Approximate Treatment of Hermitian Effective Interactions and a Bound on the Error

Ryoji Okamotoa, Kenji Suzukia, P.J. Ellisb, Jifa Haoc, Zibang Lic and T.T.S. Kuoc

a Department of Physics, Kyushu Institute of Technology, Kitakyushu 804
bSchool of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA
cDepartment of Physics, State University of New York at Stony Brook, Stony Brook, NY 11794, USA

Abstract

The Hermitian effective interaction can be well-approximated by $(R + R\dagger)/2$ if the eigenvalues of $\omega\dagger\omega$ are small or state-independent (degenerate), where R is the standard non-Hermitian effective interaction and ω maps the model-space states onto the excluded space. An error bound on this approximation is given.
Much effort has been made to calculate the shell-model effective interactions in nuclei from a realistic nucleon-nucleon interaction. In spite of a great deal of progress[1-5] in this field of physics, attention has been directed almost entirely to the well-known non-Hermitian form, which we label R here. However, the empirical or phenomenological shell-model effective interactions have been assumed to be Hermitian. Therefore direct comparison between the theoretical and empirical effective interactions might cause confusion. The formal theory of constructing a Hermitian effective interaction, which we denote here by W, has been developed since des Cloizeaux[6] and Brandow's[1] original works. Recently an improved approach was introduced[7] and was applied to the calculation of Hermitian effective interactions, starting with modern meson-exchange nucleon-nucleon interactions, by several authors[8]. In their study it has been observed that the non-Hermiticity was rather small and $(R + R^\dagger)/2$, referred to as W_{app}, was a very good approximation to the exact Hermitian W. This raises the general question as to under what conditions the approximation $W \simeq W_{app}$ might be reliable. The origin of and bounds on the non-Hermiticity of R has already been discussed by us[9]. The main purpose of this note is to derive an explicit relation with which the validity of the approximation $W \simeq W_{app}$ can be qualitatively examined. An application of our relations to a model matrix problem will be made, and we shall discuss the results.

We define two projection operators P and Q according to the usual definitions i.e., P and Q project a state onto the model space and its complement, respectively, and they satisfy $P + Q = 1$. Let d be the dimension of the P space. We write d of the true eigenstates of H to be reproduced from the
P-space effective interaction as\cite{10}

$$|\Phi_k\rangle \equiv (P + Q)|\Phi_k\rangle = |\phi_k\rangle + \omega |\phi_k\rangle ,$$ \hspace{1cm} (1)

where $|\phi_k\rangle$ is the P-space component of $|\Phi_k\rangle$. The operator ω maps the P-space state $|\phi_k\rangle$ onto the Q space. The operator ω is related to the usual wave operator Ω as $\omega = \Omega - P$. The operator ω is written explicitly as

$$\omega = \sum_k Q|\Phi_k\rangle \langle \tilde{\phi}_k|P .$$ \hspace{1cm} (2)

Here $|\tilde{\phi}_k\rangle$ is the biorthogonal complement to the model space wave function $|\phi_k\rangle$, \textit{i.e.}, $\langle \tilde{\phi}_k|\phi_i\rangle = \delta_{ki}$. The Hamiltonian H is divided into two parts, the unperturbed part H_0 and the perturbation V. Using ω the non-Hermitian effective interaction R can be written as

$$R = PVP + PVQ\omega$$ \hspace{1cm} (3)

which is equivalent to the usual definition of the non-Hermitian effective interaction $PV\Omega$.

The Hermitian effective interaction W may be written in the $|\alpha\rangle$ basis as\cite{7, 8}

$$\langle \alpha|W|\beta\rangle = D(\alpha, \beta) \left\{ \sqrt{\mu_\alpha^2 + 1} \langle \alpha|R|\beta\rangle + \sqrt{\mu_\beta^2 + 1} \langle \alpha|R^\dagger|\beta\rangle \right\} ,$$ \hspace{1cm} (4)

where $|\alpha\rangle$ ($|\beta\rangle$) and μ_α (μ_β) are given through the eigenvalue equation of $\omega^\dagger \omega$

$$\omega^\dagger \omega |\alpha\rangle = \mu_\alpha^2 |\alpha\rangle ,$$ \hspace{1cm} (5)

and

$$D(\alpha, \beta) = \left\{ \sqrt{\mu_\alpha^2 + 1} + \sqrt{\mu_\beta^2 + 1} \right\}^{-1} .$$ \hspace{1cm} (6)
From the definition of ω in Eq.(2) we easily see that the operator $\omega^\dagger \omega$ is a Hermitian operator acting in the P space and it has positive or zero eigenvalues.

