PALOMAR 13: AN UNUSUAL STELLAR SYSTEM IN THE GALACTIC HALO

Patrick Côté
Department of Physics and Astronomy, Rutgers University, New Brunswick, NJ 08854; pcote@physics.rutgers.edu

S.G. Djorgovski
California Institute of Technology, Mail Stop 105-24, Pasadena, CA 91125; george@astro.caltech.edu

G. Meylan
European Southern Observatory, Karl-Schwarzschild-Strasse 2, 85748 Garching, Germany; and Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218; gmeylan@stsci.edu

Sandra Castro
California Institute of Technology, Mail Stop 105-24, Pasadena, CA 91125; smc@astro.caltech.edu

J.K. McCarthy
California Institute of Technology, Mail Stop 105-24, Pasadena, CA 91125; and PixelVision, 4952 Warner Avenue, Suite 300, Huntington Beach, CA 92649; jkmmccarthy@pacbell.net

Accepted for publication in the Astrophysical Journal

ABSTRACT

We report the first results of a program to study the internal kinematics of globular clusters in the outer halo of the Milky Way. Using the Keck telescope and High Resolution Echelle Spectrometer, we have measured precise radial velocities for 30 candidate red giants in the direction of Palomar 13, an object traditionally cataloged as a compact, low-luminosity globular cluster. We have combined these radial velocities with published proper motion membership probabilities and new CCD photometry from the Keck and Canada-France-Hawaii telescopes, to isolate a sample of 21 probable members. We find a systemic velocity of \(\langle v_r \rangle = 24.1 \pm 0.5 \text{ km s}^{-1} \) and a projected, intrinsic velocity dispersion of \(\sigma_p = 2.2 \pm 0.4 \text{ km s}^{-1} \). Although small, this dispersion is nevertheless several times larger than that expected for a globular cluster of this luminosity and central concentration. Taken at face value, this dispersion implies a mass-to-light ratio of \(\Upsilon_V = 40^{+24}_{-17} \) based on the best-fit King-Michie model. The surface density profile of Palomar 13 also appears to be anomalous among Galactic globular clusters — depending upon the details of background subtraction and model-fitting, Palomar 13 either contains a substantial population of “extra-tidal” stars, or it is far more spatially extended than previously suspected. The full surface density profile is equally well-fit by a King-Michie model having a high concentration and large tidal radius, or by a NFW model. We examine — and tentatively reject — a number of possible explanations for the observed characteristics of Palomar 13 (e.g., velocity “jitter” among the red giants, spectroscopic binary stars, non-standard mass functions, modified Newtonian dynamics), and conclude that the two most plausible scenarios are either catastrophic heating during a recent perigalacticon passage, or the presence of a massive dark halo. Thus, the available evidence suggests that Palomar 13 is either a globular cluster which is now in the process of dissolving into the Galactic halo, or a faint, dark-matter-dominated stellar system.

Subject headings: Galaxy: halo — Galaxy: kinematics and dynamics — globular clusters: individual (Palomar 13) — galaxies: dwarf

1. INTRODUCTION

Much of our knowledge of the Galactic halo is based directly upon observations of its globular clusters, the most readily identifiable halo objects. Those clusters which are located in the outer halo of the Milky Way are especially important probes of the formation and evolution of the Galaxy, as their ages and metallicities provide direct constraints on the duration of halo formation process and on the time-scale for Galactic chemical enrichment, while the shape and extent of Galaxy’s dark halo is constrained by their orbital properties.

These distant clusters share their location in the outer halo with a system of nine dwarf spheroidal (dSph) galaxies. These dwarfs have Galactocentric distances in the range \(24 \leq R_G \leq 250 \text{ kpc} \) (Mateo 1998) — an interval which includes 16 globular clusters (Harris 1996). To some extent, the dSph galaxies resemble the globular clusters in that they always contain a population of old metal-poor...
stars; there are, however, a number of important distinctions between the two classes of objects. The central stellar densities of the dSph galaxies are much lower than those of typical globular clusters, and many of the dwarfs show evidence for intermediate-age populations (e.g., Mateo 1998). More importantly, measurements of the central velocity dispersions of the dSph galaxies suggest that they are embedded in extended dark halos (Aaronson 1983) which are presumably non-baryonic in nature (Feltzing, Gilmore & Wyse 1999), although alternative explanations have been proposed (e.g., Milgrom 1995; Klessen & Kroupa 1998).

By contrast, color magnitude diagrams (CMDs) of distant halo globular clusters show no sign of distinct intermediate-age populations, although there is evidence that some of the clusters may be younger than their counterparts in the inner Galaxy (e.g., Stetson et al. 1999). And while there is a preponderance of faint, low-density globular clusters in the outer halo (see, e.g., Figure 1 of van den Bergh 1994), their central stellar densities remain comfortably above those of even the most centrally concentrated dSph galaxies.

Furthermore, dynamical studies of nearby globular clusters have established that, unlike the dSph galaxies, they appear to contain little or no dark matter apart from normal stellar remnants such as white dwarfs and neutron stars (e.g., Pryor & Meylan 1993). However, a direct determination of the internal mass distribution in distant halo clusters has proven impossible since the faintness of even their most evolved red giants — coupled with their sparsely populated red giant branches (RGBs) and low surface brightnesses — make the requisite spectroscopic observations extremely challenging. For example, 12 of the 16 globular clusters with $R_G > 24$ kpc have central surface brightnesses below $\mu_V \simeq 19.5$ mag arcsec$^{-2}$, for an assumed mass-to-light ratio3 of $\Upsilon_V = 2$, these clusters are expected to have central velocity dispersions of $\sigma_{p,0} \lesssim 2$ km s$^{-1}$. Thus, to study their internal dynamics, a velocity precision of $\epsilon(v_r) \lesssim 1$ km s$^{-1}$ for metal-poor stars in the range $17 \lesssim V \lesssim 20$ is required.

It is hardly surprising that these objects have been neglected in previous radial velocity surveys of Galactic globular clusters. The lone exception is NGC 2419, for which Olzewski, Pryor & Schommer (1993) measured velocities for 12 red giants. From this small sample, they found $\Upsilon_V \simeq 0.7$, among the lowest measured for any globular cluster and contrary to the notion that this cluster is embedded in a massive dark halo. Nevertheless, this object is — with an absolute magnitude of $M_V = -9.6$ (Harris 1996) — among the most luminous Galactic globular clusters and atypical of the clusters which populate the outer halo. Clearly, a dynamical study of a more representative sample of halo clusters is in order.

There are several reasons to suspect that a search for dark halos in outer halo clusters might prove profitable. First, the characteristic mass of globular clusters is similar to the Jeans mass at recombination, and thus has a special cosmological significance; indeed, it has often been proposed that globular clusters may contain dark halos (e.g., Peebles 1984; West 1993). While there is no evidence to support this conjecture, it has in practice proven surprisingly difficult to rule out (Heggie & Hut 1996). For example, as clusters evolve in the Galactic tidal field, they are expected to lose mass through tidal stripping — a process which confounds efforts to reconstruct the initial mass distribution in these clusters using present-day observations. Second, there are fairly compelling reasons to believe that some Galactic dSph galaxies are dark-matter-dominated, and since globular clusters are simply the next step down in luminosity, it is therefore reasonable to expect that the same scenario which is usually invoked to explain the internal dynamics of the dSph galaxies (i.e., gas ejection from shallow potential wells by supernova-driven winds, followed by adiabatic expansion; Dekel & Silk 1986) might produce end-products that resemble globular clusters if the gas ejection mechanism was particularly efficient. This possibility is especially topical in light of the emerging evidence from numerical simulations that the halos of large galaxies have been assembled hierarchically (e.g., Klypin et al. 1999; Moore et al. 1999 and 2001; Côté et al. 2000), although the predicted number of low-mass dark halos greatly exceeds the observed number of dwarf galaxies in such simulations. Various means of resolving this important contradiction have been proposed: i.e., by suppressing the small-scale power in the family of cold dark matter models (see, e.g., Davé et al. 2001), or by postulating the existence of a large population of “dark galaxies” (see, e.g., Hirashita, Takeuchi & Tamura 1999; Bullock, Kravtsov & Weinberg 2000). There are also some reasons to believe that isolated, low-luminosity clusters may contain significant amounts of baryonic dark matter. N-body simulations of evolving globular clusters suggest that as clusters lose mass through dynamical evolution, the fraction of their mass contained in white dwarfs should increase steadily (Vesperini & Heggie 1997). The outer halo contains a disproportionately high fraction of low-luminosity clusters, so a search for dynamical evidence of extreme white dwarf populations in these clusters might prove worthwhile.

In 1998, we began a program to study the internal dynamics of distant halo globular clusters using the High Resolution Echelle Spectrometer (HIRES) at the W.M. Keck Observatory. This program, which was designed to yield the first direct measurements of the velocity dispersions and mass-to-light ratios for these clusters, was also motivated by the need for improved measurements of the systemic velocities of several of these clusters (i.e., the radial velocities of four of the 16 clusters having Galactic-centric distances greater than 24 kpc are either unknown, or have uncertainties of more than 20 km s$^{-1}$). It has been noted on numerous occasions that a number of the Galactic dwarf galaxies and globular clusters fall along great circles (e.g., Lynden-Bell 1976ab; Kunkel 1979; Majewski 1994). Such structures would have obvious implications for the formation of the Galactic halo, but unambiguous evidence of their existence requires orbital parameters for the putative members. Programs are now underway to measure the proper motions of the distant halo globular clusters and dwarf satellites (e.g., Dinescu et al. 2001), and accurate radial velocities are a prerequisite for the measurement of their orbits.

