Baryonic pollution in gamma-ray bursts:
the case of a magnetically driven wind emitted
from a disk orbiting a stellar mass black hole

Frédéric Daigne and Robert Mochkovitch

1 Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str 1, Postfach 1317 D-85741 Garching bei München
Present address: Service d’Astrophysique, CEA/Saclay, F-91191 Gif sur Yvette Cedex
2 Institut d’Astrophysique de Paris, 98 bis bd. Arago F-75014 Paris

Received 15 October 2001 / Accepted 25 February 2002

Abstract. Most models for the central engine of gamma-ray bursts involve a stellar mass black hole surrounded
by a thick disk formed after the merging of a system of compact objects or the collapse of a massive star. Energy
released from the accretion of disk material by the black hole or from the rotation of the hole itself extracted
by the Blandford-Znajek mechanism powers a relativistic wind along the system axis. Lorentz factors of several
hundreds are needed to solve the compactness problem in the wind which implies the injection of a tremendous
power into a very small amount of matter. The Blandford-Znajek mechanism, where the outflow follows magnetic
field lines anchored to the black hole is probably the best way to prevent baryonic pollution and can even initially
produce a purely leptonic wind. In this paper we rather study the wind emitted from the inner part of the disk
where the risk of baryonic pollution is much larger since the outflow originates from high density regions. We show
that the baryonic load of this wind sensitively depends on the disk temperature and magnetic field geometry and
that the outflow can become ultra-relativistic (Lorentz factor $\Gamma > 100$) under quite restrictive conditions only.
Conversely, if Γ remains of the order of unity the dense wind emitted from the inner disk could help to confine
the central jet but may also represent a source of baryon contamination for the Blandford-Znajek mechanism.

Key words. Gamma rays: bursts – Accretion: accretion disks – Magnetohydrodynamics (MHD) – Neutrinos –
Relativity

1. Introduction

The discovery of the first optical counterparts to gamma-ray bursts (hereafter GRBs) in 1997 (?) has shown
that most (if not all) GRBs are located at cosmological distances. About 20 redshifts have now been measured
from $z = 0.43$ for GRB 990712 to $z = 4.5$ for GRB 000131 (with however the peculiar case of GRB 980425
which appears to be associated to a nearby type Ic supernova at $z = 0.01$; ?)). The energy radiated by these
cosmological GRBs in the BATSE range (20 – 1000 keV) goes from 5×10^{51} ergs for GRB 970228 and GRB 980613
(at $z = 0.695$ and 1.096) to 2×10^{54} ergs for GRB 990123 (at $z = 1.6$) assuming isotropic emission. After correction
for beaming, the true energy output appears to be less scattered, clustered around $E_{\gamma} \sim 5 \times 10^{50}$ ergs (?). Among
the sources which have been proposed to explain such a huge release of energy in a time of seconds, the most
popular are mergers of compact objects (neutron star binaries or neutron star – black hole systems) (???) or
massive stars which collapse to a black hole (collapsars) (??). In all these cases, the resulting configuration is
a stellar mass black hole surrounded by a thick torus made of stellar debris or of infalling stellar material
partially supported by centrifugal forces. The location of the detected optical counterparts well inside their
host galaxies and often associated with regions of star formation appears to favor the collapsar scenario (??).
Double neutron star or neutron star – black hole mergers should generally be observed at the periphery of the
host galaxy due to the long delay before coalescence and the large velocity imparted to these systems by two
successive supernova explosions. They can however still be invoked in the case of shorts bursts, for which no
optical counterpart has been detected.

If black hole + thick disk configurations are indeed at
the origin of GRBs, the released energy will ultimately
come from the accretion of disk material by the black hole
or from the rotational energy of the hole itself extracted
by the Blandford-Znajek mechanism (?). In a first step,
the energy must be injected into a relativistic wind whose existence has been directly inferred from the observations of radio scintillation in GRB 970508 (?) and which is also needed to avoid photon-photon annihilation and the resulting compactness problem (?). The second step consists of the conversion of a fraction of the wind kinetic energy into gamma-rays via the formation of shocks, probably inside the wind itself (?). These internal shocks can be expected if the source generate a highly non uniform distribution of Lorentz factor so that rapid layers of the wind will catch up with slower ones at large relative velocities. In the last step, the wind is decelerated when it interacts with the interstellar or circumstellar medium and the resulting (external) shock is responsible for the afterglow observed in the X-ray, optical and radio bands (?).

The physics of the afterglow is probably the best understood since most afterglow properties can be interpreted in terms of solutions of the relativistic Sedov problem (?) with synchrotron emission behind the shock (?). Models taking into account the beam geometry of the flow (?) or different kinds of burst environments (constant density medium or stellar wind; ?) can be constructed to explain observed breaks in the lightcurves or the evolution of some radio afterglows.

More problems remain concerning the generation of gamma-rays in the relativistic wind. Instead of internal shocks, gamma-rays can also be emitted during the early evolution of the external shock with however the difficulty to explain in this case the highly variable temporal profiles of observed bursts (?) see however ?)). Models of bursts produced by internal shocks are found to be in reasonable agreement with the observations (???) even if the process which produces the gamma-rays – synchrotron radiation or/and comptonization – remains uncertain due to problems encountered in fitting the low energy part of the spectra (?)..

The origin of the relativistic wind is the more complex of the three steps. Several proposals have been made to explain the generation of this wind but few detailed calculations have been performed. If the burst energy comes from matter accretion by the black hole, the annihilation of neutrino-antineutrino pairs emitted by the hot disk could be a way to inject energy along the system axis, in a region which can be expected to be depleted in baryons due to the effect of centrifugal forces (?). The low efficiency of this process requires high neutrino luminosities and therefore high accretion rates. In the merger case this can be achieved for short accretion timescales (?) and may explain short bursts. Conversely in the collapsar scenario, the larger mass reservoir allows the system to maintain high accretion rates for a longer time and could then also produce long bursts (?).

Another possibility is to suppose that disk energy is extracted by a magnetic field amplified by differential rotation up to very large values \(B \gtrsim 10^{15} \text{ G} \). A magnetically driven wind could then be emitted from the disk with a fraction of the Poynting flux being eventually transferred to matter (?). Such a mechanism operates in many classes of astrophysical objects (from T Tauri stars to AGN) but it is far from clear that it can work in the context of GRBs where final Lorentz factors of several hundreds are required. In a different version of the same idea, an early conversion of magnetic into thermal energy could occur through the reconnection of field lines above the plane of the disk in a region of rather low density (?).

