New Nonlocal Effective Action

A.O. Barvinsky1 and V.F. Mukhanov2

1Theory Department, Lebedev Physics Institute, Leninsky prospect 53, Moscow 117924; e-mail: barvin@td.lpi.ac.ru

2Sektion Physik, LMU, Theresienstr. 37, Munich, Germany; e-mail: mukhanov@theorie.physik.uni-muenchen.de

March 15, 2002

Abstract

We suggest a new method for the calculation of the nonlocal part of the effective action. It is based on the resummation of the perturbation series for the heat kernel and its functional trace at large values of the proper time parameter. We derive a new, essentially nonperturbative, nonlocal contribution to the effective action in spacetimes with dimensions $d > 2$.

1. Introduction

The effective action is among the fundamental ideas of modern quantum field theory. Calculated analytically for a given background field, it gives information about the induced energy-momentum tensor of the quantum fields and quantum corrections to the classical equations of motion. The nonlocal part of the effective action should contain, for instance, particle creation effects. For the black hole background it should be able to account simultaneously for both vacuum polarization and asymptotic Hawking radiation. Various important applications of the effective action can also be found in the fundamental string theory. The Lorentzian effective action, which we actually need, can be obtained from the Euclidian one, $\Gamma[\phi]$, via analytical continuation. In turn, $\Gamma[\phi]$ can be defined through the following path integral

\[
\exp \left(-\Gamma[\phi(x)] \right) = \int D\varphi \exp \left(-S[\varphi] + (\varphi - \phi) \frac{\delta \Gamma[\phi]}{\delta \phi} \right), \tag{1.1}
\]

where $\phi(x)$ is a given mean field, and the functional integration over the quantum fields $\varphi(x)$ is assumed. The general semiclassical expansion of $\Gamma[\phi]$ begins with the one-loop
contribution, which is given by the gaussian path integral

$$\exp(-\Gamma[\phi(x)]) = \int D\varphi \exp\left(-\frac{1}{2} \int dx \sqrt{g} \varphi(x) \hat{F}(\nabla, \varphi(x)) \varphi(x)\right)$$ \hspace{1cm} (1.2)

The operator \(\hat{F}(\nabla, \varphi(x))\) here determines the propagation of the small field disturbances \(\varphi(x)\) on the background of \(\phi(x)\) and in bosonic case can generically be written down as

$$\hat{F} = -\Box + V(x),$$ \hspace{1cm} (1.3)

where \(\Box = \nabla^2 \equiv g^{\mu\nu} \nabla_\mu \nabla_\nu\) is the Laplacian in the euclidean field theory, which becomes the d’Alembertian when analytically continued to the Lorentzian sector, and \(V(x)\) is the potential term. Note that, for some fields, the one-loop contribution is exact, for instance, for the scalar field without self-coupling. For a naturally defined measure the gaussian integral (1.2) can be formally calculated and is equal to

$$\Gamma = \frac{1}{2} \ln \left(\prod_n \lambda_n\right) = \frac{1}{2} \sum \ln \lambda_n = \frac{1}{2} \text{Tr} \ln \hat{F},$$ \hspace{1cm} (1.4)

where \(\lambda_n\) are the eigenvalues of the operator \(\hat{F}\) corresponding to appropriately normalized eigenfunctions \(\phi_n(x)\), namely, \(\int dx \sqrt{g} \phi_n(x) \phi_m(x) = \delta_{nm}\). The trace Tr doesn’t depend on the particular basis in the functional space of the disturbances \(\varphi\) and therefore in an appropriate representation it reduces to the integral over the spatial coordinates \(x\) of the diagonal element of the operator kernel.

The effective action (1.4) is, of course, ultraviolet divergent and should be regularized, with the subsequent interpretation of the explicitly isolated divergences in terms of the infinite renormalizations of the coupling constants of the theory. These divergences are well understood and it is unlikely that anything new can be added here. Therefore, we concentrate on the more interesting finite nonlocal contribution to one-loop effective action. This contribution depends on the infrared properties of the theory and contains nontrivial information about real physical effects. Analytical calculational schemes for \(\Gamma\) are usually based on the following integral representation of the functional trace of \(\hat{F}\):

$$\text{Tr} \ln \hat{F} = -\int_0^\infty \frac{ds}{s} \text{Tr} e^{-s\hat{F}},$$ \hspace{1cm} (1.5)

where all local divergences can be easily identified with the help of dimensional regularization. The kernel

$$K(s \mid x, y) \equiv e^{-s\hat{F}} \delta^{(d)}(x, y),$$ \hspace{1cm} (1.6)

where \(d\) is the dimensionality of the space-time, obviously satisfies the heat kernel equation:

$$\frac{\partial}{\partial s} K(s \mid x, y) = -\hat{F} K(s \mid x, y) \equiv (\Box - V(x)) K(s \mid x, y),$$ \hspace{1cm} (1.7)
with initial condition
\[K(0| x, y) = \delta^{(d)}(x, y) \] (1.8)
at \(s = 0 \). The auxiliary parameter \(s \) is usually called the proper time. Thus the calculation of the effective action can be reduced to the solution of Cauchy problem for \(K(s| x, y) \). In fact, what we actually need is the coincidence limit of this function, since in the representation we used, the functional trace of the operator \(e^{-s\hat{F}} \) corresponds to the integration of the diagonal elements of \(K \) over the spatial coordinates \(x \), so that
\[
\Gamma = -\frac{1}{2} \int dx \left(\int_0^\infty \frac{ds}{s} K(s| x, x) \right). \tag{1.9}
\]

It is clear that the success of the calculation of \(\Gamma \) mainly depends on our ability to find an analytical solution of the heat kernel equation and carry out the integration over the proper time in (1.9). The integral is obviously divergent as \(s \to 0 \). As we already have mentioned above, this divergence can be easily isolated and interpreted in terms of the local ultraviolet properties of the theory. On the other hand, the behavior of the integral at infinity (\(s \to \infty \)) determines the infrared properties of the theory and carries out information about interesting physics, e.g., particle creation. If the field has a big positive mass it is usually not a problem to make the integral over the proper time convergent as \(s \to \infty \). However, in the case of massless fields, the situation becomes much more nontrivial. The infrared convergence here depends on the approximation scheme used to calculate \(K(s| x, y) \). It is often even unclear to what extent the obtained effective action reflects the physical properties of the theory rather than the features of the approximation scheme used.

Below, we discuss the known calculational techniques, namely, the local Schwinger-DeWitt expansion [1, 2], nonlocal covariant perturbation theory [3, 4, 5] and the modified local gradient expansion [6] and point out why all of them fail when applied to the interesting physical problems. In their place, we suggest a new method based on further resummation of the perturbation series and calculate new, essentially nonperturbative terms in the effective action. This method becomes indispensable in low-dimensional models \((d \leq 2)\) where all previously known techniques are inapplicable. In this paper, we demonstrate how our method works in flat space of dimension \(d > 2 \), while the generalization to the curved space and low-dimensional case will be considered in [7].

One of the main results of this paper is an exact (nonperturbative in \(V \)) late-time (\(s \to \infty \)) asymptotics for the heat kernel which in a spacetime of dimension \(d > 2 \) for the coincidence limit takes the following form
\[
K(s| x, x) = \frac{1}{(4\pi s)^{d/2}} \left(1 + \frac{1}{\Box - V(x)} \right)^2, \quad s \to \infty. \tag{1.10}
\]
This asymptotics can also be found when the arguments of \(K(s| x, y) \) are different - see Sect.4 for details. The other important result is the the nonperturbative in potential
expression for the functional trace of \(K \)
\[
\text{Tr } K(s) = \frac{1}{(4\pi s)^{d/2}} \int dx \left\{ 1 - s \left(V(x) + V \frac{1}{\Box - V} V(x)\right)\right\}, \quad s \to \infty.
\]

(1.11)

To avoid excessive use of the integration symbols we employ here and everywhere throughout the paper the following shorthand notations:
\[
\frac{1}{\Box - V} J(x) \equiv \int dy G(x, y) J(y),
\]

(1.12)

where \(G(x, y) \) is the Green’s function of the operator \(-\hat{F} = \Box - V\) with zero boundary conditions at spacetime infinity, that is
\[
(\Box - V) G(x, y) = \delta^{(d)}(x, y), \quad G(x, y) \to 0, \quad |x| \to \infty,
\]

(1.13)

and \(J(x) \) can be any function of the various field quantities like powers of potential, its derivatives, etc. We always presume that the spacetime has positive definite (Euclidean) signature, so that the Laplacian \(\Box \) is negative definite assuming zero boundary conditions at infinity. Moreover we consider only non-negative potentials \(V(x) \geq 0 \), so that the whole operator \(\hat{F} = -\Box + V \) is positive definite. Therefore, the Green’s function (1.13) is uniquely defined and guarantees that the nonlocal expressions (1.12) make sense if \(d > 2 \).