In this paper, we present the first results from this program. Our sample consists of seven, predominantly low-

3All mass-to-light ratios quoted in this paper are in solar units.
concentration clusters having Galactocentric distances in the range $25 \lesssim R_G \lesssim 112$ kpc. An analysis of the full sample will be presented in a separate paper; here, we present our findings for a single sparse object, Palomar 13. With an absolute magnitude of $M_V \simeq -3.8$ mag, Palomar 13 is exceeded in luminosity by all but a handful of the ~ 150 globular clusters belonging to the Milky Way, and is one of the objects which has been identified on previous occasions as a possible member of a great stream (e.g., Lynden-Bell 1976a; Lynden-Bell & Lynden-Bell 1995). Based on our new radial velocities and photometry, we find both the structural properties and the mass-to-light ratio of this object to be anomalous among the Galactic globular cluster system.

2. OBSERVATIONS AND REDUCTIONS

2.1. Keck and CFHT Photometry

On the night of 10 September, 1999, we used the Low Resolution Imaging Spectrometer (LRIS; Oke et al. 1995) on the Keck II telescope to obtain a series of BVI images of Palomar 13. An observing log for these, and other, observations of Palomar 13 may be found in Table 1. In imaging mode, LRIS has a spatial scale of 0.215 arcsec$^{-1}$ and a field of view of 5.8 by 7.3 arcmin. For each filter, we obtained a pair of images centered on the cluster. Exposure times were 10 and 300s in V, 20 and 480s in B, and 6 and 180s in I. Conditions during the night were photometric, and the FWHM of isolated stars within the BV frames were measured to be in the range 0.7-0.8 arcsec. Images were bias-subtracted and then flat-fielded in the IRAF environment using sky flats obtained during twilight. Instrumental magnitudes for unresolved objects in the field were derived using the DAOPHOT II software package (Stetson 1993), and calibrated with observations of several Landolt (1992) standard fields taken throughout the night. The calibration equations took the form

$$
V = v + a_1 - b_1 X_V + c_1 (b - v)
$$
$$
B - V = a_2 - b_2 X_B + c_2 (b - v)
$$
$$
V - I = a_3 - b_3 X_I + c_3 (v - i).\tag{1}
$$

Aperture corrections were determined separately for each filter, and a master object list was created using the photometry files for the long and short exposures. The final photometric database contains 840 objects detected with a minimum point-source signal-to-noise ratio of $S/N = 5$ in all three filters. A finding chart for Palomar 13 constructed from our V images is shown in Figure 1. All stars having measured radial velocities (see §2.2) are identified on this image.

Images of Palomar 13 were also obtained on the night of 14 July, 1999 using the 3.6m Canada-France-Hawaii telescope (CFHT) and the CFH12K mosaic camera (Cudworth et al. 2000). A series of three 600s exposures in each of the V and R filters were taken with the cluster centered on chip #8 of the CCD mosaic. Each image was bias-subtracted and flat-fielded, and then shifted and stacked to produce a final image for each of the two filters. Isolated stars in the stacked images were found to have FWHMs of 0.75 arcsec in each filter. Photometry was then performed using DAOPHOT II, and the photometry directly. However, instrumental (v) magnitudes for stars on chip #8 were calibrated via secondary standards in this field selected from our Keck/LRIS photometry. Thus, the photometric database from our CFHT data consists of calibrated V magnitudes and instrumental r magnitudes for 855 objects in this CCD field, which measures 7.0 by 14.0 arcmin. This single field is 2.3 times larger than that available from LRIS, although the photometric catalog is limited to the range $18.5 \lesssim V \lesssim 23.5$ mag (as opposed to our LRIS point-source catalog, which spans the range $15.5 \lesssim V \lesssim 24.5$ mag).

By virtue of its remote location in the outer halo, Palomar 13 should, in principal, play an important role in establishing the chronology of halo formation. Somewhat surprisingly, it has been the focus of only little attention in this regard. CMD studies are limited to photographic study of Ortolani, Rosino & Sandage (1985), the CCD study of Borissova, Markov & Spassova (1997) and the recent photographic/CCD study of Siegel et al. (2001). In Figure 2, we compare our LRIS magnitudes and colors for stars in common with each of these three studies. We find good agreement with the BV photometry of Siegel et al. (2001), but the comparison reveals some interesting discrepancies with the earlier studies. There is evidence for a non-linearity in the V magnitudes of stars fainter than $V \sim 21$ in the Ortolani et al. (1985) study, while the Borissova et al. (1997) V magnitudes show a rather large scatter with a mean offset of $\Delta V = 0.22 \pm 0.06$ mag. Due to the small number of red giants in this cluster — and the limited depth of previous photometric studies — the stars in common between these studies and ours span a modest range in color. For both the Ortolani et al. (1985) and Borissova et al. (1997) datasets, we find mean color offsets of $\Delta(B-V) \sim 0.1$ mag.

2.2. HIRES Spectroscopy

In a series of observing runs during 1998 and 1999, we used HIRES (Vogt et al. 1994) to acquire spectra for candidate red giants in the direction of seven distant halo globular clusters: Palomar 3, Palomar 4, Palomar 5, Palomar 13, Palomar 14, NGC 7492 and NGC 2419. Table 1 presents an observing log for our HIRES observations of Palomar 13, which were obtained during the course of four dark runs on the Keck I telescope. Candidate RGB stars in Palomar 13 were selected from previously published CMDs and finding charts (e.g., Ortolani et al. 1985 and Borissova et al. 1997). A few additional targets were identified on the basis of instrumental CMDs constructed from images obtained with COSMIC (Kells et al. 1998) on the Palomar 5m telescope. During three of the four HIRES runs, we limited the entrance aperture to 0.866 by 7.0 arcmin2 with the C1 decker and binned the 2048 by 2048 detector 1 by 2 (i.e., in the spatial direction) to reduce the read noise. For the fourth run, we used the C5 decker (i.e., an entrance aperture of dimension 1.15 by 7.0 arcmin2) and binned the detector 2 by 2. The corresponding spectral resolutions for these two instrumental configurations are $\lambda/\Delta \lambda = 45,000$ and 34,000 respectively. In all cases,

IRAF is distributed by the National Optical Astronomy Observatories, which are operated by the Association of Universities for Research in Astronomy, Inc., under contract to the National Science Foundation.
we used a single readout amplifier, a gain setting of 2.4 e−1 ADU−1, the red collimator and a cross-disperser in first order. The angles of the grating and cross disperser were adjusted to give complete spectral coverage over the range 5055 ≤λ≤ 5355 Å. Thorium-Argon comparison lamp spectra were acquired frequently during each night — usually before and after each program star observation. In a few cases, lamp spectra were separated by 30-60 minutes for short exposures of the brightest program stars. High-S/N spectra for 8-12 IAU radial velocity standard stars were obtained during each observing run.

All spectra (i.e., program objects and standard stars) were reduced in an identical manner following the general procedures described in earlier papers (e.g., Côté et al. 1999). The radial velocity of each program object was measured by cross-correlating its spectrum against that of a master template created during each run from the observations of IAU standard stars. In order to minimize possible systematic effects, a master template for each observing run was derived from a similar, and in some cases identical, sample of IAU standard stars. From each cross-correlation function, we measured both v_r, the heliocentric radial velocity, and R_TD, the Tonry & Davis (1979) estimator of the strength of the cross-correlation peak. During the course of this program — which spanned seven observing runs totaling 13 nights — we obtained 53 distinct radial velocity measurements for 23 different program objects. All of these objects are faint, metal-poor members of our program clusters. Using the procedures described in Vogt et al. (1995) and Côté et al. (1999), we then derived empirical estimates for our radial velocity uncertainties. Specifically, we assume that the uncertainty of any radial velocity measurement, ε(v_r), can be expressed

$$\epsilon(v_r) = \alpha/ (1 + R_{TD})$$

where α is a constant to be determined. For our sample of repeat velocity measurements, which has 30 degrees of freedom, we calculate α = 9.0±2.4 for χ^2 = 1, where the quoted uncertainties refer to 90% confidence limits.

Table 2 summarizes the results of our photometric and spectroscopic observations of Palomar 13. From left to right, this table records the name of each program star,5 distance from the cluster center, V magnitude, (B − V) color, HIRES exposure time, heliocentric Julian date, Tonry & Davis R_TD value, heliocentric radial velocity, and the weighted mean velocity. The final column gives the cluster membership probability, P(μ), taken from the proper motion survey of Siegel et al. (2001). These membership probabilities are discussed in detail below.

3. RESULTS

3.1. Identification of Members and Non-members

A crucial first step in studying the internal dynamics of Palomar 13 is the isolation of a sample of bona fide members. At a Galactic latitude of b = −42°7, Palomar 13 is located well below the Galactic plane, but its very sparse giant branch6 means that contamination from foreground disk and halo stars may be non-negligible. As a further complication, there is only limited radial velocity separation with the disk field star population due to Palomar 13’s low systemic velocity (see §3.5). These difficulties are ameliorated by the high precision of our radial velocity measurements, our new CMD, and the availability of proper motions from Siegel et al. (2001).