An alternative to accretion is to directly extract the rotational energy of the black hole via the Blandford-Znajek mechanism. The available power then depends on the rotation parameter \(a \) of the hole and on the intensity of the magnetic field pervading the horizon. If \(B \gtrsim 10^{15} \text{ G} \) and \(a \sim 1 \), the power available from the Blandford-Znajek mechanism can be larger than \(10^{52} \text{ erg.s}^{-1} \) with a very limited contamination by baryons at the source since the field lines which guide the outflow are anchored to the black hole.

In this paper we rather concentrate on the wind which is emitted from the inner disk. We want to identify the key parameters which control its baryonic load and check whether it can reach large Lorentz factors or remains non relativistic. Our approach will be oversimplified in comparison to the complexity of the real problem so that our conclusions have to be considered as indicative only. In Sect. 2 we briefly discuss the structure of the disk + black hole configurations which are produced by NS + NS or NS + BH mergers and in the collapsar scenario. We write in Sect. 3 the equations which govern the wind dynamics from the disk to the sonic point. They are solved in Sect. 4 to obtain the mass loss rate and the terminal Lorentz factor of the wind is estimated in Sect. 5. Our results are discussed in Sect. 6 which is also the conclusion.

2. The structure of the disk

Before writing the wind equations in the next section we first describe the black hole + disk configurations which are obtained in the case of the three most discussed GRB sources: NS + NS or BH + NS mergers and collapsars. We want to compare the black hole and disk masses, the hole rotation parameter \(a \), estimate which fraction of the disk is optically thick to neutrinos and obtain the disk temperature.

2.1. Mergers:

The coalescence of neutron stars has been studied by several groups mostly in the Newtonian and post-Newtonian approximation (?). The resulting merged object obtained from two neutron stars of \(1.4 \text{ } M_{\odot} \) is made of a dense central core of \(\sim 2.5 \text{ } M_{\odot} \) in quasi-uniform rotation surrounded by a differentially rotating disk of \(\sim 0.3 \text{ } M_{\odot} \). In relativistic calculations, a black hole is
angular momentum is increasing outwards as pressure of relativistic degenerate electrons and the specific stellar mass black holes. The disks are supported by the gas of ultra-relativistic electrons and the distribution of specific angular momentum is $j(r) \propto r^{0.2}$ in reasonable agreement with the results of numerical simulations. We construct accreting disks i.e. disks with a cusp in the equatorial plane where the total gravitational + centrifugal force is zero. If $a = 0$, we model the black hole with the Paczynski-Wiita potential while for a Kerr black hole we use the Novikov potential.

$$\Phi_{BH}(r) = -\frac{GM_{BH}}{(\beta - 1)r_h} \left[\left(\frac{r}{r - r_h} \right)^{\beta - 1} - 1 \right],$$

where $r_h = (1 + \sqrt{1 - a^2}) r_g$ and $\beta = \frac{r_{ms}}{r_h} - 1$, (2)

In each model thick lines in the equatorial plane indicate the extension of the zone which is optically thick to neutrinos for $T_\nu = 2$ (left) and 3 (right) MeV.

In the case of BH + NS mergers, the masses of the disk and black hole are in average larger than in NS + NS mergers. The hole rotation parameter depends on the fraction of neutron star material accreted by the black hole during the merging event. 7) obtain disk masses between 0.3 and 0.7 M_\odot and rotation parameter between 0.1 and 0.5 for different assumptions regarding the relative masses and spins of the neutron star and the black hole.

To estimate the transparency of the disks to neutrinos we have computed the structure of the merged object with the self-consistent field method originally developed by 7) using the approach of 7) to solve the Poisson equation. The equation of state in the disk corresponds to an ideal gas of ultra-relativistic electrons and the distribution of specific angular momentum is $j(r) \propto r^{0.2}$ in reasonable agreement with the results of numerical simulations.

$$\tau_{\nu_s} = \int_{-\infty}^{+\infty} \kappa_{\nu_s} \rho \, dz$$

where

$$\kappa_{\nu_s} = 3.8 \times 10^{-19} \left(\frac{T_\nu}{1 \text{ MeV}} \right)^2 \text{ cm}^2 \cdot \text{g}^{-1}$$

Fig. 1. Equilibrium models for thick accreting disks orbiting stellar mass black holes. The disks are supported by the pressure of relativistic degenerate electrons and the specific angular momentum is increasing outwards as $r^{0.2}$; case 1) Schwarzschild black hole of mass $M_{BH} = 2.5 \, M_\odot$ and disk mass $M_D = 0.3 \, M_\odot$; 2) same M_{BH} and M_D and Kerr black hole with $a = 0.8$; 3) $M_{BH} = 5 \, M_\odot$, $M_D = 0.5 \, M_\odot$ and $a = 0.4$. In each model thick lines in the equatorial plane indicate the extension of the zone which is optically thick to neutrinos for $T_\nu = 2$ (left) and 3 (right) MeV.
is the neutrino opacity (?). The radial extension of the optically thick region has been represented in Fig. 1 for two temperatures, \(T_\nu = 2 \) and 3 MeV. The optical thickness becomes larger than unity at \(3-5 \ r_h \) and the disk remains opaque out to \(r_out \sim 10 \ r_h \).

When the disk is optically thick we use the following expression for the neutrinosphere temperature

\[
T_\nu(r) = T_\ast \left(\frac{r_\ast}{r} \right)^{3/4} \left(\frac{1 - \sqrt{\frac{r}{r_\ast}}}{1 - \sqrt{\frac{r_{in}}{r_\ast}}} \right)^{1/4}
\]

(5)

where \(r_{in} \) is the disk internal radius and \(T_\ast \) is the temperature at a reference radius \(r_\ast \) (we take below \(r_\ast = 4 \ r_h \)). This kind of behavior is expected in the case of a geometrically thin disk but is certainly a very rough approximation in the case of a thick disk.

2.2. Collapsars :

In collapsars the accretion flow toward the black hole has been studied in detail by (?). The inner disk is fed by material from the collapsing stellar envelope. It is less dense than in the merger case (typical densities are \(10^8 \ \text{g/cm}^3 \) and is optically thin (?). We follow (?) to obtain an analytical expression for the temperature from the balance between the dissipated energy and neutrino losses

\[
\dot{q}_{eN} = QT^6 = \frac{9}{4} \nu \Omega_K^2
\]

(6)

where \(\dot{q}_{eN} \) is the cooling rate per unit mass due to the emission of neutrinos by nucleons (\(Q = 1.4 \times 10^{18} \) with \(T \) in MeV); \(\dot{q}_{eN} \) is the dominant cooling contribution as long as the disk temperature does not exceed about 10 MeV. We adopt an \(\alpha \)-prescription for the disk viscosity

\[
\nu = \alpha H v_s
\]

