos[2\alpha + (\lambda + \omega)t]) \right\} \\
- (2\tau_c (\lambda + \omega) \sin 2\alpha - \cos 2\alpha) \right\}, \quad (A9) \]

\[F^{(9)}_{\chi}(\omega, t) = \frac{A^2 A_4^{(\omega)}}{\gamma_0} \left[A_3^{(\omega)} \left\{ e^{-t/2\tau_c} (2\tau_c (\lambda + \omega) \sin(\lambda + \omega)t - \cos(\lambda + \omega)t) + 1 \right\} \\
- 2\tau_c (\lambda + \omega) \sin 2\alpha + \cos 2\alpha \right. \\
- A_3^{(\omega)} \left\{ e^{-t/2\tau_c} (2\tau_c (\lambda - \omega) \sin[2\alpha + (\lambda - \omega)t] - \cos[2\alpha + (\lambda - \omega)t]) \right\} \\
- (2\tau_c (\lambda - \omega) \sin 2\alpha - \cos 2\alpha) \right\}, \quad (A10) \]

\[F^{(10)}_{\chi}(\omega, t) = -\frac{A^2 A_4^{(\omega)}}{\gamma_0} \left[A_3^{(\omega)} \left\{ e^{-t/2\tau_c} (\sin(2\alpha + (\lambda + \omega)t) + 2\tau_c (\lambda + \omega) \cos[2\alpha + (\lambda + \omega)t]) \\
- (\sin 2\alpha + 2\tau_c (\lambda + \omega) \cos 2\alpha) \right\} \\
+ A_3^{(\omega)} \left\{ e^{-t/2\tau_c} (\sin(\lambda - \omega)t + 2\tau_c (\lambda - \omega) \cos(\lambda - \omega)t) - 2\tau_c (\lambda - \omega) \right\} \right\}, \quad (A11) \]

and
\[
\mathcal{F}_V^{(1)}(\omega, t) = -\frac{A_3^{(\omega)}}{\gamma_0} \left[A_3^{(\omega)} \left\{ e^{-t/2\tau_e} (\sin[2\alpha + (\lambda - \omega)t] + 2\tau_e(\lambda - \omega) \cos[2\alpha + (\lambda - \omega)t]) \right. \\
\left. - (2\alpha + 2\tau_e(\lambda - \omega) \cos 2\alpha) \right\} \\
+ A_4^{(\omega)} \left\{ e^{-t/2\tau_e} (\sin(\lambda + \omega)t + 2\tau_e(\lambda + \omega) \cos(\lambda + \omega)t) - 2\tau_e(\lambda + \omega) \right\} \right]
\] (A12)

where

\[
A_1^{(\omega)} = \tau_e \left[\frac{1}{1 + 4\tau_e^2(\lambda - \omega)^2} + \frac{1}{1 + 4\tau_e^2(\lambda + \omega)^2} \right],
\]

\[
A_2^{(\omega)} = 2\tau_e^2 \left[\frac{\lambda - \omega}{1 + 4\tau_e^2(\lambda - \omega)^2} + \frac{\lambda - \omega}{1 + 4\tau_e^2(\lambda + \omega)^2} \right],
\]

\[
A_3^{(\omega)} = \frac{\tau_e}{1 + 4\tau_e^2(\lambda - \omega)^2}, \quad A_4^{(\omega)} = \frac{\tau_e}{1 + 4\tau_e^2(\lambda + \omega)^2},
\]

\[
A_5^{(\omega)} = \frac{2\tau_e^2(\lambda - \omega)}{1 + 4\tau_e^2(\lambda - \omega)^2} \quad \text{and} \quad A_6^{(\omega)} = \frac{2\tau_e^2(\lambda + \omega)}{1 + 4\tau_e^2(\lambda + \omega)^2}.
\] (A13)