As we shall see, the asymptotics (1.10) and (1.11) are the corner stone of the technique we develop for the calculation of nonlocal contributions to the effective action. In particular, they leads to essentially nonperturbative terms which can be explicitly calculated for two broad classes of the potentials with compact support, namely, for those ones which are, respectively, very small or very big in units of the inverse size of their support. For small potentials one gets the replacement of the conventional Coleman-Weinberg contribution to the effective action by the terms which, for instance, in four dimensions, are
\[
\Delta \Gamma = \frac{1}{64\pi^2} \int dx V^2 \ln \left(\int dy V^2 \right) - \frac{1}{64\pi^2} \int dx V^2 \ln \left(\int dy V \frac{\mu^2}{V - \Box} V \right),
\]

(1.14)

where the mass parameter \(\mu^2 \) reflects the usual ultraviolet renormalization ambiguity. On the contrary, in the case of big potential \(V \) the Coleman-Weinberg action is supplemented by the nonlocal term of the form
\[
\Delta \Gamma = \frac{1}{64\pi^2} \int dx \left\{ V + V \frac{1}{\Box - V} V \right\}^2.
\]

Note that the expression for the trace of \(K \) cannot be obtained directly by integrating the asymptotics (1.10) over the whole space because for a given \(s \) this asymptotics fails at \(|x|^2 > s\). The method we use to derive it is not completely trivial. At the end of Section 4 we show that the expressions (1.10) and (1.11) are in complete agreement with each other.
Here R is the size of the compact support of V, that is, $V(x) = 0$ at $|x| > R$, and $\langle \ldots \rangle$ denotes the spacetime averaging of the corresponding quantity over this compact domain. The obtained expressions are both nonlocal and non-analytic in the potential V.

The paper is organized as follows. In Sect.2 we consider the known approximation schemes and discuss their applicability in the infrared region. Sect.3 is devoted to the nonlocal and nonlinear resummation of the Schwinger-DeWitt perturbation series, corresponding to the so-called connected graph expansion of the heat kernel. With the aid of this resummation we derive the asymptotics (1.10) in Sect. 4 and discuss its non-trivial relation to the functional trace (1.11) of the heat kernel. The nonperturbative, nonlocal contributions to the effective action are calculated in Sect.5 with the help of the new technique, based on a piecewise smooth approximation for the heat kernel. In two appendixes we give the details of the resummation technique and derive the late time behavior of the heat kernel trace (1.11) with subleading corrections in covariant perturbation theory.

2. Approximation schemes and infrared properties of the effective action

In flat space, which we consider in this paper, the solution of the heat kernel equation can be easily found if the potential vanishes. For an arbitrary spatially dependent potential the analytical expressions are, of course, available only in certain approximations. In the general case, it is convenient to factorize the "zero potential" part of the solution explicitly and use the following ansatz for K:

$$K(s|x, y) = \frac{1}{(4\pi s)^{d/2}} \exp \left[-\frac{|x - y|^2}{4s} \right] \Omega(s|x, y), \quad (2.1)$$

where the factor singular in s guarantees that the initial conditions (1.8) are satisfied, provided that Ω is an analytic function of s at $s = 0$ and $\Omega(0|x, y) = 1$. If $V = 0$, then $\Omega \equiv 1$ and hence all nontrivial information about the potential is encoded in the deviation of Ω from unity.

The most well-known approximation used for the calculation of K is the so-called local Schwinger-DeWitt expansion, where Ω is written down as a series in growing powers of the proper time s. This expansion is a very powerful tool for revealing local ultraviolet properties of the theory. However, when applied in the infrared region, it gives a finite result only for the massive fields. If the potential $V(x)$ has a large positive constant part, that is,

$$V(x) = m^2 + v(x), \quad (2.2)$$
where m^2 is the squared mass of the field, then the function $\Omega(s|x, y)$ contains an overall exponential factor e^{-sm^2} and a mass independent part is expanded in powers of s:

$$\Omega(s|x, y) = e^{-sm^2} \sum_{n=0}^{\infty} a_n(x, y) s^n. \quad (2.3)$$

Here the $a_n(x, y)$ are the two-point Schwinger-DeWitt coefficients, the first few of which have been calculated in the coincidence limit ($x \to y$) in rather general field theories, including gravity [1, 2]. Substituting (2.3) in (2.1) and then the obtained expression, taken at $x = y$, in (1.9) one gets:

$$\Gamma = -\frac{1}{2(4\pi)^{d/2}} \int dx \sum_{n=0}^{\infty} \left(\int_0^\infty s^{n-d/2-1} e^{-sm^2} ds \right) a_n(x, x). \quad (2.4)$$

It is important that the exponent e^{-sm^2} is not expanded here in powers of s. Therefore, in the integral over the proper time, a cutoff at the upper limit so that powers of s in this expansion get effectively replaced by powers of $1/m^2$. The first $(d/2 + 1)$ integrals in (2.4) diverge at $s \to 0$ and should be regularized. To do that, we apply the dimensional regularization method; namely, replacing the dimensionality d by 2ω, we calculate the integrals in the domain of their convergence and then analytically continue the result to $\omega \to d/2$. This gives rise to Γ_{div}. In the spaces with the even number of dimensions, which we mainly consider in what follows, Γ_{div} contains the pole at $\omega = d/2$ and the term logarithmic in m^2:

$$\Gamma_{\text{div}, \ln} = \frac{1}{2(4\pi)^{d/2}} \int dx \sum_{n=0}^{d/2} \frac{(-m^2)^{d-n}}{(d-n)!} \left[\frac{1}{\omega - d/2} - \Gamma'(\frac{d}{2} - n + 1) + \ln \frac{m^2}{4\pi\mu^2} \right] a_n \quad (2.5)$$

where $\omega \to d/2$. The pole corresponds to an infinite ultraviolet renormalization of the terms proportional to $a_0, ..., a_{d/2}$ in the original Lagrangian. The other terms in the expansion (2.4) are finite and give the needed infrared contribution to the total action:

$$\Gamma = \Gamma_{\text{div}, \ln} - \frac{1}{2} \left(\frac{m^2}{4\pi} \right)^{d/2} \int dx \sum_{n=d/2+1}^{\infty} \frac{\Gamma(n-d/2)}{(m^2)^n} a_n(x, x). \quad (2.6)$$

The Schwinger-DeWitt coefficients $a_n(x, x)$ are the homogeneous polynomials of dimensionality $2n$ in the units of inverse length, which are built of $v(x)$ and its multiple derivatives. Therefore, on dimensional grounds, they can be symbolically written down as

$$a_n(x, x) \sim v^k(x)(\nabla^i v^j)(x),$$

where i denotes the overall number of derivatives acting in all possible ways on j factors of $v(x)$ and k powers of $v(x)$ stay undifferentiated. The positive integers (k, j, i) are
related to n as follows $2(k + j) + i = 2n$. It is clear that the infinite series in (2.6) represents the expansion in growing powers of the following dimensionless quantities:

$$\frac{v(x)}{m^2} \ll 1, \quad \frac{\nabla^i v(x)}{m^{i+1}} \ll 1,$$

(2.7)

which obviously should be much smaller than unity. Only in this case are the few first finite terms in the asymptotic series (2.6) reliable.

Thus, the Schwinger-DeWitt expansion is applicable only to theories with small and slowly varying fields as compared to a big mass parameter. This expansion contains only local terms. It is not surprising because all nonlocal effects, e.g., particle creation, are very small for heavy particles in a weak external field and cannot be handled using this method. The Schwinger-DeWitt technique can be easily extended to the curved space-time and to the theories with covariant derivatives built with respect to an arbitrary fibre-bundle connection. In this case, the perturbation potential $v(x)$ will also depend on the space-time curvature tensor and fibre-bundle curvatures (commutator of covariant derivatives). The smallness of the fields and their derivatives includes the requirement of smallness of these curvatures and their derivatives as well. Despite its universality, Schwinger-DeWitt expansion becomes inefficient when the ratios in (2.7) become of the order of unity and completely fails for massless fields. In the last case all integrals over the proper time integral are infrared divergent. This divergence has, of course, no physical meaning and is an artifact of the approximation technique used.

There are two known ways to proceed for the massless fields. One possibility is the resummation of all terms, which contain the undifferentiated potential $V(x)$, in the local Schwinger-DeWitt series (2.3). They are summed up to form an exponent similar to e^{-sm^2}:

$$\Omega(s| x, x) = e^{-sV(x)} \sum_{n=0}^{\infty} \tilde{a}_n(x, x) s^n.$$

(2.8)

This method was suggested in [6], where a regular technique for the calculation of the modified Schwinger-DeWitt coefficients $\tilde{a}_n(x, y)$ was also presented. The proper time integral in (1.9) has now an infrared cutoff at $s \sim 1/V(x)$ and in this case the effective action is similar to (2.5)-(2.6), where m^2 is replaced by $V(x)$ and $a_n(x, x)$ by $\tilde{a}_n(x, x)$. It is convenient to write this action as a sum of three terms

$$\Gamma = \Gamma_{\text{div}} + \Gamma_{\text{CW}} + \Gamma_{\text{fin}},$$

(2.9)

where the divergent part is equal to

$$\Gamma_{\text{div}} = \frac{1}{2(4\pi)^{d/2}} \int dx \sum_{n=0}^{d/2} \frac{(-V)^{d/2-n}}{(d/2 - n)!} \left[\frac{1}{\omega - d/2} - \Gamma'(d/2 - n + 1) - \ln 4\pi \right] \tilde{a}_n(x, x),$$