(7)

where \(H = \frac{\nu_s}{2 \Omega} \) is the disk half thickness and \(v_s \) is the sound velocity. If the perfect gas contribution dominates in the disk then, \(v_s^2 \sim \frac{2T}{\mu} \) (\(\mu \) being the average molecular weight) and the disk temperature is given by

\[
T_d(r) \simeq 2 \mu_{bh}^{-0.2} \left(\frac{\alpha}{0.01} \right)^{0.2} \left(\frac{r}{r_\ast} \right)^{-0.3} \text{MeV}.
\]

(8)

3. Dynamics of the wind from the disk to the sonic point

3.1. Wind equations

To study the dynamics of the wind we make a number of simplifying assumptions. We first suppose that the inner disk is geometrically thin which is certainly wrong in the collapsar case and probably a poor approximation in the collapsar scenario. Wind material is guided along magnetic field lines for which we adopt the simplest possible geometry: close to the disk the field is poloidal, made of straight lines making an angle \(\theta(r) \) with the plane of the disk (\(r \) being the distance from the foot of the line to the disk axis; see Fig. 2). Since we limit our study to the part of the flow below the sonic point (which is sufficient to obtain the mass loss rate) we use non relativistic equations \((c/v \ll 1) \) but we adopt a Paczynski-Wita potential for the black hole. We also assume that the wind has reached a stationary regime. Clearly, a realistic description would imply a thick disc, a complicated field geometry and a time-dependent wind dynamics but we believe that the toy model presented in this paper remains able to identify the main physical processes which affects the baryonic pollution of the wind.

We write the three flow equations in a frame corotating with the foot of the line:

- Conservation of mass :

\[
\rho v_s y \frac{\dot{m}}{\dot{\nu}_0} = \dot{m} ,
\]

(9)

- Euler equation :

\[
\nu \frac{d}{dy} \left(\frac{v^2}{\rho} \right) = \gamma(y) r \frac{dP}{dy} + \frac{d}{dy} \left(\frac{v \rho}{\rho^2} \right) ,
\]

(10)

- Energy equation :

\[
\nu \frac{d}{dy} \left(\frac{v e}{\rho} \right) = \dot{q}(y) + v \frac{dP}{dy} ,
\]

(11)

where \(y = \ell/r, \ell \) being the distance along the field line \((\ell = 0 \text{ in the plane of the disk}) ; e \) is the specific internal energy, \(\gamma(y) \) and \(\dot{q}(y) \) are respectively the total acceleration (gravitational + centrifugal) and the power deposited per unit mass in wind material due to neutrino heating (and cooling), viscous or ohmic dissipation and magnetic reconnection. Because the field and stream lines are coincident the function \(s(y) \) can be simply related to the field geometry. We get

\[
s(y) = 1 + ay + by^2
\]

(12)
where
\[
a = \cos \theta - \sin \theta \frac{d\theta}{d \log r}
\]
and
\[
b = -\cos \theta \sin \theta \frac{d\theta}{d \log r}.
\]
Finally, \(\dot{m} \) is the mass loss rate per unit surface of the disk. The acceleration \(\gamma(y) \) is derived from the potential
\[
\gamma(y) r = -\frac{d\Phi}{dy}, \quad \Phi(y) = \Phi_{BH}(y) + \Phi_C(y),
\]
where
\[
\Phi_{BH}(y) = -\frac{GM_{BH}}{r \sqrt{y^2 + 2y \cos \theta + 1 - r_h}}
\]
(16)
is the black hole potential \((x = r/r_h)\) and
\[
\Phi_C(y) = \frac{1}{2} \Omega^2(r)r^2(1 + y \cos \theta)^2
\]
(17)
is the centrifugal potential. There is a critical angle \(\theta_{cr} \) below which the acceleration is always positive so that matter (even at zero temperature) can escape freely from the disk without being confined in a potential well. In newtonian gravity \(\theta_{cr} = 60^\circ \) but \(\theta_{cr} \) slowly decreases when the Paczynski-Wiita potential is used, from about 63° at \(x = 3 \) to 60° at large radial distances.

3.2. Equation of state

Our equation of state includes nucleons, relativistic electrons and positrons, and photons. Following ? and ? the contribution of relativistic particles is given by
\[
P_r = \frac{(kT)^4}{12(hc)^3} \left(\frac{11\pi^2}{15} + 2\eta^2 + \eta^4 \right)
\]
(18)
\[= (1.26 + 0.35\eta^2 + 0.017\eta^4)10^{26} T_{\text{MeV}}^4 \text{ dyne.cm}^{-2}
\]
where \(\eta = \mu_e/kT, \) \(\mu_e \) being the electron chemical potential. Nucleons behave as an ideal gas of pressure
\[
P_N = \frac{\rho}{m_N} kT
\]
(19)
where \(m_N \) is the nucleon mass and the density is obtained from
\[
\rho = \frac{m_N}{3} \left(\frac{kT}{hc} \right)^3 Y_e^{-1} \left(\eta + \frac{\eta^3}{\pi^2} \right)
\]
(20)
The number of electrons per nucleon \(Y_e \) should be computed from the rates of neutrino capture and emission by nucleons. In practice, we do not perform this calculation and simply adopt a constant \(Y_e = 0.5. \)

Finally, \(\Phi \) is the centrifugal potential. There is a critical angle \(\theta_{cr} \) below which the acceleration is always positive so that matter (even at zero temperature) can escape freely from the disk without being confined in a potential well. In newtonian gravity \(\theta_{cr} = 60^\circ \) but \(\theta_{cr} \) slowly decreases when the Paczynski-Wiita potential is used, from about 63° at \(x = 3 \) to 60° at large radial distances.

3.3. The sonic point

To solve the flow Eqs (9–11) we first derive Eq. (9) and express the thermodynamic variables \(\rho, P \) and \(e \) as functions of \(T, \eta \) and \(\log \eta \) to obtain a linear system for \(\log v, \log T \) and \(\log \eta \)
\[
d \log v = \frac{3d \log T}{dy} + A(\eta) \frac{d \log \eta}{dy} = -\frac{d \log s(y)}{dy},
\]
\[
d \log T = \frac{P}{\rho} \frac{d \log \eta}{dy} + B(\eta) \frac{d \log \eta}{dy} = \gamma(y)r,
\]
\[
v \left[e - 3 \frac{\rho}{\rho} \right] \frac{d \log T}{dy} + \frac{\log \eta}{\eta} \left[C(\eta) - A(\eta) \frac{P}{\rho} \right] \frac{d \log \eta}{dy} = \dot{q}(y)r,
\]
(22)
where we have used the equation of state to get
\[
\frac{\partial \log \rho}{\partial \log T} |_{\eta} = 3, \quad \frac{\partial \log P}{\partial \log T} |_{\eta} = A(\eta),
\]
\[
\frac{\partial \log P}{\partial \log T} |_{\eta} = 4, \quad \frac{\partial \log P}{\partial \log \eta} |_{T} = B(\eta),
\]
\[
\frac{\partial \log e}{\partial \log T} |_{\eta} = 1, \quad \frac{\partial \log e}{\partial \log \eta} |_{T} = C(\eta).
\]
(23)
The three derivatives of \(v, T \) and \(\eta \) can then be written as
\[
d \log v = \frac{F_1(y, v, T, \eta)}{\Delta},
\]
\[
d \log T = \frac{F_2(y, v, T, \eta)}{\Delta},
\]
\[
\frac{d \log \eta}{dy} = \frac{F_3(y, v, T, \eta)}{\Delta},
\]
where \(\Delta(v, T, \eta) \) is the determinant of the system. It is equal to zero at the sonic point which gives
\[
v^2 = v_s^2 = \left[(B - 4C) - (\tilde{\gamma} - 1)(3B - 4A) \right] \frac{P}{(A - 3C)}
\]
(25)
where \(\tilde{\gamma} - 1 = P/\rho e. \) If the equation of state is dominated by the contribution of relativistic (resp. non relativistic) particles \(\tilde{\gamma} - 1 = 1/3 \) (resp. 2/3) and \(v_s^2 = \frac{1}{3} \) (resp. \(\frac{1}{3} \))