The Hermitian form of W in Eq.(4) is formally exact. However, it has been known that in some cases W can be well approximated by $W_{\text{app}}[8]$. In order to measure the deviation of W_{app} from the exact W, we introduce a quantity

$$
\Delta W = \sum_{ij} \left| \langle i|W - W_{\text{app}}|j \rangle \right| , \text{ where } W_{\text{app}} = \frac{1}{2}(R + R^\dagger) ,
$$

and $|i\rangle$, $|j\rangle$ and $|k\rangle$ are the basis states, which are the eigenstates of the unperturbed Hamiltonian H_0. Using a relation in the $|\alpha\rangle$ basis

$$
\frac{\mu_\alpha^2 + 1}{\sqrt{\mu_\alpha^2 + 1}} \langle \alpha|H_0 + R|\beta \rangle = \frac{\mu_\beta^2 + 1}{\sqrt{\mu_\beta^2 + 1}} \langle \alpha|H_0 + R^\dagger|\beta \rangle ,
$$

where both sides are equal to $\langle \alpha|H_0 + W|\beta \rangle[8]$, the deviation ΔW is converted to

$$
\Delta W = \frac{1}{4} \sum_{ij} \left| \sum_{\alpha\beta} C(\alpha, \beta)^2 \right.
\times \left\{ \frac{i\langle i|\alpha\rangle \langle \beta|j \rangle}{\mu_\beta^2 + 1} \langle \alpha|H_0 + R|\beta \rangle + \frac{i\langle \beta|\alpha\rangle \langle j|i \rangle}{\mu_\alpha^2 + 1} \langle \alpha|H_0 + R^\dagger|\beta \rangle \right\} \left| ,
\right.
$$

where

$$
C(\alpha, \beta) = \sqrt{\mu_\alpha^2 + 1} - \sqrt{\mu_\beta^2 + 1} .
$$

In general, the matrix element of effective Hamiltonian $H_0 + R$ is bounded, that is,

$$
|\langle \alpha|H_0 + R|\beta \rangle| = |\langle \alpha|H|\beta \rangle + \mu_\beta \langle \alpha|V|\nu_\beta \rangle| \leq (1 + \mu_\beta) V_0 ,
$$

3
where V_0 is the maximum value of the matrix element of PHP and PVQ, and

$$|\nu_\beta\rangle = \mu_\beta^{-1} \omega |\beta\rangle.$$ \hspace{1cm} (12)

From Eqs.(9) and (11) and since $|\langle i|\alpha\rangle\langle\beta|j\rangle| \leq 1$, it can be proved that there exists a constant W_0 such that

$$\Delta W \leq W_0 Z_w,$$ \hspace{1cm} (13)

where

$$Z_w = \frac{1}{4} \sum_{\alpha\beta} C(\alpha, \beta)^2 \left\{ \frac{\mu_\alpha + 1}{\mu_\alpha^2 + 1} + \frac{\mu_\beta + 1}{\mu_\beta^2 + 1} \right\}.$$ \hspace{1cm} (14)

Here the constant W_0 is independent of μ_α and has a bound given by $W_0 \leq d^2 V_0$ (we recall that d is the dimension of the P space). From Eqs.(13) and (14) we may say that the magnitude of the deviation ΔW is determined by the eigenvalues, μ_α^2, of $\omega^\dagger \omega$. If they are small then $C(\alpha, \beta)$ is small and therefore Z_w and ΔW are also small. This may be understandable naturally because, when the μ_α are small, the matrix elements $\langle\alpha|PVQ\omega|\beta\rangle$ are small and the effective interactions R, R' and W are almost the same. Eq.(14) gives us another criterion, namely if the μ_α are state-independent, that is, the μ_α are close to a constant, then $C(\alpha, \beta)$ is again small and hence so is ΔW. Similar criteria govern the degree of non-Hermiticity of the non-Hermitian effective interaction $R'[9]$.