(2.10)
\(\omega \rightarrow d/2 \). The pole part of this action coincides with that in (2.5) if we take \(m^2 = 0 \) limit of (2.5). Actually, in this case, only the term proportional to \(a_{d/2} \) survives in \(\Gamma_{\text{div,lin}} \) and by virtue of the relation between twiddled and untwiddled coefficients, namely,

\[
a_{d/2}(x, x) = \sum_{n=0}^{d/2} \frac{(-V)^{d/2-n}}{(d/2-n)!} \tilde{a}_n(x, x), \tag{2.11}
\]

the pole parts of (2.5) and (2.10) are the same. The terms proportional to \(\Gamma'_{d/2-n+1} \) perform finite renormalization of the local terms \(V^{d/2-n} \tilde{a}_n \). The logarithmic terms from (2.5) are replaced in the modified action (2.9) by

\[
\Gamma_{CW} = \frac{1}{2(4\pi)^{d/2}} \int dx \frac{d/2}{(d/2-n)!} \ln \frac{V}{\mu^2} \tilde{a}_n = \frac{1}{2(4\pi)^{d/2}} \int dx \ln \frac{V}{\mu^2} a_{d/2}. \tag{2.12}
\]

This is nothing but the space-time integral of the Coleman-Weinberg effective potential. For instance, in four dimensions the leading term is the original Coleman-Weinberg effective potential, \(V^2 \ln(V/\mu^2)/64\pi^2 \), while the rest represents corrections due to the derivative of \(V(x) \). Similarly to (2.6), the finite part \(\Gamma_{\text{fin}} \) is an infinite series

\[
\Gamma_{\text{fin}} = -\frac{1}{2} \int dx \left(\frac{V(x)}{4\pi} \right)^{d/2} \sum_{n=d/2+1}^{\infty} \frac{\Gamma(n-d/2)}{V^n(x)} \tilde{a}_n(x, x). \tag{2.13}
\]

The modified Schwinger-DeWitt coefficients do not contain the undifferentiated potential and the typical structure of the terms entering \(\tilde{a}_n(x, x) \) is \(\nabla^m V^j(x) \), where \(m + 2j = 2n \). Every \(V \) here should be differentiated at least once and therefore \(m \geq j \). Thus the coefficients \(\tilde{a}_n \) can be symbolically written down as

\[
\tilde{a}_n(x, x) \sim \sum_{j=1}^{[2n/3]} \nabla^{2n-2j} V^j \tag{2.14}
\]

where the upper value of \(j \) is the integer part of \(2n/3 \).

This perturbation theory is efficient as long as potential is slowly varying or bounded from below by a large positive constant, so that

\[
\frac{\nabla^2 V(x)}{V^2(x)} \ll 1, \quad \frac{(\nabla V(x))^2}{V^3(x)} \ll 1, ... \tag{2.15}
\]

The case of the bounded potential reproduces the original Schwinger-DeWitt expansion for nonvanishing mass. Therefore, let us consider the potentials which vanish at spacetime infinity (\(|x| \rightarrow \infty\)), namely, we assume the case of power-like falloff:

\[
V(x) \sim \frac{1}{|x|^p}, \quad \nabla^m V(x) \sim \frac{1}{|x|^{p+m}}, \quad |x| \rightarrow \infty \tag{2.16}
\]
for some positive p. For such a potential the terms of the perturbation series (2.13) behave as

$$\tilde{a}_n V^n \sim \sum_{j=1}^{[2n/3]} |x|^{(p-2)(n-j)}$$

(2.17)

and thus decrease with n only if $p < 2$. For $p \geq 2$, the modified gradient expansion completely breaks down. It makes sense only for slowly-decreasing potentials of the form (2.16) with $p < 2$. In this case the potential $V(x)$ is not integrable over the whole space-time ($\int dx V(x) = \infty$) and moreover even the operation $(1/\Box)V(x)$ is not well defined\(^2\). Therefore the above restriction is too strong to account for many interesting physical problems. In addition, similar to (2.6), the asymptotic expansion (2.13) is completely local. It does not allow us to capture nonlocal effects, which are exponentially small for the potentials satisfying (2.15).

The way to overcome this difficulty in accounting for nonlocality was suggested in the covariant perturbation theory (CPT) \[3, 4, 5\]. In this theory the full potential $V(x)$ is treated as a perturbation and solution of the heat kernel is found as a series in powers of the potential. In the Schwinger-DeWitt expansion it corresponds to an infinite resummation of all terms with a given power of the potential irrespective of how many derivatives they contain. The result reads as

$$\text{Tr} K(s) \equiv \int dx K(s|x, x) = \sum_{n=0}^{\infty} \text{Tr} K_n(s),$$

(2.18)

where

$$\text{Tr} K_n(s) = \int dx_1 dx_2 \ldots dx_n F_n(s|x_1, x_2, \ldots x_n) V(x_1)V(x_2)\ldots V(x_n),$$

(2.19)

and the nonlocal form factors $F_n(s|x_1, x_2, \ldots x_n)$ were explicitly calculated in \[3, 4, 5\]. It was shown that at $s \to \infty$ all nontrivial terms in this expansion behave as

$$\text{Tr} K_n(s) = O\left(\frac{1}{s^{d/2-1}}\right), \quad n \geq 1,$$

(2.20)

and, therefore in space-time with dimension $d \geq 3$ the integrals in (1.9) are infrared convergent:

$$\int_{s=0}^{\infty} \frac{ds}{s} O\left(\frac{1}{s^{d/2-1}}\right) < \infty.$$

(2.21)

In one and two dimensions this expansion for Γ does not exist except for the special case of the massless theory in curved 2d space-time, when it reproduces the so-called

\(^2\)For the convergence of the integral in $(1/\Box)V$ the potential $V(x)$ should fall off at least as $1/|x|^3$ in any spacetime dimension [4].
Polyakov action \cite{9, 8, 4}. CPT should always be applicable whenever \(d \geq 3 \) and the potential \(V \) is sufficiently small\(^4\). Therefore, a serious disadvantage of the covariant perturbation theory is that this theory explicitly features analyticity of the effective action in the potential at \(V = 0 \) and does not allow us to discover any non-analytic structures in the action if they exist.

All this implies the necessity of a new approximation technique, which would allow us to overcome the disadvantages of the existing methods. In the rest of this paper we develop such a technique, involving further resummation of the perturbation series. We develop an infrared improved perturbation theory for the heat kernel and reveal new nonlocal and non-analytical structures in the effective action.

3. Resummation of proper time series

We use the exponential ansatz for the function \(\Omega(s | x, y) \) defined in (2.1):

\[
\Omega(s | x, y) = \exp\left[-W(s | x, y)\right].
\]

Our goal is to develop an approximation technique for \(W \) similar to CPT, which is an alternative to the expansion in \(s \). By virtue of (1.7) and (1.8) the function \(W(s | x, y) \) satisfies the equation

\[
\frac{\partial W}{\partial s} + \frac{(x - y)^\mu}{s} \nabla_\mu W - \Box W = V - (\nabla W)^2,
\]

with initial conditions:

\[
W(s = 0 | x, y) = 0.
\]

This equation is nonlinear in \(W \) and we solve it by iteration, considering \((\nabla W)^2 \) as a perturbation. For this purpose it is convenient to rewrite (3.1), (3.2) as an integral equation. In Appendix A, it is shown that this integral equation takes the following form:

\[
W(s | x, y) = s \int_0^1 d\alpha e^{s\alpha(1-\alpha)} \Box \left(V(\bar{x}) - (\nabla W(s\alpha | \bar{x}, y))^2 \right),
\]

where the operator \(\Box \) acts on the argument \(\bar{x} \equiv \bar{x}(\alpha | x, y) = \alpha x + (1-\alpha)y \). The equation (3.3) can be easily solved if \((\nabla W)^2 \ll V \). As we will see later, this condition is satisfied

\(^3\)This action can be easily obtained by integrating the conformal anomaly \cite{9, 8}

\(^4\)The conditions of the smallness of the potential are exactly opposite to those of (2.15), e.g., \(V^2/\nabla^2 V \ll 1 \). However, this is true only as a very rough estimate. CPT is a nonlocal perturbation theory and, therefore, the parameters of expansion are nonlocal expressions.
for a broad class of potentials V. The lowest order approximation for W is obtained just skipping $(\nabla W)^2$ in eq. (3.3):

$$W_0(s|x,y) = s \int_0^1 d\alpha e^{s\alpha(1-\alpha)\Box} V(\bar{x}) |_{\bar{x}=\alpha x+(1-\alpha)y}. \quad (3.4)$$

This is a linear but essentially nonlocal functional of the potential. Further terms of the perturbation theory, $W_n = O[(\nabla W_0)^n]$, can be graphically represented by connected tree graphs with two derivatives in the vertices, internal lines associated with the nonlocal operator

$$f(-s\Box) = \int_0^1 d\alpha e^{s\alpha(1-\alpha)\Box}, \quad (3.5)$$

and external lines given by (3.4)\(^5\). Note that this connected graph structure arises in the exponential and when expanded gives rise to the disconnected graphs. In the context of the heat kernel expansion this property was observed in [10]. The resummation of the perturbation series in V explicitly features exponentiation of the quantities containing only connected graphs. Here we have shown how this exponentiated set of connected graphs directly arises from the solution of the simple nonlinear equation (3.1). The "propagator" (3.5) was worked out within the covariant perturbation theory in [3, 4, 5] and was also obtained in [6] by direct summation of the gradient series.