Similarly we have

\[
\mathcal{F}_V(\omega, t) = \mathcal{F}_V^{(1)}(\omega, t) + \mathcal{F}_V^{(2)}(\omega, t) + \mathcal{F}_V^{(3)}(\omega, t) + \mathcal{F}_V^{(4)}(\omega, t) + \mathcal{F}_V^{(5)}(\omega, t) + \mathcal{F}_V^{(6)}(\omega, t) + \mathcal{F}_V^{(7)}(\omega, t)
\] (A14)

with

\[
\mathcal{F}_V^{(1)}(\omega, t) = \frac{1}{4} \left(\frac{A_1^{(\omega)}}{2\tau_e} + \lambda A_2^{(\omega)} \right) \left[e^{-t/\tau_e} + e^{-t/\tau_e} \frac{2\lambda \tau_e \sin(2\lambda t + \alpha)}{4\gamma_0 \tau_e} - \cos(2\lambda t + \alpha) \right]
\]
\[
- \left\{ 1 + \frac{1}{4\gamma_0 \tau_e} (2\lambda \tau_e \sin 2\alpha - \cos 2\alpha) \right\} \right],
\] (A15)

\[
\mathcal{F}_V^{(2)}(\omega, t) = \frac{\lambda \tau_e}{2} \left(\lambda A_1^{(\omega)} - \frac{A_2^{(\omega)}}{2\tau_e} \right) \left[e^{-t/\tau_e} - e^{-t/\tau_e} \frac{2\lambda \tau_e \sin(2\lambda t + \alpha)}{4\gamma_0 \tau_e} - \cos(2\lambda t + \alpha) \right]
\]
\[
- \left\{ 1 - \frac{1}{4\gamma_0 \tau_e} (2\lambda \tau_e \sin 2\alpha - \cos 2\alpha) \right\} \right],
\] (A16)

\[
\mathcal{F}_V^{(3)}(\omega, t) = -\frac{1}{8\gamma_0} \left(\frac{\lambda A_1^{(\omega)}}{\tau_e} + \lambda^2 A_2^{(\omega)} - \frac{A_2^{(\omega)}}{4\tau_e^2} \right)
\]
\[
\times \left[e^{-t/\tau_e} \left\{ \sin(2\lambda t + \alpha) + 2\lambda \tau_e \cos(2\lambda t + \alpha) \right\} - \sin(2\alpha + 2\lambda \tau_e \cos 2\alpha) \right],
\] (A17)

\[
\mathcal{F}_V^{(4)}(\omega, t) = \left(\frac{A_3^{(\omega)}}{2\tau_e} + \lambda A_5^{(\omega)} \right) \left[A_3^{(\omega)} \left\{ e^{-t/2\tau_e} (2\tau_e(\lambda - \omega) \sin(\lambda - \omega)t - \cos(\lambda - \omega)t) + 1 \right\} \\
+ \lambda A_4^{(\omega)} \left\{ e^{-t/2\tau_e} (\sin[2\alpha + (\lambda - \omega)t] + 2\tau_e(\lambda - \omega) \cos[2\alpha + (\lambda - \omega)t]) \\
- (2\alpha + 2\tau_e(\lambda - \omega) \cos 2\alpha) \right\} \\
- \left\{ e^{-t/2\tau_e} (\sin(\lambda - \omega)t + 2\tau_e(\lambda - \omega) \cos(\lambda - \omega)t) \\
- (\sin(2\alpha + 2\tau_e(\lambda - \omega) \cos 2\alpha) + 2\tau_e(\lambda - \omega)) \right\} \right]
\]
\[
- \lambda A_4^{(\omega)} \left\{ e^{-t/2\tau_e} (2\tau_e(\lambda + \omega) \sin[2\alpha + (\lambda + \omega)t] - \cos[2\alpha + (\lambda + \omega)t]) \\
- (2\lambda \tau_e \sin 2\alpha - \cos 2\alpha) \right\} \right],
\] (A18)