Since the three functions \(v, T \) and \(\eta \) must remain regular everywhere in the wind the numerators in Eq. (24) must be zero at the sonic point
\[
F_1(y_s, v_s, T_s, \eta_h) = F_2(y_s, v_s, T_s, \eta_h) = F_3(y_s, v_s, T_s, \eta_h) = 0
\]
(26)
which yields a unique relation among the parameters at the sonic point
\[\nu_y \frac{d \log s(y)}{dy} \bigg|_{y_s} + \frac{\eta(y_s) r}{v_s} \left(\frac{P}{\rho e} \frac{4A - 3B}{A - 3C} \right) \bigg|_{r_s,y_s} = 0 \] (27)

the parenthesis being equal to 1/3 (resp. 2/3) for relativistic (resp. non relativistic) particles. Since (i) the last term in Eq. (27) is smaller than the two others in most cases of interest and (ii) the derivative of \(s(y) \) is positive (if the inclination angle \(\theta(r) \) of the field lines decreases with increasing distance to the axis) it can be seen that the sonic point is located in the region where \(\gamma(y) \) is negative, i.e. below \(y_1 \) where \(\gamma(y_1) = 0 \). It appears in practice that \(y_s \) is very close to \(y_1 \) (except naturally for \(\theta = 90^\circ \) for which \(y_1 \rightarrow \infty \)). The difference is typically less than 1% even for \(\theta = 89^\circ \).

3.4. Heating and cooling sources

Several sources can contribute to the injection of energy in wind material: viscous or ohmic dissipation, magnetic reconnection or neutrino processes (capture on free nucleons, scattering on electrons and positrons or neutrino-antineutrino annihilation). Cooling occurs through neutrino emission by nucleons and annihilation of electron-positron pairs. A detailed description of all these processes is beyond the scope of this paper and we have rather considered two limiting cases in a very simplified way.

When the disk is optically thin to neutrinos we adopt a uniform heating (per unit mass) \(\dot{q}_b \) along the field line and limit the cooling to neutrino emission by nucleons i.e.

\[\dot{q} = \dot{q}_b - QT^6 \] (28)

Although this is not strictly satisfied in realistic models (??), we require that \(\dot{q} = 0 \) in the plane of the disk which fixes \(\dot{q}_b \)

\[\dot{q}_b = QT_0^6 \] (29)

where \(T_0 \) is the disk temperature at the foot of the line given by Eq. (8).

In the case of an optically thick disk we make the extreme assumption that all the heating which is not due to neutrino processes takes place below the neutrinosphere. The power \(\dot{q} \) injected in the wind is then restricted to the neutrino contributions

\[\dot{q} = \dot{q}_\nu = \dot{q}_\nu N + \dot{q}_\nu + \dot{q}_{\nu\bar{\nu}} - \dot{q}_{\nu\bar{\nu}} - \dot{q}_{e^+e^-} \] (30)

where the different terms in Eq. (30) respectively correspond to neutrino capture on free nucleons, scattering on electrons and positrons, neutrino-antineutrino-annihilation (heating) neutrino emission by nucleons and annihilation of electron-positron pairs (cooling). With our assumption that \(Y_e = Y_p = Y_n = 0.5 \) the electron neutrino and antineutrino temperatures are identical and the heating by capture on free nucleons takes the simple form (?)

\[\dot{q}_\nu N = Q \int_{\Omega_{\nu N}} \left[I_{\nu e} \langle \epsilon_{\nu e} \rangle + I_{\bar{\nu} e} \langle \epsilon_{\bar{\nu} e} \rangle \right] d\Omega \]

\[= 1.4 \times 10^{18} \int_{\Omega_{\nu N}} \frac{T_{\nu}}{4\pi} \text{erg g}^{-1} \text{s}^{-1} \] (31)

where the temperature is in MeV, \(I_{\nu e} = I_{\bar{\nu} e} = \frac{\sigma T^{4}}{2 \pi} \) is the neutrino (antineutrino) intensity and \(\langle \epsilon_{\nu e} \rangle = \langle \epsilon_{\bar{\nu} e} \rangle \) are the nth energy moments of the neutrino Fermi distribution. The integral is performed over the disk surface and \(d\Omega \) is the solid angle of a surface element as seen from a point of coordinate \(y \) on the field line. All relativistic effects on the neutrinos (bending of trajectories, gravitational and Doppler shifts) have been neglected even if they can lead to appreciable corrections in the results (?). The cooling by the reverse reactions (neutrino emission by nucleons) is given by

\[\dot{q}_{\nu e} = 3.6 \times 10^{24} \frac{T_{4}^{4}}{\rho} \int (T_{\nu} - T)^{2} d\Omega \text{ erg g}^{-1} \text{s}^{-1} \] (32)

where \(T \) is the local temperature in the wind. Pauli blocking effects for electrons have been neglected since \(\eta \sim 0.1 \) everywhere in our wind solutions except in the vicinity of the disk. To compute the heating rate due to neutrino scattering on relativistic electrons and positrons we use the expression given by ?? adapted to the disk geometry

\[\dot{q}_{\nu e} = \frac{1}{\rho} \left[Q_{1} \int_{\Omega} d\Omega I_{\nu e} \int d\Omega' I'_{\nu e} \left[\frac{\langle \epsilon_{\nu e} \rangle}{\langle \epsilon_{\nu e} \rangle} + \frac{\langle \epsilon_{\bar{\nu} e} \rangle}{\langle \epsilon_{\bar{\nu} e} \rangle} \right] (1 - \cos \alpha)^{2} \right. \]