At this stage the efficiency of the connected graph expansion is not yet obvious. Crudely, it runs in powers of the dimensionless quantity $(sf(-s\Box)\nabla)^2 V(x)$ which, at least naively, should be small for slowly varying or/and small potentials. Apart from this, infrared properties of the effective action strongly depend on the lowest order approximation for W (3.4). The effective action involves only diagonal elements of the two-point function $W(s|x,y)$, which look much simpler than (3.4):

$$W_0(s|x,x) = s \int_0^1 d\alpha e^{s\alpha(1-\alpha)\Box} V(x). \quad (3.6)$$

Note that, at small s, the function W_0 can be expanded as $W_0 = sV + O(s^2)$. The only term with undifferentiated potential entering W_0 is linear in s, while all other terms contain a derivative of the potential V. The same is also true for the exact W, which differs from W_0 by higher powers of the differentiated potential. This completely agrees with the modified gradient expansion discussed in Sect.2. However, the expression (3.6) directly involves the nonlocal operator and its late time behavior is very different from that naively expected in the modified gradient expansion and in CPT.

To show that, let us first find the coordinate representation of the operator (3.5), that is, $f(-s\Box)\delta^{(d)}(x,y)$. Using the well-known result for the exponentiated \Box-operator

$$e^{s\alpha(1-\alpha)\Box} \delta^{(d)}(x,y) = \frac{1}{(4\pi s\alpha(1-\alpha))^{d/2}} \exp \left(-\frac{|x-y|^2}{4s\alpha(1-\alpha)} \right), \quad (3.7)$$

\(^5\)This graphical interpretation should not be taken too literally because integration over the α-parameter(s) involves also the argument $\bar{x} \equiv \bar{x}(\alpha|x,y)$ of the potential.
one can write:
\[
\int_0^1 d\alpha e^{s(1-\alpha)\Box} \delta^{(d)}(x, y) = e^{-|x-y|^2/2s} \int_0^\infty d\beta \frac{(1+\beta)^{d-2}}{\beta^{d/2}} \exp \left[-\frac{|x-y|^2}{4s} \left(\frac{1}{\beta} + \beta \right) \right],
\]
where we have changed the integration variable, \(\alpha = \beta/(1+\beta), 0 \leq \beta < \infty\). For \(d \geq 3\), the integral can be easily calculated and the result is expressed as a sum of McDonald functions of the argument \(|x-y|^2/2s\)
\[
f(-s\Box)\delta^{(d)}(x, y) = \frac{2e^{-|x-y|^2/2s}}{(4\pi s)^{d/2}} \sum_{k=1}^{d-1} C_{d-2}^{d-k} K_{d-k-\frac{d}{2}} \left(|x-y|^2/2s \right),
\]
where \(C_{d-2}^{d-k}\) are the binomial coefficients. For very large \(s\), the argument of \(K\) is small. Using the asymptotics:
\[
K_\nu(z) \simeq \Gamma(|\nu|)(2/|z|)^{|\nu|/2}, z \to 0,
\]
we find that at large \(s\) the form factor is dominated by the following term
\[
f(-s\Box)\delta^{(d)}(x, y) = \frac{1}{2s} \Gamma(d/2-1) \left(\frac{1}{|x-y|^{d-2}} \right) + O \left(\frac{1}{s^2} \right).
\]
This behavior agrees with the formal asymptotics found by the Laplace method in [4]. Taking into account the fact that
\[
\frac{1}{\Box} \delta^{(d)}(x, y) = -\frac{\Gamma(d/2-1)}{4\pi^{d/2}|x-y|^{d-2}},
\]
we finally obtain:
\[
W_0(s \mid x, y) = sf(-s\Box)V = -\frac{2}{\Box} V(x) + O \left(\frac{1}{s} \right).
\]
Therefore, as \(s \to \infty\), the function \(W_0\) approaches a constant. The nonlocal functional (3.12) is well-defined for \(d \geq 3\) only if the potential \(V\) vanishes fast enough as \(|x| \to \infty\).

For the splitted arguments the asymptotics of \(W_0(s \mid x, y)\) is more intricate. In this case the form factor (3.5) no longer arises as a whole because the integration parameter \(\alpha\) appears in eq. (3.4) also in the argument \(\bar{x} = \alpha x + (1-\alpha)y\) of the potential \(V(\bar{x})\). Applying the Laplace method, one can show that the integral (3.4) is dominated by the contribution of the end points: \(\alpha = 0\) and \(\alpha = 1\). These contributions are different because \(\bar{x}(\alpha = 0) = y\) and \(\bar{x}(\alpha = 1) = x\), and therefore
\[
W_0(s \mid x, y) = -\frac{1}{\Box} V(x) - \frac{1}{\Box} V(y) + O \left(\frac{1}{s} \right).
\]
Substituting this expression in (3.3) and solving the integral equation by iteration one can find the late time asymptotics for exact \(W\) as a nonlocal gradient series:
\[
W(s \mid x, y) = W_\infty + O \left(\frac{1}{s} \right) = -\frac{1}{\Box} V(x) + \frac{1}{\Box} \left(\frac{1}{\Box} \nabla V(x) \right)^2 + \ldots + (x \leftrightarrow y).
\]
It is remarkable, however, that this series can be "summed up", that is, \(W_\infty \equiv W_\infty(x, y) \) can be found exactly in terms of the Green’s function of the original operator \(\hat{F} = -\Box + V \).

4. Late time asymptotics of the heat kernel

Indeed, taking into account (3.14), it is easy to see that the first two terms in the equation (3.1) vanish as \(s \to \infty \), while the rest reduce to

\[
(\Box - V) e^{-W_\infty(x, y)} = 0. \tag{4.1}
\]

Despite the positivity of the operator \(-\Box + V\), this equation admits non-trivial solutions. In fact, \(e^{-W_\infty(x, y)} \) does not have to go to zero at large \(|x|\). In view of the iterative solution (3.14) it should tend to some unknown function of \(y \)

\[
e^{-W_\infty(x, y)} \to C(y), \quad |x| \to \infty. \tag{4.2}
\]

The equation (4.1) with the boundary condition (4.2) is then solved by

\[
e^{-W_\infty(x, y)} = C(y) \Phi(x), \tag{4.3}
\]

if the new function \(\Phi(x) \) satisfies

\[
(\Box - V) \Phi(x) = 0, \tag{4.4}
\]

and \(\Phi(x) \to 1 \) as \(|x| \to \infty\). The solution of this problem for \(\Phi(x) \) is uniquely defined and given in terms of the Green’s function (1.13):

\[
\Phi(x) = 1 + \frac{1}{\Box - V} V(x). \tag{4.5}
\]

The heat kernel is symmetric in \(x, y \) - arguments and therefore the unknown function \(C(y) \) should coincide with \(\Phi \). Thus, finally, we obtain the following exact late time asymptotics:

\[
e^{-W_\infty(x, y)} = \Phi(x) \Phi(y). \tag{4.6}
\]

Expanding \(W_\infty(x, y) \) in powers of the potential \(V \) one gets:

\[
W_\infty(x, y) = -\ln \Phi(x) - \ln \Phi(y) \tag{4.7}
\]

\[
= -\frac{1}{\Box} V(x) - \frac{1}{\Box} V \frac{1}{\Box} V(x) + \frac{1}{2} \left(\frac{1}{\Box} V(x) \right)^2 + \ldots + (x \leftrightarrow y).
\]

\(^6\)The boundary condition \(K(s|x, y) \to 0 \) as \(|x| \to \infty\) is enforced by the gaussian factor in (2.1), even for nonvanishing finite \(\Omega = \exp(-W(s|x, y)) \).
The first term here is obviously in agreement with the perturbative asymptotics (3.14). However, beyond that, the iterative solution (3.14) seems to be in contradiction with (4.7). Actually the series (3.14) runs in powers of the differentiated potential, while in the expansion (4.7), only undifferentiated potential V enters. This contradiction disappears if one notes that integration by parts in the second term of the expansion (3.14) exactly reproduces the second and third terms in (4.7). Thus, both expansions are equivalent, but the first one reveals more explicitly the small parameter of the expansion, while in (4.7) the smallness is a result of non-trivial cancellations between different terms.

Finally we write down the exact late time asymptotics for the heat kernel, advocated in Introduction,

$$K(s| x, y) = \frac{1}{(4\pi s)^{d/2}} \Phi(x)\Phi(y), \quad s \to \infty.$$ \hspace{1cm} (4.8)

Its heuristic interpretation is rather transparent. The heat kernel can be decomposed in the series

$$K(s| x, y) = \sum_{\lambda} e^{-\lambda s} \Phi_{\lambda}(x) \Phi_{\lambda}(y),$$

where λ and Φ_{λ} are, respectively, eigenvalues and eigenfunctions of the operator $\hat{F} = -\Box + V(x)$. Since \hat{F} is a non-negative operator, only the lowest eigenmode with $\lambda = 0$ survives in this expression in the limit $s \to \infty$. The appropriate eigenfunction satisfies the equation $\hat{F}\Phi_{\lambda=0} = 0$, which coincides with (4.4) and therefore $\Phi_{\lambda=0} = \Phi(x)$. The spectrum of the operator is continuous and the eigenmodes are not square integrable ($\Phi_0(x) \to 1$ as $|x| \to \infty$). This is why the integral over the spectrum, denoted above by \sum_{λ}, yields, within the steepest decent approximation, the power-like asymptotics, $1/s^{d/2}$, rather than exponential ones. Of course, these arguments are not very rigorous. The zero mode $\Phi(x)$, with unit boundary condition at infinity, does not even belong to the continuous spectrum of the modes normalized to the delta function. Nevertheless, as we have seen, this particular mode gives the leading contribution to the late-time asymptotics of the heat kernel.