In Figure 3, we plot the mean radial velocities of our program stars, ⟨v_r⟩, against membership probability, P(μ), from Siegel et al. (2001).7 The sharp spike at ⟨v_r⟩ ~ 25 km s^{-1} identifies Palomar 13; the vertical dashed line indicates our best estimate for its systemic velocity (see §3.5). In general, there is good agreement between the membership classifications based on the radial velocities and those based on the proper motions. The three exceptions are ORS-23, ORS-32 and ORS-118. In the first case, the measured radial velocity of v_r = 18.57±0.82 km s^{-1} for ORS-23 provides no compelling evidence either for, or against, membership. However, Siegel et al. (2001) find P(μ) = 0% for this star, a conclusion which is supported by the location of this star in the CMD: i.e., the star has a very red color of (B − V) = 1.50 mag and is located ~ 0.8 mag blueward of Palomar 13’s RGB. We conclude that ORS-23 is a likely field star. For ORS-32, Siegel et al. (2001) report an intermediate probability of P(μ) = 35%. Our mean radial velocity, v_r = 19.68±0.26 km s^{-1}, is based on four measurements at three different epochs. The residual with respect to the systemic velocity of Palomar 13 is 4.5 km s^{-1}, and the star is located R ~ 1′ from the core of Palomar 13. We believe that these facts, coupled with the position of this star in the CMD (particularly in the V, V − I plane), marginally favor the interpretation that it is a member of Palomar 13. Nevertheless, a spectroscopic measurement of the metallicity of this star would be desirable.

The situation for ORS-118 is somewhat ambiguous. Although Siegel et al. (2001) report P(μ) = 0% for this star, its location in the CMD strongly suggests that it is a true member, since it lies precisely on the RGB of the best-fit isochrone (see §3.3). The measured radial velocity of this star, v_r = 24.92±0.21 km s^{-1}, is indistinguishable from the systemic velocity of Palomar 13, and is based on three independent measurements which agree internally to better than 0.75 km s^{-1}. We further note that an abundance analysis for ORS-118 (described below) yields [Fe/H] = −1.98 ± 0.31 dex. This metallicity points to a halo origin, and is consistent with the metallicity of Palomar 13 deduced from isochrone fitting (see §3.3).

To investigate the possibility that ORS-118 is simply an interloping foreground star which happens to have the same radial velocity as the Palomar 13, we approximate

5Identifications are from Ortolani et al. (1985) for those stars beginning with either a “ORS” or “V” prefix; four additional stars (#910, 911, 915 and 931) which were not included in the Ortolani et al. (1985) study were selected from images taken with COSMIC on the Palomar 5m telescope.

6Ortolani et al. (1985) reported that the cluster luminosity function is similar to that of M3, but reduced by a factor of ~1/60.

7Two stars have been omitted: V2 (a known RR Lyrae; Ciatti et al. 1965) and #915. Siegel et al. (2001) were unable to measure proper motions for either of these two objects, but both stars are almost certainly members based on their radial velocities, their location in CMDs, and their proximity to the center of Palomar 13 (see columns 2 of Table 2 and Figure 1). Nevertheless, V2 has been excluded from the calculation of the observed velocity dispersion since atmospheric pulsations may inflate the measured dispersion (e.g., the peak-to-peak radial velocity variations of RR Lyrae stars in M92 are Δv_r = 50 − 60 km s^{-1}; Cohen 1992).
the line-of-sight velocity distributions expected for disk and halo stars in this direction with the relation

\[P(v_r) \propto \exp\left[-\frac{(v_r - \langle v_r, 0 \rangle)^2}{2\sigma^2}\right] \]

(3)

where

\[\langle v_r, 0 \rangle = -19.5 \cos \phi_d \]

(4)

is the mean radial velocity of disk stars along this line of sight as a result of the solar motion towards \(l = 56^\circ \) and \(b = 23^\circ \) (Mihalas & Binney 1981). The angle between this point on the celestial sphere and Palomar 13 is denoted by \(\phi_d \). Similarly, the mean radial velocity of halo stars along this line of sight is taken to be

\[\langle v_r, 0 \rangle = -220 \cos \phi_h \]

(5)

where \(\phi_h \) is the angle subtended by Palomar 13 and \((l, b) = (90^\circ, 0^\circ)\). We further approximate the local velocity dispersion of disk stars as

\[\sigma^2 \simeq \frac{1}{3}(\sigma_U^2 + \sigma_Y^2 + \sigma_Z^2) \]

(6)

which, from the last row of Table 1 of Dehnen & Binney (1998), yields \(\sigma \simeq 29 \text{ km s}^{-1} \). For the halo, we assume an isotropic velocity ellipsoid (i.e., \(\sigma_U = \sigma_V = \sigma_Z \)) and adopt \(\sigma \simeq 124 \text{ km s}^{-1} \) from Côté (1999).

The resulting probability distributions for disk and halo stars are illustrated by the dotted lines in Figure 3. Although the absolute normalization of the two curves is arbitrary, their relative normalization has been adjusted to match the expected number of disk and halo stars with \(16.5 \leq V \leq 20 \) along this line of sight (determined from the IAS Galaxy model; Bahcall & Soneira 1980). If ORS-118 is indeed a halo field star, then it lies 1.5\(\sigma \) from the mean of the field distribution; the probability of such an occurrence is 13%. Moreover, in the range \(16.5 \leq V \leq 17.5 \), the IAS Galaxy model predicts only a single halo field star in our field, and just 8% of halo stars in this magnitude range are expected to have \((B-V) \geq 0.93 \) (i.e., the color of ORS-118). We conclude that ORS-118 is likely to be a bona fide member of Palomar 13. The origin of the large proper motion residual measured by Siegel et al. (2001) is unclear, particularly since an inspection of our CCD images revealed no close companions.

3.2. Metallicity

Exposure times for our HIRES observations were chosen to yield the minimum signal-to-noise needed to derive radial velocities with a precision \(\epsilon(v_r) \lesssim 1 \text{ km s}^{-1} \). For ORS-118, the brightest star in our sample which has a radial velocity consistent with membership in Palomar 13, we combined the two spectra obtained during the July 1999 observing run. The signal-to-noise ratio of this co-added spectrum — \(S/N \simeq 25 \) per resolution element — is just adequate for abundance analysis.

Our analysis used 28 Fe I lines with oscillator strength values adopted from McWilliam et al. (1995), Kurucz model atmospheres and solar abundances from Anders & Grevesse (1989). Computations were made with the most recent version of the LTE line analysis code MOOG (Sneden 1973). The effective temperature, \(T_e \), was first determined using an initial estimate from the photometry and then checked through excitation equilibrium of the Fe I lines whose equivalent widths were measured using standard IRAF routines. The surface gravity, \(\log g \), was derived from the ionization equilibrium of Fe I and Fe II lines (using four Fe II lines in the available spectral region). Once the effective temperature and surface gravity were determined, abundances for the Fe I lines were calculated by iteratively varying the microturbulent velocity until the best fit in the diagram of Fe I abundance versus equivalent width was achieved. Our best-fit parameters for ORS-118 are \(T_e = 4700 \text{ K} \), \(\log g = 1.7 \), and \([\text{Fe/H}] = -1.98 \pm 0.31 \text{ dex} \), where the rather large uncertainty on the measured metallicity is a reflection of the modest signal-to-noise of our co-added spectrum.

Previous estimates for the metallicity of Palomar 13 include \([\text{Fe/H}] = -1.9 \pm 0.4 \) (Canterna & Schommer 1978), \(-1.67 \pm 0.15 \) (Zinn & Diaz 1982) and \(-1.9 \pm 0.1 \) dex (Friel et al. 1982). The measurement of Canterna & Schommer (1978) comes from Washington photometry of individual stars, while the latter two measurements are based on low-resolution spectroscopy. Our determination of the cluster metallicity is slightly lower than, but still consistent with, these previous estimates. In the following section, we show that this metallicity is also consistent with that found from isochrone fitting of the CMD.

3.3. Color Magnitude Diagram

Figure 4 shows \(BV \) and \(VI \) CMDs for Palomar 13 constructed from our LRIS photometry. As noted by previous investigators, the RGB is very sparsely populated. This figure (and the left panel of Figure 6) also confirms the finding of Siegel et al. (2001) that Palomar 13 contains a population of blue stragglers; likewise, there may be evidence for a “second sequence” which runs parallel to the upper main sequence. Both this latter sequence (which is traditionally interpreted as the signature of unresolved binary stars; e.g., Romani & Weinberg 1991), and the presence of blue stragglers (a fraction of which are likely to be W UMa systems; Mateo et al. 1990) provide some evidence for a population of binary stars. If this is indeed the case, then it would have important implications for modeling the observed velocity dispersion profile. In §5.1, we shall return to the question of binary stars and their possible effect on the observed velocity dispersion.