\[+ Q_{2} \int_{\Omega} d\Omega I_{\nu e} \int d\Omega' I'_{\nu e} \left[\frac{\langle \epsilon_{\nu e} \rangle}{\langle \epsilon_{\nu e} \rangle} + \frac{\langle \epsilon_{\bar{\nu} e} \rangle}{\langle \epsilon_{\bar{\nu} e} \rangle} \right] (1 - \cos \alpha) \] (34)

where \(Q_{1} \) and \(Q_{2} \) are two constants given in ?). The prime quantities correspond to a surface element \(dS' \) whose neutrinos interact with those emitted by a surface element \(dS \), \(\alpha \) being the interaction angle. When the neutrino intensities and average energies are expressed as a function of the neutrinosphere temperature \(T_{\nu} \), Eq. (34) becomes

\[\dot{q}_{\nu e} = \frac{1}{\rho} \left[1.6 \times 10^{22} \int d\Omega T_{\nu}^{4} \int d\Omega' T'_{\nu}^{4} (T_{\nu} + T'_{\nu}) (1 - \cos \alpha)^{2} \right. \]

\[+ 6.7 \times 10^{20} \int d\Omega T_{\nu}^{4} \int d\Omega' T'_{\nu}^{4} T_{\nu} + T'_{\nu} (1 - \cos \alpha) \] (35)
because derivatives cannot be directly calculated from Eq. (24) we need the derivatives of \(v \) and \(\eta \) at the sonic point from which we derive \(y \). Once algebraic, second-order equations for the three derivatives instead use l'Hôpital's rule which allows us to write three equations with a Newton-Raphson technique. Once \(v \), \(T \), \(\eta \) and their derivatives have been determined at the sonic point the inward integration can be started. In agreement with the results of \(? \) for neutrino-driven winds in proto-neutron stars we observe that at some position \(y = y_s \) the velocity begins to fall off rapidly while the temperature reaches a maximum \(T_{\text{max}} \leq T_d(r) \) \((T_d(r) \) being the disk temperature at radius \(r \)). We then adjust the values of \(T_s \) and \(\eta_s \) with the requirement that \(y_s \) should be as close as possible to 0 and \(T_{\text{max}} \) to \(T_d(r) \).

We first constructed a reference model where we follow the wind along a field line attached at \(r = r_s = 4 r_h \). The disk temperature at \(r = r_s \) is \(T_d = 2 \text{ MeV} \). The line makes an angle \(\theta = 85^\circ \) with the disk and the derivative \(\frac{\partial \Phi}{\partial r} = 0 \). The mass of the black hole is \(M_{\text{BH}} = 2.5 M_\odot \). The results for this reference model are shown in Fig. 3. The sonic point is located at \(y_s = 2.174 \) slightly below \(y_l = 2.182 \) where \(\gamma = 0 \). The temperature and density at the sonic point are \(T_s = 0.203 \text{ MeV} \) and \(\rho_s = 1.2 \text{ g.cm}^{-3} \) which correspond to a sound velocity \(v_s/c = 5.44 \times 10^{-2} \) or \(v_s = 16300 \text{ km.s}^{-1} \) and a mass loss rate \(\dot{m} = 2.3 \times 10^{14} \text{ g.cm}^{-2}.\text{s}^{-1} \). The degeneracy parameter \(\eta \) remains practically constant \((\eta \approx 0.1) \) from \(y = 0.5 \) to the sonic point, a property which will be used to construct the analytical solutions in Sect. 4.3 below. Neutrino cooling is efficient close to the disk, up to \(y \leq 0.5 \). We have tested the effect of a different field line geometry with \(\theta' = \frac{\partial \Phi}{\partial r} \neq 0 \). We considered two cases, \(\theta' = -2^\circ/r_h \) and \(-5^\circ/r_h \), for which we respectively obtain \(\dot{m} = 2.5 \) and \(2.8 \times 10^{14} \text{ g.cm}^{-2}.\text{s}^{-1} \).

We then varied the mass of the black hole \(M_{\text{BH}} \), the disk temperature \(T_d \), the inclination angle \(\theta \) and the position \(r \) of the foot of the line to see how these parameters affect the mass loss rate. The results are shown in Fig. 4 where we have plotted \(\dot{m} \) when \(M_{\text{BH}}, T_d \), \(\theta \) and \(x = r/r_h \) are varied separately while the other three quantities are maintained at fixed values (chosen to be those of the reference model: \(M_{\text{BH}} = 2.5 M_\odot \), \(T_d = 2 \text{ MeV} \), \(\theta = 85^\circ \) and \(x = 4.0 \)). The mass loss rate appears to be nearly proportional to the mass of the black hole (Fig. 4a). The dependence of \(\dot{m} \) on the temperature \(T_d \) at the foot of the field line is much more spectacular since we get \(\dot{m} \propto T_d^{10} \) (Fig. 4b) in agreement with the results for neutrino-driven winds in neutron stars (\(? \)). The mass loss rate also sharply increases when the angle between the field line and the disk is reduced (Fig. 4c). Below \(\theta \approx 77^\circ \) it becomes more and more difficult to construct wind solutions with the required accuracy. This can be related to the value of the Bernoulli function

\[
B = \frac{1}{2} v^2 + h + \Phi - \Phi_1
\]

(\(h \) being the specific enthalpy and \(\Phi_1 \) the potential at \(y = y_1 \)) which is positive in the plane of the disk for \(\theta \leq 77^\circ \). The initial thermal energy is then sufficient to allow the gas to escape even in the absence of additional heating. Finally, the mass loss rate approximately increases as \(r^{1.4} \) (Fig. 4d) when the potential well becomes shallower at larger radial distances.

As long as the Bernoulli function is not too close to zero the mass, temperature and geometrical dependence can

Fig. 3. Wind solution for an optically thin disk with uniform heating. The field line is anchored at \(r_s = 4 r_h \) and makes an angle \(\theta = 85^\circ \) with the disk. The temperature at the foot of the line is \(T_d = 2 \text{ MeV} \). In the velocity plot the dotted line shows the local sound velocity. The sonic point is located at \(y_s = 2.174 \). The dashed line in the temperature plot corresponds to the approximate analytical solution (Eq. (47)). The electron degeneracy parameter \(\eta = \mu_e/kT \) is close to 0.1 except at the vicinity of the disk.