If we want to calculate the nonlocal contribution to the effective action due to the late time behavior of the heat kernel we need its functional trace – spacetime integral of the coincidence limit $K(s| x, x)$. Unfortunately, the expression (4.8) cannot be used directly to calculate $\text{Tr} K(s)$ for a given s. Point is that this asymptotic expression taken at a fixed large s is applicable only for $|x|^2 < s$ and fails at $|x|^2 \gg s$. At the same time, when calculating the trace we have to integrate over the whole spacetime up to $|x| \to \infty$ and therefore need the heat kernel behavior for $|x|^2 \gg s$. The attempt to disregard this subtlety and integrate the coincidence limit of (4.8) over x results

7This follows from the derivation of (4.8) above, which is based on discarding the second term of eq.(3.1) linearly growing in $(x-y)/s$.

14
in a poorly defined quantity – the spacetime integral strongly diverges at infinity. Nevertheless, one can use the expression (4.8) to find $\text{Tr} K(s)$ with the aid of the following somewhat subtler procedure.

First let us write the variational relation
\[
\delta \text{Tr} K(s) = -s \text{Tr} (\delta V K(s)) = -s \int dx \delta V(x) K(s|x, x) \tag{4.10}
\]
where $K(s) = \exp[s(\Box - V)]$. Then it follows that
\[
\frac{\delta \text{Tr} K(s)}{\delta V(x)} = -s K(s|x, x). \tag{4.11}
\]
Substituting $K(s|x, x)$ from (4.8) in the right hand side of this relation we obtain the following functional differential equation
\[
\frac{\delta \text{Tr} K(s)}{\delta V(x)} = -\frac{s}{(4\pi s)^{d/2}} \Phi^2(x). \tag{4.12}
\]
This equation satisfies the integrability condition, because the variational derivative
\[
\frac{\delta \Phi^2(x)}{\delta V(y)} = 2\Phi(x)\Phi(y) \frac{1}{\Box - V} \delta(x, y) \tag{4.13}
\]
is symmetric in x and y. Therefore (4.12) can be solved to determine $\text{Tr} K(s)$. The solution subject to the obvious boundary conditions at $V = 0$ reads
\[
\text{Tr} K(s) = \frac{1}{(4\pi s)^{d/2}} \int dx \left(1 - sV\Phi\right), \ s \to \infty. \tag{4.14}
\]
One can easily check that this expression satisfies the equation (4.12).

It is quite remarkable that in the covariant perturbation theory the leading and next subleading (in s) terms of the heat kernel trace can be explicitly calculated in all orders in V as $s \to \infty$. The corresponding infinite series can be explicitly summed up to yield essentially nonlocal and nonlinear in $V(x)$ expression for $\text{Tr} K(s)$. This is done in Appendix B to the first subleading order inclusive. The following very simple and concise result reads as
\[
\text{Tr} K(s) = \frac{1}{(4\pi s)^{d/2}} \int dx \left\{1 - sV\Phi - 2\nabla_\mu\Phi \frac{1}{\Box - V} \nabla^\mu\Phi + O\left(\frac{1}{s}\right)\right\} \tag{4.15}
\]
in terms of the function $\Phi(x)$ and its derivatives. As we see, it exactly reproduces the leading order term of (4.14), $O(s/s^{d/2})$, and also gives a nontrivial $O(1/s^{d/2})$-correction.

5. Effective action

The functional trace of the heat kernel is everything we need for the calculation of the effective action. Unfortunately, only its asymptotics are known. Namely, at small s one
can use modified gradient expansion (2.1), (2.8) and at big s nonlocal and nonlinear expression (4.15). The goal of this section is to unify both of these approximations to get an approximate expression for the effective action which would incorporate both the ultraviolet and the infrared properties of the theory. The calculation will be explicitly done in the four dimensional case. The generalization to other dimensions $d > 2$ is straightforward.

The key idea is to replace $\text{Tr} \, K(s)$ in (1.9) by some approximate function $\text{Tr} \, \bar{K}(s)$ such that the integral over s

$$\bar{\Gamma} = -\frac{1}{2} \int \frac{ds}{s} \text{Tr} \, \bar{K}(s)$$

becomes explicitly calculable. The difference $\text{Tr} \, K(s) - \bar{K}(s)$ can then be treated as a perturbation. Certainly, the efficiency of this procedure very much depends on the successful choice of $\bar{K}(s)$. Here we exploit the simplest possibility; namely, let us take two simple functions $\text{Tr} \, \bar{K}_<(s)$ and $\text{Tr} \, \bar{K}_>(s)$, which coincide with the leading asymptotics of $\text{Tr} \, K(s)$ as $s \to 0$ and $s \to \infty$ and use them to approximate $\text{Tr} \, K(s)$ respectively at $0 \leq s \leq s_*$ and $s_* \leq s < \infty$. In turn, the value of s_* will be determined from the requirement that these two functions match at s_*. This sounds very natural and guarantees the stationarity of $\bar{\Gamma}$ with respect to the choice of s_*, that is, $\partial \bar{\Gamma}/\partial s_* = 0$. We will discuss the justification of this procedure a little later, while now let us proceed with the calculation of $\bar{\Gamma}$.

At small s we use the lowest order term of the modified gradient expansion:

$$\text{Tr} \, K_<(s) = \frac{1}{(4\pi s)^2} \int dx \exp (-Vs), \quad s < s_*.$$ \hfill (5.2)

skipping all terms containing the derivatives of the potential V. The rest of the asymptotic series (2.8), containing \tilde{a}_n will be treated as perturbation. Correspondingly, at large $s > s_*$ we will use the late time asymptotics (4.14):

$$\text{Tr} \, K_>(s) = \frac{1}{(4\pi s)^2} \int dx (1 - sV\Phi), \quad s > s_*.$$ \hfill (5.3)

The requirement of stationarity of $\bar{\Gamma}$ with respect to s_* leads to the equation:

$$\int dx \exp (-Vs_*) = \int dx (1 - s_*V\Phi).$$ \hfill (5.4)

which determines the value of s_* as some nontrivial functional of the potential, $s_* = s_*[V(x)]$. Unfortunately this functional is not calculable explicitly in general, but nevertheless as we will see below it can be obtained for two rather broad broad classes of potentials. The action (5.1) can be written down as a sum of two contributions

$$\bar{\Gamma} = \Gamma_< + \Gamma_>} = -\frac{1}{2} \int_0^\infty \frac{ds}{s} \text{Tr} \, K_< (s) - \frac{1}{2} \int_{s_*}^\infty \frac{ds}{s} (\text{Tr} \, K_>(s) - \text{Tr} \, K_< (s)).$$ \hfill (5.5)
The first integral here was already calculated and is given by the sum of the expressions (2.10) and (2.12) with $\tilde{a}_0 = 1$ and $\tilde{a}_n = 0, n \geq 1$, which in our particular case give rise to

$$
\Gamma_\lt = \Gamma_{\text{div}} + \Gamma_{\text{CW}}
\equiv \frac{1}{64\pi^2} \int d^4x \left[\left(-\frac{1}{2 - \omega} + 2C - 3 - \ln 4\pi \right) V^2 + V^2 \ln \frac{V}{\mu^2} \right], \quad \omega \rightarrow 2,
$$

(5.6)

where $C = 0, 577...$ is the Euler's constant. The first term here is responsible for the renormalization of the original action and the second one is just the Coleman-Weinberg potential. The second integral in (5.5) can also be calculated exactly. Integrating by parts and taking into account (5.4), we obtain:

$$
\Gamma_\gt \equiv -\frac{1}{2} \int_s^\infty \frac{ds}{s} \left(\text{Tr} K_\gt(s) - \text{Tr} K_\lt(s) \right)
= \frac{1}{64\pi^2} \int d^4x \left[\frac{V\Phi}{s^*} - \frac{V e^{-s*V}}{s^*} + V^2 \Gamma(0, s^*V) \right],
$$

(5.7)

where $\Gamma(0, x)$ is an incomplete gamma function, $\Gamma(0, x) = \int_x^\infty dt t^{-1} e^{-t}$, with the following asymptotics

$$
\Gamma(0, x) \sim \begin{cases}
\ln \frac{1}{x} - C, & x \ll 1, \\
\frac{1}{x} e^{-x}, & x \gg 1.
\end{cases}
$$

(5.8)

The further steps strongly depend on the class of the potentials, for which the consistency conditions of the piecewise approximation (5.2)-(5.3) should be carefully analyzed.

5.1. Small potential

The approximation (5.2)-(5.3) is efficient only if the ranges of validity of two asymptotic expansions (appropriately for small and big s) overlap with each other and the point s^* belongs to this overlap. In this case the corrections due to the deviation of $\text{Tr} \tilde{K}(s)$ from the exact $\text{Tr} K(s)$ are uniformly bounded everywhere and one can expect that (5.1) would give a good zeroth-order approximation to an exact result. Below we will show that this necessary requirement can be satisfied at least for two rather wide classes of the potentials $V(x)$.