From the DIRBE maps of Schlegel, Finkbeiner & Davis (1998), we find the reddening in the direction of Palomar 13 to be \(E(B-V) = 0.11 \) mag. The solid curve in the left panel of Figure 4 shows a 14 Gyr isochrone from Bergbusch & VandenBerg (1992) with \([\text{Fe/H}] = -1.78 \) dex, shifted by \((m-M)_V = 17.27 \) mag. We stress that the sparsely populated red giant and horizontal branches preclude a precise age determination, and simply note that a 14 Gyr isochrone provides a reasonable match to the observed fiducial sequences. Assuming \(A_V = 3.1E(B-V) \), we find a true distance modulus of \((m-M)_0 = 16.93 \pm 0.10 \) mag, which corresponds to a distance of \(D = 24.3^{+1.2}_{-1.1} \) kpc. This value is in good agreement with the distance of \(D = 24.8 \) estimated by Siegel et al. (2001) from the average magnitude of a small sample of cluster RR Lyrae and horizontal branch stars. Based on the combination of isochrone fitting to the cluster CMD and the spectroscopic analysis of ORS-118, we adopt \([\text{Fe/H}] = -1.9 \pm 0.2 \) dex as our best estimate for the metallicity of Palomar 13.
Ortolani et al. (1985) found an absolute magnitude of $M_V = -3.4$ mag for Palomar 13 by integrating the luminosity function. For a distance of $D = 24.3$, we find an integrated luminosity of $2.4 \times 10^{13} L_{\odot}$ ($M_V = -3.6$) within the tidal radius suggested by Siegel et al. (2001), $r_t \simeq 188''$ (although, as discussed in §3.4, we see no evidence for a tidal cutoff at this, or any other, radius). This estimate excludes stars with $(B - V) < 1.3$ mag and confirmed non-members. If the integration is extended over the entire LRIS field of view (as would be appropriate for the larger tidal radius found in §4), the luminosity increases to $3.1 \times 10^{13} L_{\odot}$ ($M_V = -3.9$). Our corresponding best estimate for the absolute magnitude of Palomar 13 is $M_V = -3.8$ mag (see also §4-5). In the most recent version of the Harris (1996) catalog of Galactic globular clusters, only three objects — E 3, Palomar 1 and AM 4 — have lower luminosities.\(^8\) The integrated, de-reddened color is $(B - V)_0 = 0.65 \pm 0.04$ mag, roughly consistent with that expected for a globular cluster of metallicity $[\text{Fe/H}] \simeq -1.9$ dex (Durrell et al. 1996).

3.4. Surface Density and Surface Brightness Profiles

While there are surprisingly few published studies of the structural properties of Palomar 13, previous results have consistently pointed to a compact, faint cluster of low concentration. For instance, Webbink (1985) quotes a core radius of $r_c = 23''$ and a concentration index of $c = \log (r_1/r_c) = 0.9$, while Trager et al. (1995) report $r_c = 29''$ and $c = 0.66$. However, both of these studies relied primarily on the star counts of Kinman & Rosino (1962) which were obtained by viewing the projection of a photographic plate through a mask fixed on the screen of a Sartorious astrophotometer. Recently, Siegel et al. (2001) adopted $c = 0.7$ and measured $r_c = 39''$ for Palomar 13 using a sample of 119 members selected on the basis of their proper motions, but noted that this model provides a poor description of the measured profile at large radii; i.e., 14 of their proper motion members (12% of the sample) lay beyond the canonical tidal radius. This fact, coupled with Palomar 13’s low luminosity and eccentric orbit, led Siegel et al. (2001) to suggest that this object is in the final stages of destruction.

We have used our Keck and CFHT imaging to measure improved structural parameters for Palomar 13. The point-source catalog from our Keck images consists of 841 objects distributed over an area of 42.8 arcmin\(^2\). Since the Palomar 13 field contains a significant number of obvious foreground/background objects — see Figure 4 — the Keck point-source catalog was trimmed to exclude objects with $0.0 < (B - V) < 1.3$ mag. Similarly, sources which did not fall in the range $0.15 < (V - r) < 0.7$ were culled from the CFHT catalog. The point-source catalogs were further restricted to objects brighter than $V = 24$ (Keck) and 23.5 (CFHT), in order to ensure photometric completeness at all radii. This leaves a total of 629 and 551 objects in the Keck and CFHT databases, respectively.

Figure 5 shows the surface density profiles determined from these catalogs. Observations from Keck are shown as open squares, while open circles denote CFHT data points. The latter have been scaled upward by a factor (629/551) $\simeq 1.14$ to account for the difference in sample size. There is good agreement between these two independent profiles. Given the larger radial extent of the CFHT data, they provide stronger constraints on the asymptotic behavior of the surface density profile — a particularly important issue in the present case since the Keck surface density profile continues to decline out to the edge of the LRIS field of view. The arrow in Figure 5 shows our best estimate for the background surface density, $\Sigma_b = 0.68$ stars arcmin\(^{-2}\), based on the scaled CFHT observations. For comparison, the surface density of Galactic stars in the appropriate color and magnitude intervals in the direction of Palomar 13 predicted by Institute for Advanced Study Galaxy model (Bahcall & Soneira 1980; Bahcall 1986) fall in the range $0.64 \lesssim \Sigma_b \lesssim 0.95$ stars arcmin\(^{-2}\), consistent with our empirical estimate. The filled symbols in this figure show the background-subtracted surface density profile.

For comparison, the open triangles in Figure 5 shown the surface density profile of Siegel et al. (2001), taken directly from a digitized image of their Figure 7. The Siegel et al. data points have been scaled upwards by the ratio of the numbers of stars in the two studies: (629/119) $\simeq 5.29$. In the inner regions of Palomar 13, the agreement between the two profiles is excellent. Beyond a distance of $R = 2 - 3''$, though, the profiles differ, with our surface densities being higher by a factor of ~ 5 (although, to within the rather large uncertainties, the slopes of the two profiles are in agreement). The origin of this difference is unclear. The profile of Siegel et al. (2001) has the obvious advantage of being proper motion selected: i.e., objects having membership probabilities of $P(\mu) < 50\%$ have been rejected on a star-by-star basis. In principal, the use of proper motions to cull interlopers should be superior to the statistical approach used here to estimate the background level. On the other hand, Siegel et al. (2001) note that most of their plates extend to only $V \sim 21$ (i.e., the approximate location of the main-sequence turnoff) whereas each of our two independent sets of CCD photometry reach several magnitudes below this level, and with small photometric errors. If Palomar 13 is experiencing significant mass loss through evaporation and tidal stripping (see §5.2), then it is the lowest mass stars which are expected to have largest evaporation rates (i.e., they should preferentially inhibit the cluster envelope as a result of mass segregation). In such a case, our deeper star counts compared to Siegel et al. (2001) might lead to a more pronounced surface density excess at large radii. In any event, we caution that the five outermost bins in the Siegel et al. (2001) profile (spanning the range $2'' \lesssim R \lesssim 10''$) contain just 15 stars, so it is unclear of the difference between the two studies is truly significant.

With these caveats in mind, we point out a striking feature of Figure 5 — the near power-law behavior of the surface density profile. Indeed, a single power-law, $\Sigma(R) \propto R^{-\gamma}$, with $\gamma = 1.8 \pm 0.2$ provides an adequate description of the surface density profile for $R \gtrsim 0.3''$. The dotted curve in Figure 5 shows the King-Michie model proposed by Siegel et al. (2001). This model, which has a somewhat arbitrary concentration parameter of $c = 0.7$ and a core radius of $r_c = 39''$, provides an adequate description of the ob-

\(^8\)According to Harris (1996), the absolute magnitude of Terzan 1 is $M_V = -3.3$; i.e., fainter than Palomar 13. However, Idiart et al. (2002) have recently reported an upward revision to $M_V \simeq -5.4$ for this cluster.
served surface density profile over the range \(0.3 < R < 1\)', but underestimates the central surface density. More importantly, if this model accurately reflects the true density profile of Palomar 13, there is an even more dramatic “excess” of stars above the model predictions beyond \(R > 1\). While it is certainly true that the exact shape of the surface density profile depends on the adopted background level (particularly at large radii) this excess is unlikely to be an artifact of the background subtraction. For instance, achieving an acceptable fit to a King model with \(c < 1\) for \(R < 2\) would require the background level to be increased by roughly an order of magnitude.

The dashed curve in Figure 5 shows the best-fit King-Michie model, which will be discussed in detail in §4. As shown there, the King-Michie which best fits the observed surface density and surface brightness profiles of Palomar 13 has a tidal radius of \(r_t = 26\pm6'\) (182\pm41 pc). Since this is more than twice the radial extent of our CFHT imaging, the adopted background level should be viewed with some caution. However, we note that estimating the background surface density from star counts made within \(r_t\) should result in an overestimate of the true background level and, hence, to an underestimate of \(r_t\). We are therefore left with two possible interpretations of the surface density profile of Palomar 13: either this object contains a significant population of “extra-tidal” stars which have been caught in the act of evaporation (as suggested by Siegel et al. 2001), or its concentration and spatial extent have been greatly underestimated in previous studies.

We now turn our attention to the properties of the stars associated with this surface density excess. This feature is evident in both the CFHT and LRIS surface density profiles, but is there any evidence that this population is truly comprised of Palomar 13 members? Figure 6 shows instrumental CMDs for the Palomar 13 field derived from our CFHT photometry, along with the color and magnitude limits used to cull probable non-members from the sample (i.e., the dotted regions). The panel on the left shows the CMD for all stars within the Siegel et al. (2001) tidal radius. The middle panel shows the CMD for all objects beyond this radius, while the right panel shows those stars located at more than twice this distance. The dashed curves in the final two panels show the Palomar 13 fiducial sequence. A significant number of probable members with \(R > r_t\) are evident, providing additional evidence that the stars belonging to the excess in the surface density profile are indeed associated with Palomar 13.