Finally, the cooling rate from the annihilation of electron-positron pairs is given by (\(? \))

\[
q_{e^+e^-} = 1.5 \times 10^{25} \frac{T^9}{\rho} \text{ erg.g}^{-1}.\text{s}^{-1}
\]

4. The mass loss rate

4.1. Numerical solution for an optically thin disk

We first solve the flow equations for an optically thin disk and in the case of uniform heating, i.e. with \(\dot{q} \) given by Eq. (28). We obtain the mass loss rate \(\dot{m} \) in a classical way by integrating inward from the sonic point down to the disk surface. We fix trial values of \(T_s \) and \(\eta_s \) at the sonic point from which we get \(v = v_s \) from Eq. (25) and the position \(y_s \) from Eq. (27). To start the integration we need the derivatives of \(v \), \(T \) and \(\eta \) at \(y = y_s \). These derivatives cannot be directly calculated from Eq. (24) because \(F_1 = F_2 = F_3 = \Delta = 0 \) at the sonic point. We instead use l'Hôpital's rule which allows us to write three algebraic, second-order equations for the three derivatives and we solve these equations with a Newton-Raphson technique. Once \(v \), \(T \), \(\eta \) and their derivatives have been determined at the sonic point the inward integration can be started. In agreement with the results of \(? \) for neutrino-driven winds in proto-neutron stars we observe that at some position \(y = y_s \) the velocity begins to fall off rapidly while the temperature reaches a maximum \(T_{\text{max}} \leq T_d(r) \) \((T_d(r) \) being the disk temperature at radius \(r \)). We then adjust the values of \(T_s \) and \(\eta_s \) with the requirement that \(y_s \) should be as close as possible to 0 and \(T_{\text{max}} \) to \(T_d(r) \).
be separated in \(\dot{m} \) to yield the general expression

\[
\dot{m}(x) \approx 2.3 \times 10^{14} \mu_{\text{BH}} \left[\frac{T_d(x)}{2 \text{ MeV}} \right] f[x, \theta(x)] \text{ g.cm}^{-2}\text{s}^{-1}
\]

(38)

where \(f \) is a geometrical function which satisfies \(f(4, 85^\circ) = 1 \). The mass loss rate has been represented in Fig. 5 as a function of \(x \) for \(\mu_{\text{BH}} = 1, T_d(x) \) given by Eq. (8) and different field geometries: constant inclination angles \(\theta = 80, 85 \) and \(89^\circ \); lower panel: field lines with decreasing inclination angle \(\theta = 90^\circ - \lambda(x - 3) \) with \(\lambda = 0.5, 1, 1.5 \) and \(2^\circ \) (curves labelled (a) to (d)).

4.2. Numerical solution for an optically thick disk

If the disk is optically thick the heating and cooling sources due to neutrinos are specified by Eq. (31–36). Again, wind solutions are found by inward integration from the sonic point down to the disk. A reference model is constructed with the same black hole mass and field geometry \((M_{\text{BH}} = 2.5 \, M_{\odot} \) and field line attached at \(r = r_s = 4 \, r_h \) and making an angle \(\theta = 85^\circ \) with the disk). The disk is supposed to be optically thick to neutrinos from \(r_{\text{in}} = 3 \, r_h \) to \(r_{\text{out}} = 10 \, r_h \). The temperature of the neutrinosphere in this reference model is \(T_\nu = 2 \) MeV and does not vary with radius which allows a simple calculation of the geometric integrals appearing in the neutrino heating terms. The results for this reference model are shown in Fig. 6. The sonic point is located at \(y_s = 2.175 \). The temperature and density at the sonic point \(T_s = 0.132 \) MeV and \(\rho_s = 3.23 \times 10^{4} \) g.cm\(^{-3}\) which correspond to a sound velocity \(v_s/c = 4.45 \times 10^{-2} \) or \(v_s = 13350 \text{ km.s}^{-1} \) and a mass loss rate \(\dot{m} = 5.1 \times 10^{13} \) g.cm\(^{-2}\text{s}^{-1}\). The neutrino heating and cooling terms are detailed in Fig. 7. The major contribution to the heating comes from neutrino captures on nucleons while neutrino emission by nucleons and annihilation of electron-positron pairs have comparable effects on the cooling. We have then abandoned the assumption of constant neutrino temperature which was essentially made for a rapid calculation of the integrals in the neutrino heating terms. When \(T_\nu \) depends on the radial distance in the disk, the calculation of \(\dot{q}_{\nu} \) becomes very time consuming. Since \(\dot{q}_{\nu} \) is not the dominant neutrino heating term as long as \(T_\nu \lesssim 10 \) MeV we have neglected its contribution for the remainder of this paper. For example, in our reference model the mass loss rate is decreased from 5.1 to 4.9 \(10^{13} \) g.cm\(^{-2}\text{s}^{-1}\) if \(\dot{q}_{\nu} \) is not included (i.e. a reduction of 4.5%). Without \(\dot{q}_{\nu} \), a non constant neutrino temperature can be easily implemented. We adopted for \(T_\nu(r) \) relation (5) with \(T_s = 2 \) MeV and the resulting mass loss rate is then \(\dot{m} = 3.8 \times 10^{13} \) g.cm\(^{-2}\text{s}^{-1}\). When \(M_{\text{BH}}, T_\nu, \theta \) or the position \(r \) of the foot of the line are varied, the mass loss rate behaves as in the optically thin case

\[
\dot{m}(x) \approx 3.8 \times 10^{13} \mu_{\text{BH}} \left[\frac{T_\nu(x)}{2 \text{ MeV}} \right] f[x, \theta(x)] \text{ g.cm}^{-2}\text{s}^{-1}
\]

\[
\approx 3.8 \times 10^{13} \mu_{\text{BH}} \left[\frac{T_s}{2 \text{ MeV}} \right]^{10} \times
\]
Fig. 4. Mass loss rate per unit surface for an optically thin disk with uniform heating as a function of (a) black hole mass M_{BH}, (b) disk temperature at the foot of the line T_d, (c) inclination angle θ and (d) radial distance to the black hole. When one quantity is varied the three others are maintained at their reference values: $M_{BH} = 2.5 M_\odot$, $T_d = 2$ MeV, $\theta = 85^\circ$ and $r = 4 r_h$. The dotted lines in (a), (b) and (d) have respective slopes 1, 10 and 4.4.

\[
\left(\frac{r_s}{r}\right)^{15/2} \left(\frac{1 - \frac{\sqrt{\eta}}{\sqrt{\gamma}}}{1 - \frac{\sqrt{\gamma}}{\sqrt{\eta}}}\right)^{5/2} f[x, \theta(x)] \ \text{g.cm}^{-2}.\text{s}^{-1}
\]

The mass loss rate has been represented in Fig. 8 for $T_e = 2$ MeV, $r_s = 4 r_h$, $r_{in} = 3 r_h$, $r_{out} = 10 r_h$ and the same field geometries already considered in Sect. 4.1.