The modified gradient expansion is well applicable in the overlap range of the parameter s if

$$
s \nabla \nabla V \ll V,
$$

(5.9)

(cf. Eq.(2.15) with s replaced by effective cutoff $s = 1/V$) and the applicability of large s expansion in the same domain reads as

$$
s \int dx V \Phi \gg \int dx \nabla_\mu \Phi \frac{1}{V - \Box} \nabla^\mu \Phi,
$$

(5.10)
which means that the subleading term (quadratic in $\nabla_\mu \Phi$) of the late time expansion (4.15) is much smaller than the second term.

To implement these requirements, let us make some simplifying assumptions. Instead of the power law falloff, assume that $V(x)$ has a compact support of finite size R

$$V(x) = 0, \quad |x| \geq R. \quad (5.11)$$

Let us also assume that the characteristic magnitude of the potential inside its support is given by V_0. Then the estimate for the derivatives is obvious

$$\nabla \nabla V \sim \frac{V_0}{R^2} \quad (5.12)$$

and (5.9) reads as $s V_0 / R^2 \ll V_0$, that is

$$s \ll R^2. \quad (5.13)$$

To find out what does the criterion (5.10) means let us make a simplifying assumption, namely, that the potential V is small. In this case it can be disregarded in the Green’s functions and $1/(\Box - V)$ can be replaced by $1/\Box$. Therefore the following estimates hold

$$\frac{1}{\Box - V} V(x) \sim \int_{|y| \leq R} dy \frac{1}{|x - y|^{d-2}} V(y) \sim \frac{1}{R^{d-2}} R^d V_0 \sim V_0 R^2,$$

$$\int dx V \Phi \sim V_0 R^d,$$

$$\int dx \nabla_\mu \Phi \frac{1}{V - \Box} \nabla^\mu \Phi \simeq V_0^2 R^{d+4}, \quad (5.14)$$

roughly, every Green’s function gives the factor R^2, every derivative – $1/R$, integral gives the volume of compact support R^d, etc. Applying these estimates to eq. (5.10) we get $s V_0 R^d \gg V_0^2 R^{d+4}$, whence

$$s \gg V_0 R^4. \quad (5.15)$$

Combining this with (5.13) one gets the following range of the overlap of our asymptotic expansions

$$R^2 \gg s \gg V_0 R^4 \quad (5.16)$$

It immediately follows from here that this overlap domain is not empty only if

$$V_0 R^2 \ll 1. \quad (5.17)$$

Moreover, the assumption we made skipping the potential in the Green’s function is also justified in this case since $V \sim V_0 \ll 1/R^2 \sim \Box$. In other words this bound means that the potential is small in the units of the inverse size of its compact support.
Now let us check whether \(s_* \) introduced above belongs to the overlap domain (5.16). Note that if it is really so then \(s_*V \) in Eq.(5.4) is much smaller than the unity because in the overlap range one has \(sV \sim sV_0 \ll R^2V_0 \ll 1 \). Hence the exponent in the left hand side of (5.4) can be expanded in powers of \(s_*V \), and the resulting equation for \(s_* \) becomes

\[
\int dx \left(1 - s_*V + \frac{s_*^2 V^2}{2} + O\left((s_*V)^3\right) \right) = \int dx \left(1 - s_*V\Phi \right) \tag{5.18}
\]

Its solution has the following form:

\[
s_* \simeq 2 \frac{\int dx \left(V_0 \Phi \right)}{\int dx V^2} = 2 \frac{\int dx \left(\frac{1}{V_0} \Phi \right)}{\int dx V^2}. \tag{5.19}
\]

Taking into account the estimates (5.14) we see that the point \(s_* \sim R^2 \) belongs to the upper edge of the interval (5.16). Late time expansions is fairly well satisfied here, but the small \(s \) expansion is on the verge of breakdown. At this level of generality it is hard to overstep the uncertainty of this estimate. There is a hope that some numerical coefficient in more precise consideration (with concrete potentials) can be large enough to shift \(s_* \) to the interior of the interval (5.16) and, thus, make our approximation completely reliable.

Bearing in mind all these reservations let us proceed with the calculation of the effective action. Using the small \(x \) asymptotics (5.8) in the expression (5.7) we get

\[
\Gamma_\geq \simeq \frac{1}{64\pi^2} \int d^4x \left[-V \frac{1 - \Phi}{s_*} + V^2 \left(\ln \frac{1}{s_*V} - C + 1 \right) \right]. \tag{5.20}
\]

It is interesting to note that in the whole action \(\bar{\Gamma} = \Gamma_< + \Gamma_\geq \) the Coleman-Weinberg term disappears and the final answer reads

\[
\bar{\Gamma} \simeq \frac{1}{64\pi^2} \left(-\frac{1}{2 - \omega} + C - 2 - \ln 4\pi \right) \int d^4x V^2 + \frac{1}{64\pi^2} \int d^4x V^2 \ln \left(\int d^4x V^2 \right) - \frac{1}{64\pi^2} \int d^4x V^2 \ln \left(\int d^4x V \frac{\mu^2}{V - \Box} \right). \tag{5.21}
\]

The first term here differs from \(\Gamma_{\text{div}} \) in (5.6) by a finite renormalization of the local \(V^2 \)-term, while the two other terms have entirely new nonlinear and nonlocal structure advocated in the Introduction. The ultraviolet renormalization mass parameter \(\mu^2 \) makes the argument of the second logarithm dimensionless – it plays the same role as for the Coleman-Weinberg potential, but now it enters the new essentially nonlocal structure.

It is rather natural that the original Coleman-Weinberg term disappeared for a case of small potentials satisfying (5.17) and got replaced by the other qualitatively new

\[\text{Note that the quadratic term should be retained in the expansion of } e^{-s_*V} \text{ if we want to get a nontrivial solution for } s_*.\]
nonlocal logarithmic structure. Actually, the potentials which are small in units of the inverse size of their support are qualitatively very different from the nearly constant potentials for which the Coleman-Weiberg potential was originally derived. In the case of small potentials spacetime gradients dominate over their magnitude and, therefore, one should not expect that the Coleman-Weiberg term will survive the inclusion of nonlocal structures.

5.2. Big potential

Quite remarkably, the case of the small potential (5.17) is not the only one when one can find a non-empty domain of overlap where both asymptotics for Tr $K(s)$ are applicable. Namely, the opposite case of big potentials (in the units of the inverse size of their support)

$$V_0 R^2 \gg 1,$$

is equally good. The key observation here is that in this case the kernel of the Green’s function $1/((\Box - V)$ can be replaced within the compact support by $-1/V$, $\Box \sim 1/R^2 \ll V_0 \sim V$, and correspondingly

$$\frac{1}{\Box - V} V(x) \sim -\frac{1}{V} V = -1,$$

$$\int dx \nabla_\mu \Phi \frac{1}{V - \Box} \nabla^\mu \Phi \simeq \frac{R^4}{V_0 R^2}.$$

Therefore, the criterion of the applicability of late time expansion (5.10) becomes $s \gg 1/V_0^2 R^2$. Together with (5.13) it yields the new overlap range

$$R^2 \gg s \gg \frac{1}{V_0^2 R^2}$$

which is obviously not empty if the potential satisfies (5.22).

To find s_* in this case we have to solve the equation (5.4) for a case when $s_* V$ is not anymore a small quantity. Since V is big the exponent in (5.4) can be replaced by zero inside the compact support, $\exp(-s_* V(x)) \sim 0$, $|x| \leq R$, and by one outside of it where the potential vanishes, $\exp(-s_* V(x)) \sim 1$, $|x| > R$. Rewriting the integrals in both sides of the equation (5.4) as a sum of contributions of $|x| \leq R$ and $|x| > R$, we see that only the contribution of the compact domain survives and the equation becomes

$$s_* \int_{|x| \leq R} dx V \Phi \simeq \int_{|x| \leq R} dx,$$

$$\text{5.26}$$
It follows from here that s_* is approximately given by the inverse of the function $V\Phi(x)$ *averaged* over the compact support of the potential

$$ s_* \simeq \frac{1}{\langle V\Phi \rangle} , $$

$$ \langle V\Phi \rangle \equiv \frac{\int_{|x|\leq R} dx \, V\Phi}{\int_{|x|\leq R} dx} . $$

(5.27)

(5.28)

A qualitative estimate of $\langle V\Phi \rangle \sim V_0$ implies that $s_* \sim 1/V_0$ and it belongs to the middle of the interval (5.25). This makes the case of a big potential fairly consistent. On the other hand, the value of $\Phi(x)$ is close to zero inside the potential support (see (5.23)), so most likely the estimate for $\langle V\Phi \rangle$ is smaller by at least one power of $1/V_0 R^2$, which is the basic dimensionless small parameter in this case. Therefore the magnitude of s_* becomes bigger by one power of $V_0 R^2$, $s_* \simeq R^2$, which is again near the upper boundary of the overlap interval (5.25). Similarly to the small potential case, a more rigorous analysis is needed (maybe for more concretely specified potentials) to account for subtle edge effects at the boundary of compact support, which might shift the value of s_* to the safe region inside (5.25).