Figure 7 shows the surface brightness profile for Palomar 13 measured from our Keck and CFHT images. Profiles having been calculated independently using both the Keck and CFHT photometry. Surface photometry is shown as the pentagons (Keck) and triangles (CFHT), while the results from star counts are indicated by the squares (Keck) and circles (CFHT). A direct measurement of the background surface brightness for the Keck and CFHT images yields \(\mu_V = 21.3\) and 21.5 mag arcsec\(^{-2}\), respectively — consistent with expectations for dark sky conditions at Mauna Kea during 1999 (Kris ciunas 1997). In deriving a surface brightness profile from the star counts discussed above, we have simply multiplied the surface densities shown in Figure 5 by a constant factor, \(\eta = L_V/n_{tot}\), where \(L_V\) is the integrated luminosity of Palomar 13 and \(n_{tot}\) are the number of stars used to derive each of the Keck and CFHT surface density profiles. This approach suppresses large fluctuations in the surface brightness profile caused by the small number of red giants in this low luminosity object.

How does our surface brightness profile compare with previous findings? Unfortunately, Ortolani et al. (1985) and Siegel et al. (2001) each presented surface density profiles for Palomar 13, but neither reported surface brightness measurements. Webbink (1985) quotes a central surface brightness of \(\mu_V = 22.41\) mag arcsec\(^{-2}\) based on the star counts of Ortolani et al. (1985) and the aperture photometry of Racine (1975). Trager et al. (1995) found a similar core radius and concentration (i.e., \(r_c = 29''\) and \(c = 0.66\)) but a much different central surface brightness: \(\mu_V = 24.31\) mag arcsec\(^{-2}\). The overall shape of the Trager et al. (1995) surface brightness profile, shown by the open stars in Figure 7, is in reasonable agreement with the profile found here, but differs systematically by a factor of \(\sim 3.4\) in surface brightness (in the sense that their measurements are lower). Their profile consists primarily of star counts Kinman & Rosino (1962), normalized to the aperture photometry of Racine (1975). We believe that the normalization given here is to be preferred since two independent measurements (from Keck and CFHT) are in close agreement. Moreover, an integration of the best-fit King-Michie model of Trager et al. (1995) yields an absolute magnitude for Palomar 13 of \(M_V = -1.25\) mag. This is \(\sim 10\) times fainter than the value of \(M_V = -3.6\) reported by Ortolani et al. (1985) and the value of \(M_V = -3.8\) found here, both of which were obtained by direct integration of the luminosity function.

The various curves shown in Figure 7 represent different models for the light distribution in Palomar 13. We will discuss these models in detail below (in §4-5), but before doing so, we shall use the radial velocities presented in Table 2 to investigate the internal kinematics of Palomar 13.

3.5. Internal Kinematics

Using our sample of 21 members (V2 excluded), we calculate a systemic velocity of \(\langle v_r \rangle_s = 24.1 \pm 0.5\) km s\(^{-1}\) using the maximum likelihood estimator of Pryor & Meylan (1993). The corresponding estimate for the projected intrinsic velocity dispersion using this same sample is \(\sigma_p = 2.2 \pm 0.4\) km s\(^{-1}\). Omitting ORS-118 from the sample (see §3.1) has essentially no effect on the derived parameters: \(\langle v_r \rangle = 24.0 \pm 0.5\) km s\(^{-1}\) and \(\sigma_p = 2.3 \pm 0.4\) km s\(^{-1}\). Likewise, if ORS-32 is omitted from the sample, the best-fit parameters do not change significantly: \(\langle v_r \rangle = 24.3 \pm 0.5\) km s\(^{-1}\) and \(\sigma_p = 2.0 \pm 0.4\) km s\(^{-1}\).

In the upper panel of Figure 8, we show the radial velocities for these stars plotted against distance from the center of Palomar 13. The horizontal dashed line shows the systemic velocity, \(\langle v_r \rangle_s = 24.1\) km s\(^{-1}\), while the vertical arrows at \(R = 1\) denote the radius where the possible excess in the surface density profile begins. It is perhaps noteworthy that the stars with the largest velocity residuals are located at, or beyond, this radius. We note that there is a tendency for stars with the most discrepant velocities to also have the smallest uncertainties — this is a consequence of the fact that these stars were observed on multiple observing runs to confirm the first-epoch velocities and to search for any evidence of binarity. As with the
full sample, none of these stars shows compelling evidence for radial velocity variations.

In the lower panel of Figure 8, we plot the velocity dispersion profile for Palomar 13. The open circle denotes the dispersion found using our complete sample of 21 members, plotted at their mean radius: \(\langle R \rangle = 0.84 \) (5.9 pc). The filled circles show the results of dividing the sample into two radial bins containing 11 and 10 stars, respectively. In this case, the dispersions are 1.0±0.4 km s\(^{-1}\) at \(\langle R \rangle = 0.36 \) (2.6 pc) and 2.6±0.6 km s\(^{-1}\) at \(\langle R \rangle = 1.96 \) (9.6 pc). Although there may be some evidence for a rising velocity dispersion profile, we caution that this result is based on a small sample, and that the uncertainties in the measured dispersions are appreciable.

How does the measured velocity dispersion for Palomar 13 compare with expectations? Globular clusters are well described by King-Michie models, in which the central velocity dispersion (in km s\(^{-1}\)) may be approximated by

\[
\sigma_{\rho,0}^2 \approx 0.003 \Upsilon_V r_c \mu_{V,0} \tag{7}
\]

where \(\Upsilon_V \) is the V-band mass-to-light ratio, \(r_c \) is the core radius in pc, and \(\mu_{V,0} \) is the central surface brightness is units of \(L_{V,0} \) pc\(^{-2}\) (e.g., Richstone & Tremaine 1986; Mateo et al. 1991). Based on the King-Michie model fits to the observed surface brightness profile presented in §3.4 and Table 3, the expected velocity dispersion of Palomar 13 is \(\sigma_{\rho,0} \approx 0.6 \) km s\(^{-1}\) for an assumed mass-to-light ratio of \(\Upsilon_V = 2 \). Thus, our measured velocity dispersion exceeds the expected value by roughly a factor of four. The implications of this finding are presented below, along with a more detailed analysis of the internal kinematics Palomar 13.

4. MASS-TO-LIGHT RATIO

As discussed in §3.4, our new surface density profile for Palomar 13 suggests that either a significant fraction of its stars are located beyond the ostensible tidal radius, or the object is more spatially extended than previously believed. We now examine its internal kinematics within the context of these two scenarios.

The short-dashed curve in Figure 7 shows the King-Michie which best fits the observed surface brightness profile for Palomar 13. The parameters for this model are \(r_c = 14 \pm 2'' \), \(c = 2.0 \pm 0.15 \) and \(\mu_{V,0} = 22.54^{+0.45}_{-0.37} \) mag arcsec\(^{-2}\). (These and other model parameters are summarized in Table 3, along with various observed and derived properties of Palomar 13.) According to this model, Palomar 13 has both a higher concentration and a greater spatial extent (\(r_t \approx 180 \) pc) than suggested by previous studies. Indeed, this concentration index is considerably larger than that expected for a globular cluster of this luminosity or surface brightness (see, e.g., Djorgovski 1991). Integration of this profile yields a total luminosity of \(L_V \approx (2.8 \pm 0.4) \times 10^4 L_{V,0} \). The corresponding velocity dispersion profile for an assumed mass-to-light ratio of \(\Upsilon_V = 2 \) is shown by the lower dashed curve in the bottom panel of Figure 8 (i.e., curve 1-A). In agreement with the naive analysis presented above, we find the measured velocity dispersion to exceed that expected for a normal globular cluster of this concentration and luminosity. A maximum likelihood solution for the best-fit scale velocity of this same King-Michie model gives the upper dashed curve shown in this figure (i.e., curve 1-B). This model has a central velocity dispersion of \(\sigma_{\rho,0} \approx 2.5 \) km s\(^{-1}\), and a total mass of \(M = (1.10^{+0.44}_{-0.36}) \times 10^5 M_\odot \). The mass-to-light ratio is then \(\Upsilon_V = 40^{+20}_{-17} \) (1σ uncertainties).

Alternatively, we may use the King-Michie model suggested by Siegel et al. (2001) to estimate the mass and mass-to-light ratio of Palomar 13. This model, which is shown by the dotted curve in Figure 7, yields a total luminosity of \(L_V \approx 1.2 \times 10^5 L_{V,0} \). A maximum likelihood scaling of the model velocity dispersion profile to the measured velocities produces the dotted curve in the lower panel of Figure 8 (i.e., curve 2). For this model, which has a central velocity dispersion of \(\sigma_{\rho,0} \approx 2.8 \) km s\(^{-1}\), the mass within the tidal radius (\(r_t = 188'' \) or 23 pc) is \(M = (5.5^{+1.9}_{-1.6}) \times 10^4 M_\odot \). The corresponding mass-to-light ratio is \(\Upsilon_V = 48^{+17}_{-14} \) where the quoted 1σ uncertainties refer only to the errors on the derived mass. Thus, irrespective of the adopted surface brightness profile, it is not possible to reproduce the observed velocity dispersion with a mass-to-light ratio that is typical of globular clusters (e.g., \(\langle \Upsilon_V \rangle = 2.3 \pm 1.1 \); Pryor & Meylan 1993).