As has been discussed in Ref.[9], a set of states

$$|\zeta_\alpha\rangle = \frac{|\alpha\rangle + \mu_\alpha |\nu_\alpha\rangle}{\sqrt{\mu_\alpha^2 + 1}}, (\alpha = 1, 2, ..., d)$$ \hspace{1cm} (15)

span a d-dimensional orthogonal subspace, denoted by S, where $|\alpha\rangle$ are the eigenstates of $\omega^\dagger \omega$ and $|\nu_\alpha\rangle$ are the Q-space states defined in Eq.(11). One
can prove that the space S is an invariant subspace with respect to H. In other words, the diagonalization of H within S yields d true eigenstates $|\Phi_k\rangle$ of H in Eq.(1). Since $|\Phi_k\rangle$ can be expressed in terms of only $|\zeta_\alpha\rangle$, the ratio μ_α of mixing of $|\nu_\alpha\rangle$ into $|\alpha\rangle$ is preserved in any true eigenstate of H. The validity of the approximation $W \simeq W_{app}$ is related to the state dependence of the mixing ratio μ_α between the P- and Q-space states. If the Q-space states mix into the P-space states with a constant mixing ratio, the approximation $W \simeq W_{app}$ can be acceptable.

For a simple illustration of the analysis of the approximation $W \simeq W_{app}$ we consider a model problem with an exactly solvable Hamiltonian. The model Hamiltonian we shall use is $H = H_0 + V$, where the unperturbed part is $H_0 = \text{diag}(1, 1, 3, 9)$ and the perturbation is $V = [V_{ij}]$ given by

$$V = \begin{pmatrix}
0 & 5x & -5x & 5x \\
5x & 25x & 5x & -8x \\
-5x & 5x & -5x & x \\
5x & -8x & x & -5x
\end{pmatrix},$$

where x is a parameter that we shall vary. This Hamiltonian was introduced originally by Hoffmann et al.[11], but the matrix elements $V_{13} = V_{31}$ and $V_{24} = V_{42}$ are changed from their original values of zero. The Hamiltonian H has already been applied to the study of non-Hermiticity in the effective interaction by the authors[9].

We shall take the lowest two eigenstates of H_0 to be our model space (P space). In principle, provided the true eigenstates have non-zero components in the P space, any set of the true eigenvalues of H can be reproduced from the P space effective Hamiltonian, i.e., $H_0 + R$ with the non-Hermitian
effective interaction R or $H_0 + W$ with the Hermitian form W. However, in
the present study we discuss only the effective interactions which reproduce
the true eigenstates with the largest P-space overlaps, because our main aim
is not to show the variety of effective interactions but to clarify the validity
of the approximation $W \simeq W_{\text{app}}$.

The effective interaction R reproducing the largest P-space overlaps can
be calculated according to the iteration scheme of Krenciglowa and Kuo[12],
which corresponds to the resummation of folded diagrams[13] to infinite or-
der. In the next step by applying Eq.(4), we obtain the Hermitian effective
interaction W. In Eq.(4) W is given in the $|\alpha\rangle$ basis, but it will be easy to
rewrite it in terms of the $|\hat{\gamma}\rangle$ basis states which are eigenfunctions of H_0. Then
ΔW can be computed exactly and compared with the bound of Eqs.(13) and
(14).