4.3. Analytical solution

To obtain an analytical expression for the mass loss rate we have simplified the original wind problem by making several additional assumptions. We have first considered that wind material is not too far from hydrostatic equilibrium even at the sonic point (in practice, the ratio $v_s^{\frac{dn}{dT}}/\gamma$ becomes larger than unity at $\frac{x - x_s}{x_s} \sim 5\%$). We have also supposed that the pressure is dominated by the contribution of relativistic particles, which is equivalent to $\eta \ll 1$ since

\[
\frac{P_N}{P_r} \simeq 0.5 \frac{\eta}{Y_e}
\]

In practice $\eta \simeq 0.1$ in our numerical solutions, except near the disk surface but we have nevertheless adopted $P \simeq P_r \propto T^4$ everywhere (we take $P_r = \tilde{a}T^4$ with \tilde{a} being...
Fig. 7. Neutrino heating and cooling contributions. The long and short dashed lines respectively represent individual heating and cooling processes; νN: neutrino captures on nucleons; νe: neutrino captures on electrons; $\nu\bar{\nu}$: neutrino-antineutrino annihilation; eN: neutrino emission by nucleons; $e^+ e^-$: annihilation of electron-positron pairs. The full thin lines represent the total of the heating ($\nu N + \nu e + \nu\bar{\nu}$) and cooling ($eN + e^+ e^-$) processes. The full thick line is the sum of all contributions.

given by Eq. (18) with $\eta = 0.1$). Finally, we have located the sonic point at $y_s = y_1$ where $\gamma(y) = 0$. We then write the temperature

$$T = T_s \left(\frac{\rho}{\rho_s} \right)^{1/3} (1 + \tau)$$

(41)

where the τ function is zero at the sonic point. From the sonic point down to the disk, as $\eta \propto \rho/T^3$ first remains nearly constant (see Fig. 3 and 6) τ stays close to zero. It then becomes negative when η increases in the vicinity of the disk. With these assumptions the wind equations can be rewritten

$$\rho v s = \dot{m}$$

(42)

$$\frac{4}{\rho} \frac{d}{dy} \frac{d \log T}{d \log (1 + \tau)} = \frac{d \Phi}{d y}$$

(43)

$$\frac{4}{\rho} \frac{d}{dy} \frac{d \log (1 + \tau)}{d \log (1 + \tau)} = \frac{q r}{3 \rho} = \frac{\rho_s q r}{3 \dot{m}}$$

(44)

The solution of Eq. (43) gives

$$T_0 - T = \frac{1}{4a \Theta} \int_0^y \frac{1}{(1 + \tau)^3} d \Phi dy$$

(45)

where $\Theta = T_0^3/\rho_s$ and T_0 is the temperature in the plane of the disk. Taking $\tau = 0$ everywhere leads to the approximate solution

$$T_0 - T \approx \frac{1}{4a \Theta} [\Phi(y) - \Phi_0]$$

(46)

with $\Phi_0 = \Phi(y = 0)$. If we moreover suppose that $T_s \ll T_0$ we get

$$t(y) = \frac{T}{T_0} \approx \frac{\Phi_s - \Phi(y)}{\Phi_s - \Phi_0}$$

(47)

and

$$\Theta \approx \frac{\Phi_s - \Phi_0}{4a T_0} = \frac{\Delta \Phi}{4a T_0}$$

(48)

with $\Phi_s = \Phi(y_s) = \Phi(y_1)$. In Fig. 3 the approximate value of the temperature given by Eq. (47) is compared to the exact solution obtained in Sect. 4.1. It can be seen that the agreement is quite satisfactory for $y < 1$. We then transform Eq. (44) using relation (41), the definition (47) of $t(y)$ and writing $\dot{q}(y)$ as

$$\dot{q}(y) = Q T_0^6 \left[g(y) - t^6(y) \right]$$

(49)

where $g(y) = 1$ for an optically thin disk with uniform heating. In an optically thick disk we only consider the heating due to neutrino captures on nucleons and $g(y)$ is the geometrical integral appearing in Eq. (31). We obtain

$$\frac{2}{3} \Theta^2 \frac{d}{dy} \frac{(1 + \tau)^6}{3 \dot{m}} = \frac{s(y) Q r}{3 \dot{m}} T_0^8 \left\{ t^2(y) \left[g(y) - t^6(y) \right] \right\}$$

(50)

Integrating this equation from the disk to the sonic point yields

$$\dot{m} = \frac{Q r}{2a \Theta^2 \left[1 - (1 + \tau_0)^6 \right]} T_0^8 I = \frac{8a Q r}{\Delta \Phi^2 - h_0} T_0^{10} I$$

(51)

where the integral

$$I = \int_0^{y_s} s(y) t^2(y) [g(y) - t^6(y)] dy$$

(52)
can be directly computed from Eq. (47), (12) and (15). To obtain Eq. (51) we have used the value (48) of Θ and

$$(1 + \tau_0)^3 = \frac{T_0}{\rho_0 \Theta} = 4 \frac{4 \Delta T_0^4}{\rho_0 \Delta \Phi} = \frac{h_0}{\Delta \Phi}$$

(53)

all quantities with a zero subscript being taken in the plane of the disk. The analytical formula (51) reproduces the T_0^{10} dependence of \dot{m} and diverges when $h_0 = \Delta \Phi$, i.e. when the Bernouilli function is equal to zero at the disk surface. The mass loss rate is also proportional to F, with F being the power injected into the wind (optically thin disk). We get $\dot{m} = 3.9 \times 10^{14}$ g cm$^{-2}$ s$^{-1}$ in reasonable agreement with the numerical result obtained in Sect. 4.1.

5. Estimates of the wind Lorentz factor

In the simple model considered in this paper we do not follow the acceleration of the wind beyond the sonic point up to relativistic velocities. Therefore, the terminal Lorentz factor cannot be obtained in a self-consistent way. We simply expect that an average value of the terminal Lorentz factor will be given by

$$\bar{\Gamma} = \frac{L_w}{M c^2}$$

(54)

where L_w is the power injected into the wind and M is the total mass loss from the disk

$$\dot{M} = \int_{r_{in}}^{r_{out}} \dot{m} 2 \pi r dr$$

(55)

The mass loss per unit surface of the disk has been obtained in the previous section

$$\dot{m}(x) = \dot{m}_0 \mu_{BH} \left[\frac{T_d(x)}{2 \text{ MeV}} \right]^{10} f[x, \theta(x)]$$

(56)

so that

$$\dot{M} = 3.4 \times 10^{12} \dot{m}_0 \mu_{BH}^{3} \int_{x_{in}}^{x_{out}} \left[\frac{T_d(x)}{2 \text{ MeV}} \right]^{10} f[x, \theta(x)] x dx$$

(57)

We have computed \dot{M} for $x_{in} = 3$ and $x_{out} = 10$, both for optically thin and optically thick disks. In optically thin disks the temperature is given by Eq. (8) and $\dot{m}_0 = 2.33 \times 10^{14}$ g cm$^{-2}$ s$^{-1}$. We have then

$$\dot{M} = 5.1 \times 10^{28} \mu_{BH}^{3} \left(\frac{\alpha}{0.01} \right)^2 F_{geo} \text{ g s}^{-1}$$