5. IMPLICATIONS

What are the implications of this finding? We begin by examining — and tentatively rejecting — the possibility that the observed velocity dispersion has been inflated by a “velocity jitter” in the atmospheres of the program stars, or by a population of spectroscopic binary stars. We then examine other scenarios which may explain the observed properties of Palomar 13 including tidal disruption, a mass function which is heavily skewed to low-mass stars or heavy stellar remnants, modified Newtonian dynamics, and/or the presence of a massive dark halo. It is worth bearing in mind that these various possibilities may not be mutually exclusive (i.e., a very high binary fraction combined with tidal heating and mass loss).

5.1. Velocity Jitter and/or Binary Stars?

The value of \(\sigma_p = 2.2 \pm 0.4 \) km s\(^{-1}\) reported in §3.5 refers to the intrinsic velocity dispersion for Palomar 13: i.e., the contribution from measurement uncertainties has been removed (see, Pryor & Meylan 1993). Our velocity uncertainties have been calculated empirically from 53 distinct radial velocities of faint metal-poor stars (accumulated during multiple observing runs) so we are confident that the measured dispersion is not the result of underestimated velocity uncertainties. Such an explanation would require \(\alpha \approx 20 \) km s\(^{-1}\) (see Equation 2), whereas we measure \(\alpha = 9.0 \) km s\(^{-1}\) and find \(\alpha \leq 12.8 \) km s\(^{-1}\) at 99% confidence.

Bright red giants in globular clusters often show evidence for radial velocity variations in the range 2-5 km s\(^{-1}\) (Gunn & Griffin 1979; Mayor et al. 1984). This so-called velocity “jitter” is thought to arise from pulsational motions in the atmospheres of these evolved stars. It is unlikely that our measured velocity dispersion is the result of such velocity variations since long-term monitoring of red giants in nearby globular clusters has established that the magnitude of this jitter shows a strong luminosity dependence: i.e., it is significant at the 1 km s\(^{-1}\) level only for stars which are located within \(\sim 1 \) mag of the RGB tip. Our radial velocity sample includes no stars
this bright. In fact, our most luminous member (ORS-118) has $M_V \approx -0.3$ mag — a full 2.3 mag below the tip of the RGB.

Might our estimate for the velocity dispersion be the inflated by “dynamically-hard” spectroscopic binary stars residing in the cluster? There are reasons to believe that the binary star fraction in Palomar 13 may be appreciable. First, the CMD of Palomar 13 shows both a sizeable blue straggler population and a possible “second sequence” — features which are usually interpreted as signatures of unresolved binaries (Mateo et al. 1990; Romani & Weinberg 1991). Second, on purely theoretical grounds, the low stellar density and velocity dispersion of Palomar 13 (for an assumed “normal” mass-to-light ratio) suggest that even wide binaries might have survived disruption over a Hubble time. For instance, for a central velocity dispersion of $\sigma_{p,0} = 1$ km s$^{-1}$, a pair of equal-mass 0.8M_\odot stars would be disrupted by encounters with other members only if separated by more than $a_{\text{crit}} \sim 1,400$ AU (Hills 1984). Such binaries, if on circular orbits, would have periods of $P \sim 4 \times 10^4$ yr and orbital velocities of $v \sim 1$ km s$^{-1}$: i.e., modest, but potentially important, given the low dispersion expected for Palomar 13.

To explore the possible effects of binary stars on our measured velocity dispersion, we have carried out Monte-Carlo simulations similar to those described in Pryor, Latham & Hazen (1988) and Côté et al. (1996). In brief, we have generated simulated radial velocity measurements having the identical precision and temporal spacing as the actual dataset. For each simulation, we take the intrinsic velocity dispersion to that predicted by a King-Model having $\Upsilon_V \sim 2$, and calculate the contribution to the measured velocity dispersion of a randomly drawn percentage, f_b, of unresolved spectroscopic binary stars. Binaries are assumed to have circular orbits. The orbital periods in years, P, and mass ratios, $q = M_2/M_1$, are drawn at random over the ranges, $-1.0 \leq \log P \leq 4.0$ and $-0.6 \leq \log q \leq 0.0$. For each f_b, we generate 1000 artificial datasets and calculate the mean cluster dispersion in precisely the same manner as the actual for the actual data: the percentage of binaries is varied until the median dispersion found in 1000 simulated datasets is equal to the value obtained using the actual observations. These simulations suggest that a value of $f_b \sim 30\%$ produces a median velocity dispersion which best matches the observed value of $\sigma_p = 2.2$ km s$^{-1}$. If it is assumed that the binaries do not have circular orbits, but instead have a “thermal” distribution of eccentricities, then the percentage of binaries needed to explain the measured dispersion would be roughly twice as large (see Pryor et al. 1988; Côté et al. 1996).

By definition, the velocity dispersion profile predicted by these simulations differs from that of the input King-Michie model only in normalization since we have made the first-order assumption that the binaries have the same density distribution as the single stars. However, if the binaries are instead assumed to be more centrally concentrated than the other stars — perhaps as a result of mass segregation — then the expected velocity dispersion profile would show a steeper decline. Needless to say, a rising velocity dispersion profile would prove difficult to reconcile with this scenario. We find weak evidence for an outward increase in the observed velocity dispersion of Palomar 13 but given the small number of measured velocities, this feature clearly needs to be confirmed by additional observations. As Figure 6 demonstrates, there are many promising candidates beyond $R \sim 2'$ (i.e., the radii of the most distant members in the current radial velocity sample). It would be of considerable interest to measure velocities for these stars in order to determine if they are members of Palomar 13 and, if so, to see if the velocity dispersion profile rises with increasing radius.

Likewise, it would be desirable to search directly for velocity variations associated with possible orbital motions of these stars. Unfortunately, the long periods of the putative binaries would render any such search hopeless; a more promising approach would be to measure f_b by modeling the “second sequence” measured from high-resolution HST imaging (e.g., Rubenstein & Bailyn 1997).

Finally, we note that spectroscopic binaries may offer a viable explanation for the observed high velocity dispersion, but they cannot on their own explain the anomalous surface density profile.

5.2. Disruption?

An underlying assumption of the dynamical analysis presented in §4 is that of virial equilibrium. In light of the large velocity dispersion measured for Palomar 13, it is prudent to investigate the validity of this assumption, which has recently been called into question for many of the dwarf satellites and globular clusters in the Galactic halo (Majewski et al. 2001). Simply put, could Palomar 13 be in the process of disruption? This possibility was advocated by Siegel et al. (2001), who combined their proper motion measurements with the systemic radial velocity presented here to derive an orbit for Palomar 13. They concluded that Palomar 13 is just ~ 70 Myr past perigalactiction ($R_p \sim 11.2$ kpc) and suggested that it has undergone catastrophic tidal heating during its recent approach. Since N-body simulations of tidal tails in globular clusters (Combes, Leon & Meylan 1999) show that the time taken for evaporating stars to diffuse along the cluster orbit can exceed this timescale, it is worth examining this possibility further.

Siegel et al. (2001) noted the presence of a population of “extra-tidal” stars in their surface density profile. We too find a possible excess in the Palomar 13 surface density profile, beginning at $R \sim 1'$. This feature is evident in both the CFHT and LRS surface density profiles, and the CFHT photometry suggests that many of these stars have magnitudes and colors which are consistent with those expected for Palomar 13 members (see §3.4). Thus, we confirm the existence of this feature; the issue is whether the stars associated with it are truly evaporating from Palomar 13, or if they are instead bound members.

As shown in Figure 5, the surface density profile for Palomar 13 shows a roughly power-law decline for $R \gtrsim 0.3$. This behavior is most pronounced beyond $R \sim 1'$, where there may be some evidence for a “break” in the profile. Johnston et al. (1999; 2001) have carried out N-body simulations of satellites orbiting in the Galactic tidal field; they find that the radial distribution of unbound stars in the outer regions of disrupting satellites should define a power-law profile — broadly similar to what we observe for Palomar 13. The dashed lines in Figure 5 show power-law profiles, $\Sigma(R) \propto R^{-\gamma}$, having
representative exponents of $\gamma = 0.5$, 1.5 and 2.5. Over the range $1' \lesssim R \lesssim 4'$, we measure $\gamma = 1.8 \pm 0.2$ for Palomar 13. This value is steeper than the formal value of $\gamma \simeq 1$ estimated by Johnston et al. (1999) but is probably consistent with expectations given uncertainties in the numerical treatment (e.g., the initial density profile, viewing geometry and orbital phase; Johnston et al. 2001).