The exact solution for the eigenstates of H shows that for small x the
states with largest P-space overlaps are the first and second lowest states.
As x increases, the largest P-space overlap states change to the eigenstates
with the first and third lowest eigenvalues for $0.0689 < x < 0.2655$, while for
$x > 0.2655$ they are the first and fourth eigenvalues. In Table 1 the exact
eigenvalues E_k to be reproduced are shown for six values of x together with
the P-space overlaps I_k defined by

$$I_k = \frac{\sum_{i=1}^{2} \langle \hat{\gamma} | \Phi_k \rangle^2}{\langle \Phi_k | \Phi_k \rangle},$$

(16)

where $|\Phi_k\rangle$ is the true eigenstates of H. The approximate Hermitian effective
interaction W_{app} and the exact one $W_{\text{exact}}(=W)$, as well as the deviation ΔW
of W_{app} from W_{exact}, are presented. The quantity δE represents a measure
of the deviation of the eigenvalues E_k^{app} of $H_0 + W_{app}$ from the exact values E_k, which is defined by

$$\delta E = \sum_{k=1}^2 |E_k^{app} - E_k| .$$

(17)

The values of μ^2_α, the eigenvalues of $\omega^\dagger \omega$ in Eq.(5), are also presented.

For x of 0.04 the overlap of the true eigenstates with the model space is close to 1 and the matrix elements of W_{app} are identical to W_{exact} to the accuracy quoted. Correspondingly ΔW is very small, as is δE. As x increases, the overlaps I_k become smaller and conversely the deviation ΔW starts to grow. However, at x of 0.22 the deviation ΔW, as well as δE, is reduced drastically, although the overlaps I_k are not so large. At this value of x we see that the eigenvalues μ_α are almost the same. Therefore we may say that if the μ_α are nearly degenerate, ΔW becomes small and the approximation $W \simeq W_{app}$ is justified. This fact is an expected result of the theoretical prediction for ΔW in Eqs.(13)–(14). For the larger values of x in Table 1 we notice that, even though we reproduce the eigenstates with the largest P-space overlap, the deviation ΔW and the error in the approximate eigenvalues δE become quite sizeable. Our discussion indicates that this is due to one of the μ_α being large and the other small.

In order to see that ΔW is bounded by W_0Z_w, as shown in Eq.(13), we show ΔW and W_0Z_w as functions of x in Fig.1. We here take W_0 to be 0.6 + 15x which is 3/20 of d^2V_0. In Fig.1 there appear two “level-crossing” points, i.e., $x = 0.0689$ and $x = 0.2655$. At these points the second eigenstate with the predominant P-space component moves from the second lowest state to the third and subsequently from the third to the fourth. The curves are
discontinuous at these “level-crossing” points. Fig.1 shows clearly that ΔW never exceeds $W_0 Z_w$, that is, ΔW is bounded by $W_0 Z_w$. Since W_0 is a constant when x is fixed, the validity of the approximation $W \simeq W_{app}$ is governed by Z_w which is a function of μ_α. The characteristics of the function Z_w are that if all μ_α are small, Z_w becomes small, and if the μ_α are state independent, i.e., close to a constant, Z_w can also be small. If μ_α are large and have strong state dependence, Z_w becomes large and the approximation $W \simeq W_{app}$ will be poor. This situation is quite similar to the case of the degree of non-Hermiticity in the effective interaction R as has been discussed in Ref.[9]. In general, we may say that if the degree of non-Hermiticity is small, the approximation $W \simeq W_{app}$ will be good.

In summary, the accuracy of approximating the Hermitian effective interaction W by $W_{app} = (R + R^\dagger)/2$ with the usual non-Hermitian effective interaction R is best judged by the eigenvalues μ^2 of $\omega^\dagger \omega$, where ω is the operator which maps the model-space states onto the excluded space. Both the theoretical prediction and a model calculation show that if the eigenvalues μ^2 are small or state-independent, the approximation is justified. Our study shows that the accuracy of the approximation $W \simeq W_{app}$ cannot be judged merely by the magnitude of the Q-space overlaps in the true eigenstates to be reproduced.

This work was initiated during the authors’ visit to the Nuclear Theory Institute at the University of Washington and we thank the Institute for the hospitality extended to us.
References

Figure Caption

Figure 1. Comparison of ΔW (solid line), the deviation of the approximate and the exact Hermitian effective interactions, with the upper bound W_0Z_w as a function of the strength parameter x.