With the above estimate for $s_* \sim R^2$ the magnitude of $s_* V$ in the expression for the infrared part of effective action (5.7) becomes big, $s_* V \sim s_* V_0 \sim V_0 R^2 \gg 1$, and we use the big x asymptotics in (5.8) to get the contribution

$$ \Gamma > \simeq \frac{1}{64\pi^2 s_*} \int d^4x V\Phi = \frac{1}{64\pi^2} \int_{|x|\leq R} d^4x \langle V\Phi \rangle^2 . $$

(5.29)

In this case the Coleman-Weinberg term is not canceled anymore in complete agreement with what we would expect for big potentials and the final result reads

$$ \bar{\Gamma} = \Gamma_{\text{div}} + \Gamma_{\text{CW}} + \frac{1}{64\pi^2} \int_{|x|\leq R} d^4x \langle V\Phi \rangle^2 . $$

(5.30)

6. Comments

We developed the new technique for the calculation of the late time asymptotics of the heat kernel and its functional trace. Using these asymptotics we found previously unknown essentially nonlocal and nonperturbative contributions to the effective action for two rather large classes of potentials with compact supports. Therefore, the generalization of these results to potentials with power-law falloff, which would imply subtler analyses, deserves further studies.

Our results in their present form are applicable only in higher dimensions, $d \geq 3$. As it is known, the expression $(1/\Box)V$ is not uniquely defined in low dimensions, $d \leq 2$, and
the logarithmic kernel of the Green’s function of the massless field is defined in $d = 2$
only up to an additive constant. Therefore, the convolution of the Green’s function
with the potential is unambiguous only if the potential is the total derivative of some
other function [4], as, for instance, 2-dimensional curvature scalar in the Polyakov
action [8]. Thus, the extension of our results to low-dimensional models, where the
other calculational schemes fail, is especially important. This will be done in the
forthcoming paper [7].

Another possibility is the generalization of our technique to the potentials with
isolated zeroes in the interior of the spacetime. Even more interesting is the situation
when the potential becomes negative $V(x) < 0$ in some spacetime domain. In this
case there is tachionic instability, and it would be good to get quantitative criteria
describing this instability in terms of the properties of $V(x)$.

Finally, it is important to generalize our results to a curved spacetime and the
fields of higher spins, which would result in a nontrivial matrix structure of all the
algorithms for $K(s|x,y)$ and its functional trace. All these issues are addressed in
[7]. The nonlocal effective action can then be applied to study interesting physical
problems, like quantum black holes evaporation [6], quantum cosmology, etc.

It is worth mentioning that the developed technique for the late time asymptotics
of the heat kernel could also be useful in statistical physics for the calculation of the
partition function at low temperatures.

\section{A. Integral equation for W}

In this Appendix we derive the integral form of the equation:

$$
\frac{\partial W(s|x,y)}{\partial s} + \frac{(x-y)^\mu}{s} \nabla_\mu W(s|x,y) - \Box W(s|x,y) = f(s|x,y),
$$

(A.1)

where

$$\quad f(s|x,y) \equiv V(x) - (\nabla W(s|x,y))^2,$$

(A.2)

and $W(s=0|x,y) = 0$. With this purpose we first introduce the new function \bar{W}:

$$W(s|x,y) = e^{-s\Box} \bar{W}(s|x,y).$$

(A.3)

Using the relation

$$e^{s\Box}(x-y)^\mu e^{-s\Box} = (x-y)^\mu + 2s\nabla^\mu$$

(A.4)

one can easily find that this function satisfies the following equation:

$$
\frac{\partial \bar{W}}{\partial s} + \frac{(x-y)^\mu}{s} \nabla_\mu \bar{W} = e^{s\Box} f,
$$

(A.5)
which does not contain anymore \Box-term on the left hand side. To write down the formal solution of this equation in terms of the "source" term $f = f(s| x, y)$, let us introduce the characteristic curve $\bar{x}(t)$ of (A.5), which satisfies the equation:

$$\frac{d\bar{x}^\mu(t)}{dt} = \frac{(\bar{x}(t) - y)^\mu}{t},$$

(A.6)

with the boundary conditions

$$\bar{x}^\mu(t = 0) = y^\mu; \quad \bar{x}^\mu(t = s) = x^\mu.$$

(A.7)

The solution of (A.6) is:

$$\bar{x}^\mu(t) = y^\mu + \frac{(x - y)^\mu}{s} t$$

(A.8)

The total derivative of $\bar{W}(t|\bar{x}(t), y)$ with respect to t along this characteristic curve is then equal to:

$$\frac{d}{dt} \bar{W}(t|\bar{x}(t), y) = \left[\frac{\partial}{\partial t} + \frac{(x - y)^\mu}{t} \frac{\partial}{\partial \bar{x}^\mu} \right] \bar{W}(t|\bar{x}, y) = e^{\Box} f(t|\bar{x}(t), y),$$

(A.9)

where $\Box \equiv \partial^2 / \partial \bar{x}^\mu \partial \bar{x}_\mu$. Integrating this equation from 0 to s with the initial condition $\bar{W} = 0$ at $t = 0$ and taking into account the boundary conditions (A.7) for $\bar{x}(t)$, one gets

$$\bar{W}(s| x, y) = \int_0^s dt e^{\Box} f(t|\bar{x}(t), y).$$

(A.10)

Returning to the original W, which is related to \bar{W} via (A.3) and taking into account that $\Box = (t/s)^2 \Box$ we finally obtain:

$$W(s| x, y) = s \int_0^1 d\alpha e^{s\alpha(1-\alpha)} \left| f(s\alpha| \bar{x}, y) \right|_{\bar{x} = x + (1-\alpha)y}$$

(A.11)

where instead of t the new integration variable $\alpha = t/s$ was introduced. This is exactly the desired integral form (3.3) of the equation (A.1) we used in Sect.3.

B. Covariant perturbation theory and late time behavior of the functional trace of the heat kernel

Here we consider the nonlocal covariant perturbation theory (CPT) of [3, 4, 5]. In CPT the functional trace of the heat kernel for the covariant second order differential operator is expanded as nonlocal series in powers of the potential V with explicitly calculable coefficients - nonlocal form factors $F_n(s| x_1, x_2, ... x_n)$. Their leading asymptotic behavior at large s was obtained in [4]. Here we calculate them up to the first
subleading order in $1/s$ inclusive for a simple operator $\hat{F} = \Box - V$. Then we explicitly perform infinite summation of power series in the potential to obtain the nonlocal and nonlinear expression (4.15) for late time behavior of $\text{Tr} K(s)$.

According to [4] the heat kernel trace is local in the first two orders of the perturbation theory in the potential (2.18)

$$\text{Tr} K_0(s) = \frac{1}{(4\pi s)^{d/2}} \int dx,$$

$$\text{Tr} K_1(s) = -\frac{s}{(4\pi s)^{d/2}} \int dx V(x),$$

and in higher orders it reads as

$$\text{Tr} K_n(s) = (-s)^n \frac{n}{(4\pi s)^{d/2} n} \int dx \langle e^{s\Omega_n} V(x_1)V(x_2)...V(x_n) \rangle_{x_1=...=x_n=x}, \ n \geq 2.$$ (B.3)

Here Ω_n is a differential operator acting on the product of n potentials

$$\Omega_n = \sum_{i=1}^{n-1} \nabla^2_{i+1} + 2 \sum_{i=2}^{n-1} \sum_{k=1}^{i-1} \beta_i (1 - \beta_k) \nabla_{i+1} \nabla_{k+1},$$ (B.4)

expressed in terms of the partial derivatives labelled by the indices i implying that ∇_i acts on $V(x_i)$. It is assumed in (B.3) that after the action of all derivatives on the respective terms all x_i are set equal to x. It is also assumed that the spacetime indices of all derivatives $\nabla = \nabla^\mu$ are contracted in their bilinear combinations, $\nabla_i \nabla_k \equiv \nabla_i^\mu \nabla_k^\mu$.

The differential operator (B.4) depends on the parameters β_i, $i = 1, ... n - 1$, which are defined in terms of the parameters α_i, $i = 1, ... n$ as

$$\beta_i = \alpha_{i+1} + \alpha_{i+2} + ... + \alpha_n,$$

and the angular brackets in $\langle e^{s\Omega_n} \rangle$ imply that this operator exponent is integrated over compact domain in the space of α-parameters

$$\langle e^{s\Omega_n} \rangle \equiv \int_{\alpha_i \geq 0} d^n \alpha \delta \left(\sum_{i=1}^{n} \alpha_i - 1 \right) \exp(s\Omega_n).$$

The late time behavior of $\text{Tr} K_n(s)$ is thus determined by the asymptotic behavior of this integral as $s \to \infty$, which can be calculated using the Laplace method. To apply this method, let us note that Ω_n is a negative semidefinite operator (this is shown in the Appendix B of [4]) which degenerates to zero at n points of the integration domain: $(0, ... 0, \alpha_i = 1, 0, ... 0)$, $i = 1, ... n$. Therefore the asymptotic expansion of this integral is given by the contribution of the corresponding n maxima of the integrand at these points. The possibility to integrate by parts in (B.3) is encoded in the formal identity $\nabla_1 + \nabla_2 + ... + \nabla_n = 0$. With the help of it one can show that the contributions of all these maxima are equal, so that it is sufficient to calculate only the contribution of
the point $\alpha_1 = 1$, $\alpha_i = 0$, $i = 2, \ldots n$. In the vicinity of this point it is convenient to rewrite the expression for Ω_n in terms of the independent $(n-1)$ variables $\alpha_2, \alpha_2, \ldots, \alpha_n$, the remaining $\alpha_1 = 1 - \sum_{i=2}^{n} \alpha_i$,}

$$\Omega_n = \sum_{i=2}^{n} \alpha_i D_i^2 - \sum_{m,k=2}^{n} \alpha_m \alpha_k D_mD_k, \quad \text{(B.5)}$$

where the operator D_m is defined as

$$D_m = \nabla_2 + \nabla_3 + \ldots + \nabla_m, \quad m = 2, \ldots, n. \quad \text{(B.6)}$$