If this interpretation is correct, then a crude estimate for the mass loss rate may be made as follows. Johnston et al. (1999) present two simple expressions for the fractional mass loss rate using extra-tidal stars,

$$\frac{\text{d}f}{\text{d}t}_1 = \cos(\theta)\pi R_b N_{xt}/[(R_{xt} - R_b)N_b P]$$

$$\frac{\text{d}f}{\text{d}t}_2 = \cos(\theta)\Sigma(R_b)2\pi R_b^2/[N_b P],$$

where θ is the angle subtended by our line of sight and the plane perpendicular to the satellite’s motion, R_b in the “break” radius where the surface density excess begins, R_{xt} is the radius where the profile of the extra-tidal component ceases to be well defined, N_{xt} is the number of stars in the range $R_b \leq R \leq R_{xt}$, and P is the satellite’s azimuthal period (taken to be 2.0 Gyr following Dinescu et al. 2001). Using the space velocity of Siegel et al. (2001) and the surface density profile shown in Figure 5, we find $\frac{\text{d}f}{\text{d}t}_1 \sim 0.2$ Gyr$^{-1}$ and $\frac{\text{d}f}{\text{d}t}_2 \sim 0.15$ Gyr$^{-1}$. There are significant uncertainties involved in these calculations but it is clear that, if this interpretation of the surface density profile is correct, then both estimators point to enormous recent mass loss. The inferred mass loss rate is far higher than those estimated by Leon, Meylan & Combes (2000) from star counts in a sample of 20 Galactic globular clusters — e.g., in the case of ω Centauri, Leon et al. (2000) find that only $\approx 1\%$ of the cluster’s mass has been lost during the last tidal encounter. Taken at face value, the mass loss rates for Palomar 13 suggest that it has suffered severe heating, and will disrupt entirely within the next few Gyr.

On the other hand, there may be some difficulties with this interpretation. N-body simulations of the tidal heating of satellites indicate that the tidally stripped material tends to diffuse along the orbits, forming leading and trailing streams. We have examined our star counts for evidence of such streams by measuring the mean surface density of stars in four quadrants over the radial range $1' \leq R \leq 2'88$. The inner limit corresponds to the break radius, R_b, while the outer limit is the most distant radius at which our geometric coverage is still 100% complete. The results of this exercise are shown in Figure 9. We find only weak evidence that these stars are oriented along a preferred direction. The density maxima of the best-fit sinusoidal shown in this figure are found at position angles of $\Theta_p = 15 \pm 11^\circ$ and $195 \pm 11^\circ$. The agreement between this orientation and those of the absolute proper motion vector, $\Theta_p = 48^\circ$, and the Galactic center direction, $\Theta_p = 240^\circ$, is unexceptional: i.e., the differences in position angles are $\Delta \Theta_p = 33 \pm 11^\circ$ and $45 \pm 11^\circ$, respectively. There is poor agreement with the vector perpendicular to the Galactic disk, which has $\Theta_p = 327^\circ$. If the peculiar surface density profile of Palomar 13 is indeed the result of tidal heating, then this lack of a preferred orientation for the putative extra-tidal stars is somewhat puzzling. It would be worthwhile investigating this issue using star counts which extend over a wider field, preferably well beyond the modest range radial range ($R \lesssim 3'$) examined above.

Piatek & Pryor (1995) have used N-body simulations to show that it is possible to heat the outer regions of satellites during close passages with the Galaxy. Such encounters often have the effect of inducing ordered motions at large radii while leaving the central velocity dispersion unchanged. According to the simulations, the gradient in velocity is usually maximized along the vector which points to the Galactic center. This vector is shown by the long arrow in Figure 1; for comparison, the short arrow shows the direction of the cluster motion as measured by Siegel et al. (2001), while the intermediate arrow denotes the direction perpendicular to the Galactic plane. As shown in Figure 10, we find no statistically significant evidence for “rotation” among our program stars, as might be expected for stars in the leading or trailing streams of a disrupting cluster (see also Figure 1 where the velocity residuals are illustrated on a star-by-star basis).

Finally, we note that there is an additional (albeit indirect) constraint on the mass and dynamical status of Palomar 13. The tidal radius of a satellite object orbiting in the Galactic potential is given by

$$r_t = R_p[M/M_G(3 + e)]^{1/3}$$

where R_p is the distance from the Galactic center at perigalacticon, M_G is the interior Galactic mass at this point, e is the orbital eccentricity of the satellite, and M is its mass (King 1962). If we assume a canonical mass-to-light for Palomar 13 (e.g., $\Upsilon_V = 2$), we may use equation (9) to obtain a crude estimate for the expected tidal radius. Adopting $e = 0.76$ and $R_p = 11.2$ kpc for Palomar 13 (Siegel et al. 2001), and assuming using $M_G(R_p) = \Theta_c^2 R_p/G$ (Fich & Tremaine 1991) and $\Theta_c = 220$ km s$^{-1}$, we find $r_t \sim 26$ pc for a total luminosity of $L_V = 3 \times 10^5 L_{\odot}$. This is remarkably close to the tidal radius of $r_t = 23$ pc for the King-Michie model of Siegel et al. (2001), which is shown as the dotted curves in Figures 5 and 7. This is consistent with the view that the excess in the surface density profile is a population of extra-tidal stars. The alternative interpretation — that the much larger tidal radius implied by the best-fit King-Michie model in Figure 7 is evidence for dark matter in Palomar 13 — will be examined in §5.4

5.3. Baryonic Dark Matter: Low-Mass Stars and/or Heavy Remnants?

Taken at face value, the measured velocity dispersion for Palomar 13 implies a total mass of $M \sim (1.1^{+0.4}_{-0.3}) \times 10^5 M_\odot$, far greater than that expected on the basis of the observed luminosity: i.e., $M \equiv \Upsilon_V L_V \sim 6 \times 10^5 M_\odot$. The obvious baryonic candidates for this additional mass would be low-mass main-sequence stars, or heavy stellar remnants such as white dwarfs and neutron stars. Both varieties of heavy remnants are known to populate globular clusters (see Hut et al. 1992) and the contribution of white dwarfs to the overall mass budget is thought to increase as clusters evaporate (e.g., Vesperini & Heggie 1997). In this case, the low-luminosity of Palomar 13 might be interpreted as indirect evidence for an advanced stage of dynamical evolution. However, if one accepts the view that Palomar 13 is in dynamical equilibrium (see above),
then this would require \(\sim 95\% \) of the total mass to reside in heavy remnants. This percentage is far higher than that found in nearby, well-studied clusters: e.g., Meylan (1987; 1989) finds the percentage of heavy remnants (mainly white dwarfs) in 47 Tucane and \(\omega \) Centauri to be 20 \(\pm \) 5\% and 25 \(\pm \) 15\%, respectively (though the dynamical mass found here for Palomar 13 is only half that contained in heavy remnants in 47 Tuc, by virtue of the latter’s much larger mass). Unfortunately, a direct search for white dwarfs in Palomar 13 would be extremely challenging since even the brightest such objects are expected to have \(V \gtrsim 27 \) mag at this distance (Richer et al. 1997).9

On the other hand, a determination of the main-sequence luminosity function down to this level (corresponding to \(M_V = 10 \) mag and \(\Upsilon_V \approx 25 \); Silvestri et al. 1998) is well within the reach of HST, and could put interesting constraints on the mass contained in low-mass, main-sequence stars. However, as shown in Figure 11, the available data suggest that the main-sequence luminosity function of Palomar 13 is adequately described by a rather flat mass function, with exponent \(x \sim 0 \) over the range \(21.5 \leq V \leq 24 \) (equivalent to \(0.75 \leq M/M_\odot \leq 0.61 \); Bergbusch & VandenBerg 1992). If the initial mass function of Palomar 13 had a more nearly universal form (for instance, near the “Salpeter value” of \(x = 1.35 \); Salpeter 1955), then the flat mass function we find may be evidence for advanced dynamical evolution and the preferential evaporation of low-mass stars. In short, the available data provide no reason to believe that the mass function of Palomar 13 is abnormal in any way, but firm conclusions must await deeper observations.

5.4. Non-Baryonic Dark Matter?

In §5.2, it was found that, for an assumed mass-to-light ratio of \(\Upsilon_V = 2 \) (i.e., a value appropriate for typical globular clusters), the tidal radius of Palomar 13 predicted by equation (9) was in good agreement with the tidal radius of the low-concentration \((c \sim 0.7) \) King-Michie model adopted by Siegel et al. (2001). As discussed in §3.5 and §4, it is possible to obtain an excellent match to the observed surface brightness and surface density profiles using a King-Michie model which has \(c = 2.0 \pm 0.15 \). In this case, the tidal radius of Palomar 13 is \(r_t \sim 180 \) pc (with a formal uncertainty of \(\pm 23\% \) based on our Monte-Carlo simulations). From equation (9), we see that a tidal radius of this size suggests a mass of \(M \sim 2 \times 10^6 M_\odot \) — i.e., considerably larger than our best-estimate for the dynamical mass of Palomar 13 (assuming virial equilibrium) yet still far in excess of the expected mass. The actual uncertainties in the fitted tidal radii are difficult to gauge, but are unlikely to be smaller than \(\sim 50\% \), which translates directly into a nearly a factor of two in mass. Thus, we conclude that the tidal radii inferred from the surface brightness and surface density profiles of Palomar 13 are: (1) highly dependent on how one chooses to model the profile; and (2) consistent with either the tidal disruption of an otherwise normal globular cluster, or the presence of substantial dark matter component in this object.

In light of these results, it is natural to ask if the high velocity dispersion of Palomar 13 might also be the signature of a non-baryonic dark matter halo, similar to those belonging to Local Group dSph galaxies (Aaronson 1983; Mateo 1998; c.f., Klessen & Kroupa 1998). This possibility is particularly topical given recent claims from CDM simulations that the halos of large galaxies may contain large numbers of low-mass, “dark satellites” (e.g., Hirashita et al. 1999; Klypin et al. 1999; Bullock et al. 2000).