\[
\mathcal{F}_V^{(5)}(\omega, t) = \left(\frac{A_4^{(\omega)}}{2\tau_e} + \lambda A_6^{(\omega)} \right) \left[A_4^{(\omega)} \left\{ e^{-t/2\tau_e} (2\tau_e(\lambda + \omega) \sin(\lambda + \omega)t - \cos(\lambda + \omega)t) + 1 \right\}
\]
\begin{align}
\mathcal{F}^{(6)}(\omega, t) &= \left(\lambda A_3^{(\omega)} - \frac{A_6^{(\omega)}}{2\tau_c} \right) \left[\frac{A_3^{(\omega)}}{2\tau_c} \left\{ e^{-t/2\tau_c} (\sin(\lambda - \omega)t + 2\tau_c(\lambda - \omega) \cos(\lambda - \omega)t)
- 2\tau_c(\lambda - \omega) \right\}
+ \frac{A_4^{(\omega)}}{2\tau_c} \left\{ e^{-t/2\tau_c} (\sin[2\alpha + (\lambda + \omega)t] + 2\tau_c(\lambda + \omega) \cos[2\alpha + (\lambda + \omega)t])
- (\sin 2\alpha + 2\tau_c(\lambda + \omega) \cos 2\alpha) \right\}
+ \lambda A_3^{(\omega)} \left\{ e^{-t/2\tau_c} (\sin(\lambda + \omega)t + 2\tau_c(\lambda + \omega) \cos(\lambda + \omega)t) - 2\tau_c(\lambda + \omega) \right\} \right] ,
\end{align}

\begin{align}
\mathcal{F}^{(7)}(\omega, t) &= \left(\lambda A_4^{(\omega)} - \frac{A_6^{(\omega)}}{2\tau_c} \right) \left[\frac{A_3^{(\omega)}}{2\tau_c} \left\{ e^{-t/2\tau_c} (\sin[2\alpha + (\lambda - \omega)t])
+ 2\tau_c(\lambda - \omega) \cos[2\alpha + (\lambda - \omega)t]) - (\sin 2\alpha + 2\tau_c(\lambda - \omega) \cos 2\alpha) \right\}
+ \frac{A_4^{(\omega)}}{2\tau_c} \left\{ e^{-t/2\tau_c} (\sin(\lambda - \omega)t + 2\tau_c(\lambda - \omega) \cos(\lambda - \omega)t)
- 2\tau_c(\lambda - \omega) \right\}
+ \lambda A_3^{(\omega)} \left\{ e^{-t/2\tau_c} (2\tau_c(\lambda - \omega) \sin[2\alpha + (\lambda - \omega)t])
- \cos[2\alpha + (\lambda - \omega)t]) \right\}
- (2\tau_c(\lambda - \omega) \sin 2\alpha - \cos 2\alpha) \right\}
+ \lambda A_4^{(\omega)} \left\{ e^{-t/2\tau_c} (2\tau_c(\lambda - \omega) \sin(\lambda - \omega)t - \cos(\lambda - \omega)t + 1) \right\} .
\end{align}

FIG. 1. Plot of $\sigma^2_A(t)$ against time to show the short time behaviour of the variances for different temperatures with fixed parameters $\gamma_0 = 1.0$ and $\tau_c = 1.0$. [Inset: The same as in the main figure but for a higher temperature, $k_B T = 10.0$] (units are arbitrary).
FIG. 2. Plot of $\sigma_{XX}^2(t)$ against time to show long time behaviour of the variances for different temperatures. Other parameters are same as in Fig.(1). [Inset : The same as in the main figure but for a higher temperature, $k_B T = 10.0$] (units are arbitrary).

FIG. 3. Plot of $\sigma_{VV}^2(t)$ against time to show long time behaviour of the variances for different temperatures. Other parameters are same as in Fig.(1) (units are arbitrary).

FIG. 4. Plot of $\sigma_{XX}^2(t)$ against time for different correlation times, τ_c with fixed parameters $\gamma_0 = 1.0$ and $k_B T = 10.0$ (units are arbitrary).

FIG. 5. Same as in Fig.(4) but for $k_B T = 0.0$ (units are arbitrary).

FIG. 6. Plot of $\sigma_{VV}^2(t)$ against time to show long time behaviour due to vacuum fluctuations. Other parameters are same as in Fig.(1) (units are arbitrary).

FIG. 7. Plot of quantum diffusion coefficient $D_q(t)$ against time for different temperatures and for $\gamma_0 = 0.275$ and $\tau_c = 1.0$. [Inset : Same as in the main figure but for a higher temperature $k_B T = 10.0$] (units are arbitrary).