Substituting this expression for Ω_n in (B.3) and expanding in powers of the term which is bilinear in α-parameters one gets

$$\text{Tr} \ K_n(s) = \frac{(-s)^n}{(4\pi s)^{d/2}} \int dx \int_{0}^{\infty} d^{m-1} \alpha \exp \left(s \sum_{i=2}^{n} \alpha_i D_i^2 \right) \times \left(1 - s \sum_{m,k=2}^{n} \alpha_m \alpha_k D_mD_k + \ldots \right) V_1V_2 \ldots V_n. \quad \text{(B.7)}$$

Here $1/n$ factor disappeared due to the contribution of n equal terms and the range of integration over $\alpha_2, \ldots, \alpha_n$, $\sum_{i=2}^{n} \alpha_i \leq 1$, was extended to all positive values of α_i. This is justified because this gives rise to exponentially small terms that go beyond the accuracy of asymptotic expansion in $1/s$. The second term in the round brackets can be rewritten in terms of the derivatives with respect to D_m^2 acting on the exponential, so that

$$\text{Tr} \ K_n(s) = \frac{(-s)^n}{(4\pi s)^{d/2}} \int dx \left(1 - \frac{1}{s} \sum_{m,k=2}^{n} D_mD_k \frac{\partial}{\partial D_m^2} \frac{\partial}{\partial D_k^2} + \ldots \right) \times \int_{0}^{\infty} d^{m-1} \alpha \exp \left(s \sum_{i=2}^{n} \alpha_i D_i^2 \right) V_1V_2 \ldots V_n. \quad \text{(B.8)}$$

In this form it is obvious that further terms of expansion in powers of the quadratic in α part of Ω_n bring higher order corrections of the $1/s$-series. Doing the integral over α here and performing differentiations one obtains

$$\text{Tr} \ K_n(s) = \frac{1}{(4\pi s)^{d/2}} \int dx \left[-\frac{s}{\text{D}_2^2 \ldots \text{D}_n^2} + \frac{1}{\text{D}_{m+2}^2 \ldots \text{D}_{n-1}^2} \frac{1}{\text{D}_m^2} \frac{1}{\text{D}_{m+1}^2 \ldots \text{D}_n^2} \right. \right.$$

$$+ \frac{2}{(\text{D}_2^m)^2} \frac{1}{\text{D}_{m+1} \ldots \text{D}_{n-1}^2} \frac{1}{\text{D}_m^2} \frac{1}{\text{D}_{m+1} \ldots \text{D}_n^2} + \ldots \left. \right] V_1V_2 \ldots V_n. \quad \text{(B.9)}$$

The first term in the square brackets gives the leading order term of the late time expansion. It can be further transformed by taking into account that any operator D_m
defined by (B.6) acts as a partial derivative only on the group of factors $V_m V_{m+1} \ldots V_n$ in the full product $V_1 \ldots V_n$, $D_m V_1 \ldots V_n = V_1 \ldots V_{m-1} \nabla (V_{m+1} \ldots V_n)$. Therefore all the operators understood as acting to the right can be ordered in such a way

$$\text{Tr} K_n(s) = -\frac{s}{(4\pi)^{d/2}} \int dx V_1 \frac{1}{D_n^2} V_n \frac{1}{D_{n-1}^2} V_{n-1} \ldots \frac{1}{D_2^2} V_2 + O \left(\frac{1}{s^{d/2}} \right)$$

that the labels of D_m^2's can be omitted and all D_m^2 can be identified with boxes also acting to the right

$$\text{Tr} K_n(s) = -\frac{s}{(4\pi)^{d/2}} \int dx \underbrace{V \ldots V}_{n-1} V(x) + O \left(\frac{1}{s^{d/2}} \right),$$

(B.10)

Infinite summation of this series is not difficult because this is the geometric progression in powers of the nonlocal operator $V(1/\Box)$ and

$$\text{Tr} K(s) = \text{Tr} K_0(s) - \frac{s}{(4\pi)^{d/2}} \int dx \sum_{n=0}^{\infty} \left(V \right)^n V(x) + O \left(\frac{1}{s^{d/2}} \right),$$

or

$$\text{Tr} K(s) = \frac{1}{(4\pi)^{d/2}} \int dx \left(1 - s \square - \frac{1}{\square - V} V(x) + O(s^0) \right).$$

(B.11)

The second term here looks as a total derivative. However, it does not vanish because the corresponding surface term does not vanish at infinity in view of the Green’s function asymptotics. This term can be rewritten as

$$\square \frac{1}{\square - V} V(x) = V(x) + V \square \frac{1}{\square - V} V(x) = V \Phi(x),$$

(B.12)

and, therefore,

$$\text{Tr} K(s) = \frac{1}{(4\pi)^{d/2}} \int dx \left(1 - s V \Phi(x) + O(s^0) \right).$$

(B.13)

where $O(s^0)$ denotes the subleading in s terms which depend on the potential in non-trivial way. They are given by the infinite resummation over n of the second and third terms in square brackets of Eq.(B.9). Remarkably, this summation can again be explicitly done. In this case one has to sum the multiple geometric progressions.

Indeed, the second term of (B.9) gives rise to the series

$$\frac{2}{(4\pi)^{d/2}} \int dx \sum_{n=2}^{\infty} \sum_{m=2}^{n} V \underbrace{\ldots V}_{n-m} \frac{1}{\square^2} V \underbrace{\ldots V}_{m-2} V \left(\frac{1}{\square - V} \right) V(x).$$

(B.14)

By summing the two geometric progressions with respect to independent summation indices $0 \leq n - m < \infty$ and $0 \leq m - 2 < \infty$ one finds that this series reduces to

$$\frac{2}{(4\pi)^{d/2}} \int dx V \left(\frac{1}{\square - V} \right)^2 V(x),$$

(B.15)
which after the integration by parts amounts to

$$\frac{2}{(4\pi s)^{d/2}} \int dx \left(\frac{1}{\Box - V} V(x) \right)^2 = \frac{2}{(4\pi s)^{d/2}} \int dx \left(1 - \Phi(x) \right)^2. \tag{B.16}$$

Similarly, the third term of (B.9) gives rise to the triplicate geometric progression series which after summation and integration by parts reduces to

$$\frac{2}{(4\pi s)^{d/2}} \int dx V \sum_{i=0}^{\infty} \left(\frac{1}{\Box} V \right)^i \frac{1}{\Box} \nabla^\mu \frac{1}{\Box} \sum_{j=0}^{\infty} \left(\frac{1}{\Box} \nabla^\mu \frac{1}{\Box} \right)^j \sum_{l=0}^{\infty} \left(\frac{1}{\Box} \right)^l V(x)$$

$$= -\frac{2}{(4\pi s)^{d/2}} \int dx \left(\nabla_\mu \Phi(x) \right) \frac{1}{\Box - V} V \frac{1}{\Box} \nabla^\mu \Phi(x). \tag{B.17}$$

Taking here into account that

$$\frac{1}{\Box - V} V \frac{1}{\Box} = \frac{1}{\Box - V} - \frac{1}{\Box} \tag{B.18}$$

one finds that the sum of (B.16) and (B.17) is equal to

$$\frac{2}{(4\pi s)^{d/2}} \int dx \left((1 - \Phi)^2 - \nabla_\mu \Phi \frac{1}{\Box - V} \nabla^\mu \Phi + \nabla_\mu \Phi \frac{1}{\Box} \nabla^\mu \Phi \right)$$

$$= -\frac{2}{(4\pi s)^{d/2}} \int dx \nabla_\mu \Phi \frac{1}{\Box - V} \nabla^\mu \Phi, \tag{B.19}$$

where the cancellation of the first and the third terms takes place after rewriting $\nabla_\mu \Phi$ in the third term as $\nabla_\mu (\Phi - 1)$ and integrating it by parts. Together with (B.13) the contribution (B.19) forms the nonlinear and nonlocal late time expression for the heat kernel trace (4.15) up to the first subleading order in $1/s$ inclusive.

Acknowledgement

A.O.B. is grateful for hospitality of the Physics Department of LMU, Munich, where a major part of this work has been done, and for hospitality at the Physics Department of the University of Cologne, where this work was accomplished. The work of A.O.B. was also supported by the Russian Foundation for Basic Research under the grant No 99-02-16122. V.M. thanks SFB375 for support.

References

9Straightforward integration by parts of $\nabla_\mu \Phi(1/\Box) \nabla^\mu \Phi$ is impossible because $\Phi(x)$ does not vanish at $|x| \to \infty$, while $\Phi(x) - 1$ does.