(58)

with

$$F_{geo} = \int_{x_{in}}^{x_{out}} \frac{f[x, \theta(x)]}{x^2} dx$$

(59)

For an optically thick disk the temperature of the neutrinosphere is given by Eq. (5) and $\dot{m}_0 = 3.8 \times 10^{13}$ g cm$^{-2}$ s$^{-1}$ so that

$$\dot{M} = 7.9 \times 10^{28} \mu_{BH}^{3} \left(\frac{T_s}{2 \text{ MeV}} \right)^{10} F_{geo} \text{ g s}^{-1}$$

(60)

We are now in a position to estimate the average Lorentz factor of the wind using Eq. (54). The results in the optically thin and optically thick cases are given respectively by

$$\bar{\Gamma} = \frac{220}{F_{geo} \mu_{BH}^{-1} L_{52}^{(-1/2)}} \text{ opt. thin case}$$

$$= \frac{180}{F_{geo} \mu_{BH}^2 L_{52}^{(-3/2)}} \beta_5^{(3/2)} \text{ opt. thick case}$$

and the values of the geometric integrals are listed in Table 1.

6. Discussion and conclusions

From Eq. (65) and the values of the geometric integrals in Table 1 it appears that the wind emitted from the inner disk can reach large Lorentz factors ($\Gamma > 100$) only under quite restrictive conditions on the disk temperature and field geometry. The disk temperature depends on the viscosity parameter α (in the optically thin case) and on

<table>
<thead>
<tr>
<th>Geometry</th>
<th>Opt. thin disk</th>
<th>Γ</th>
<th>Opt. thick disk</th>
<th>Γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\theta = 80^\circ$</td>
<td>9.0</td>
<td>24</td>
<td>1.1</td>
<td>130</td>
</tr>
<tr>
<td>$\theta = 85^\circ$</td>
<td>1.1</td>
<td>200</td>
<td>9.2 10^{-3}</td>
<td>1500</td>
</tr>
<tr>
<td>$\theta = 89^\circ$</td>
<td>0.36</td>
<td>610</td>
<td>2.6 10^{-3}</td>
<td>5400</td>
</tr>
<tr>
<td>$\theta = 90^\circ - 0.5^\circ(x - 3)$</td>
<td>0.55</td>
<td>400</td>
<td>4.0 10^{-3}</td>
<td>3500</td>
</tr>
<tr>
<td>$\theta = 90^\circ - 1^\circ(x - 3)$</td>
<td>1.3</td>
<td>170</td>
<td>9.1 10^{-3}</td>
<td>1500</td>
</tr>
<tr>
<td>$\theta = 90^\circ - 1.5^\circ(x - 3)$</td>
<td>> 5.8</td>
<td>< 38</td>
<td>0.42</td>
<td>340</td>
</tr>
<tr>
<td>$\theta = 90^\circ - 2^\circ(x - 3)$</td>
<td>> 200</td>
<td>> 1</td>
<td>> 3.3</td>
<td>< 43</td>
</tr>
</tbody>
</table>

Table 1. Values of the geometric integral F_{geo} for an optically thin and an optically thick disk and the field geometries considered in Sect. 4. The corresponding values of Γ are computed using Eq. 65 with $\mu_{BH} = 1$, $L_{52} = 1$ and $\alpha = 0.01$ in the optically thin case and $\mu_{BH} = 1$, $L_{52} = 1$ and $\beta = 5$ in the optically thick case.
the value of β (in the optically thick case). These two quantities which are quite uncertain unfortunately enter the expression of Γ with respective powers 2 and 2.5. The extreme sensitivity of Γ to the disk temperature also amplifies all errors and uncertainties in the evaluation of T_d. For example, the simple analytical expression of T_d (Eq. 8) used in the optically thin case does not depend on the accretion rate to the black hole while detailed calculations show that T_d slightly increases with \dot{M} (?). A consequence of Eq. (8) is that $\Gamma \propto L$ but just the opposite behavior (decreasing Γ with increasing L) would be expected if $T_d \propto \dot{M}^x$ with $x > 0.1$. It is moreover even not clear that the α-prescription remains appropriate in the context of strongly magnetized disks.

The Lorentz factor is also extremely sensitive to the field geometry: to escape from the disk, the material has to be heated so that its energy becomes large enough to cross the potential well. The height of this barrier decreases rapidly when the field lines are more inclined, leading to an increasing mass flux. As shown by our analytical solution of the wind equations, there is even a critical inclination where the mass flux diverges. This happens when the potential barrier is so shallow that the initial enthalpy of the material in the disk allows it to freely escape along the field lines, even without additional heating. For this reason quasi vertical field lines are required to prevent baryonic pollution from growing dramatically and slight changes of the inclination angle lead to large variations of the Lorentz factor. Between $\theta = 90^\circ$ and 80°, Γ approximately behaves as θ^{30}! A reduction by 1° of the inclination angle therefore decreases Γ by a factor of about 1.5.

Our incomplete description of the black hole and its environment prevents us from making any accurate prediction of the wind Lorentz factor. The numerical values of the mass loss rate given above have been obtained with a large set of simplifying assumptions. We present them to illustrate general tendencies which we believe are robust and can be used to evaluate the ability of realistic models to produce relativistic outflows. When the disk is thick or slim the temperature distribution and the heating or cooling processes will be different from the assumptions we have made. Similarly, the disk + black hole magnetosphere can be expected to have a very complex geometry and to be rapidly variable. The results of our toy model – extreme sensitivity of the mass loss rate to the disk temperature ($\dot{m} \propto T_d^{10}$) and field geometry – indicate that high terminal Lorentz factors can be reached only under severe constraints: disk temperature T_d not largely exceeding 2 MeV and presence of at least a few field lines pointing directly away from the disk in the vertical direction.

If such conditions can be satisfied so that the wind can indeed become relativistic, it is then easy to understand that its baryonic load and hence its Lorentz factor can strongly vary on short time scales as a result of fluctuations of the disk temperature or field geometry. Conversely, if the outflow remains non relativistic ($\bar{\Gamma} \sim 1$) because the disk is too hot or the field lines deviate too much from the vertical, the burst must be produced by the Blandford-Znajek effect alone with no contribution from accretion energy. The dense wind emitted from the disk can then have both a beneficial and negative effect on the central relativistic jet. It can probably help to confine the jet but can also represent a risk of baryonic pollution via Kelvin-Helmholtz instabilities or magnetic reconnection at the jet-wind interface.

Acknowledgements. We thank the anonymous referee for careful reading of the manuscript and thoughtful comments.