To examine this possibility, we consider a simple two-component model. First, we take the mass density profile of the luminous stellar component to be given by a Dehnen (1993) model,

\[
\rho_{s,m}(r) = \frac{[(3-\gamma)/4](\Upsilon \rho_0^* a^3/r^3)(r/a)\gamma(1+r/a)^{-\gamma}}{\gamma-1}
\]

where \(\rho_0^* \) is the central luminosity density of this component, \(a \) is its scale radius, and \(\Upsilon \) is its mass-to-light ratio. By contrast, the dark halo is assumed to have the form proposed by Navarro, Frenk & White (1997):

\[
\rho_d(r) = \rho_0^d(r/r_s)^{-1}(1 + r/r_s)^{-2}
\]

where \(r_s \) is the scale radius of the dark halo, and \(\rho_0^d \) is the central dark matter density. Once these density distributions are specified, the velocity dispersion profile follows from the the Jeans equation,

\[
\frac{d}{dr}[\rho_s(r)\sigma^2(r)] + \frac{2\beta\rho_s(r)\sigma^2(r)}{r} = -\frac{GM(r)}{r^2} - \rho_s(r).
\]

where \(\sigma(r) \) is the radial component of the velocity dispersion and \(M(r) \) is the combined masses of the luminous and dark components. For our purposes, we assume that the velocity dispersion tensor is isotropic (i.e., \(\beta = 0 \)). This theoretical velocity dispersion profile is then projected onto the plane of the sky, and compared directly to the observed velocity dispersion.

Before doing so, we require estimates of \(\gamma \) and \(a \) from the surface brightness profile. The long-dashed curve in Figure 7 shows the best-fit Dehnen model, with \(\gamma = 1.46 \pm 0.06 \) and \(a = 135 \pm 9 \)” (15.9 \pm 1.0 pc), overlaid on the observed surface brightness profile. For an assumed mass-to-light ratio of \(\Upsilon_V = 2 \), the total mass associated with this stellar component is \(M = 7 \times 10^5 M_\odot \). We also assume that, in projection, the dark matter matches that of the surface brightness profile, giving \(r_s = 24 \pm 1 \)” (2.8 \pm 0.1 pc). This NFW model — fitted to the observed surface brightness profile — is shown by the solid curve in Figure 7. The central mass density of this model is then left as a free parameter which is adjusted until a reasonable match to the observed velocity dispersion is achieved. The corresponding velocity dispersion profile for a central mass density of \(\rho_0^d = 80 \pm 31 M_\odot \) pc\(^{-3} \) is shown as the solid curve in Figure 8 (i.e., curve 3). This curve provides an adequate (though by no means unique) description of the observed velocity dispersion profile including the possible maximum at \(R \sim 1 \). Although the mass of an NFW profile diverges as \(r \to \infty \), we note that over the range of our radial velocity and surface brightness observations, the implied mass-to-light ratio of this two component model is \(\Upsilon_V = 19^{+8}_{-7} \) — about half that found using a King-Michie model, but

9Catalogs of pulsars and X-ray sources associated with globular clusters list no such objects in Palomar 13 (Kulkarni & Anderson 1996; Verbunt 2001).
still well above that expected for a normal stellar population.

How does the central density of this putative dark halo compare to those found for the dSph satellites of the Milky Way? Table 1 of Mateo (1998) lists structural parameters for nine Galactic dSph galaxies having measured velocity dispersions: the central densities of these galaxies span the range \(0.03 \leq \rho^0 \leq 0.6\ M_\odot \text{pc}^{-3}\), with a mean value of \(\langle \rho^0 \rangle = 0.26 \pm 0.07\ M_\odot \text{pc}^{-3}\). Strictly speaking, these values refer to the combined densities of the dark and luminous components, \(\rho^0 = \rho^0_\text{d} + \rho^0_\text{l,m}\). However, in view of the low stellar densities of these galaxies (e.g., \(\rho^0_\text{l,m} \sim 0.01\ M_\odot \text{pc}^{-3}\)), \(\rho^0 \sim \rho^0_\text{d}\) to good approximation. Thus, the dark matter density needed to explain the measured velocity dispersion of Palomar 13 exceeds that of typical dSph galaxies by more than two orders of magnitude.

Following Kormendy (1990), we show in Figures 12 and 13 the scaling relations between central density, velocity dispersion, \(\sigma\), absolute blue magnitude, \(M_B\), core radius, \(r_c\), and central B-band surface brightness, \(\mu_B\), for a sample of Local Group dSph galaxies (Mateo 1998), dwarf irregular and spiral galaxies (Côté, Carignan & Freeman 2000 and references therein) and Galactic globular clusters (Pryor & Meylan 1993; Harris 1996). Note that the densities plotted here refer to those of the dark halos, with the exception of the globular clusters; for these objects, the densities are those calculated directly from the measured velocity dispersions. For Palomar 13, which is indicated by the large filled circle, we take the structural parameters for its putative dark matter halo to be those given by the best-fit NFW model. As these figures demonstrate, the central dark matter density in Palomar 13 is indeed much larger than those found for dwarf galaxies. On the other hand, it is also consistent with that expected from an extrapolation of galactic scaling relations to low luminosities. Indeed, it is remarkable that Palomar 13 falls so near the extrapolations of the tight scaling relations for dwarf galaxies, although this agreement cannot be taken as unambiguous evidence for a common origin since Palomar 13 also falls near the edges of the more heterogeneous distributions for Galactic globular clusters (and, in the scaling relations involving \(\mu_B\), its location may be more consistent with the globular cluster distributions). Thus, the evidence from the observed scaling relations concerning the proper classification of Palomar 13 as a bone fide globular cluster or an extreme dark-matter dwarf galaxy, is ambiguous. In any event, we note that a naive extrapolation of the dwarf galaxy scaling relations to globular cluster scales predicts central densities for dark matter halos in these objects that are sufficiently low (i.e., \(1 \lesssim \rho^0_\text{d} \lesssim 100\ M_\odot \text{pc}^{-3}\)) to make their detection extremely challenging in all but the faintest clusters. In other words, for the vast majority of globular clusters, the inferred dark matter densities would fall well below the baryonic densities.

Obviously, it would be of considerable interest to measure velocity dispersions for additional faint, low surface brightness clusters. An especially interesting target is AM 4, a cluster which shares many of the characteristics of Palomar 13: i.e., low luminosity \((L_V \sim 400\ L_{V,\odot})\), low surface brightness \((\mu_{V,\odot} \sim 24.75\text{mag arcsec}^{-2})\), and low metallicity \(([\text{Fe}/H] \sim -2.0\text{dex})\). Like Palomar 13, it is also occupies a relatively isolated location in the Galactic halo, with \(R_G = 25.5\text{kpc}\). The central velocity dispersion predicted by equation (7) for a “normal” globular cluster of this surface brightness would be \(\sigma_{\rho,0} \lesssim 0.3\text{ km s}^{-1}\), and it would be interesting to see if this expectation is borne out by radial velocity measurements.

We consider three final scaling relations for dwarf galaxies in Figure 14. In the upper panel of this figure, metallicity is plotted against absolute magnitude for dE/dSph galaxies, along with the best-fit linear relation from Côté et al. (2000). Note that the relationship between metallicity and luminosity constitutes a key difference between dwarf galaxies and globular clusters: i.e., galaxies spanning a range of \(\sim 10^4\) in luminosity follow a tight relation between metallicity and luminosity (e.g., Brodie & Huchra 1991; Caldwell et al. 1992), whereas globular clusters obey no such correlation. While it is by no means clear that a simple extrapolation of this linear relation to \(M_V \sim -4\) is justifiable, Palomar 13 is nevertheless considerably more metal-rich than might naively be expected for a dwarf of this luminosity. Furthermore, its CMD shows no evidence for an abundance spread, unlike Local Group dSph galaxies which often show internal dispersions in metallicity of \(\sim 0.35\text{ dex}\) (e.g., Côté et al. 2000; Shetrone, Côté & Sargent 2001).

In the middle panel of Figure 14, mass-to-light ratio is plotted against absolute magnitude for all Local Group dE/dSph galaxies having measured velocity dispersions. The dashed curve shows the relation expected for dwarf consisting of luminous stellar components with \(\Upsilon_V = 2\) that are embedded in dark matter halos of mass \(M = 2 \times 10^7\ M_\odot\), as proposed by Mateo et al. (1993). The mass-to-light ratio predicted for Palomar 13 by this relation would be \(\Upsilon_V \sim 7000\), making it an extreme outlier. On the other hand, Palomar 13 does seem to follow the correlation between mass-to-light ratio, metallicity and central surface brightness for Local Group dwarfs, shown in the lower panel of Figure 14 (Prada & Burkert 2001). We can only conclude that the evidence regarding a possible connection between Palomar 13 and dark-matter-dominated dwarf galaxies is ambiguous and that, in light of the complexity of gas cooling, star formation and feedback in low-mass systems (see, e.g., Figure 8 of Mateo 1998), a definitive conclusion is not possible at the present time.

5.5. Modified Newtonian Dynamics?

A much different interpretation of the large velocity dispersion of dSph galaxies has been proposed by Milgrom (1983a), who suggested that at low accelerations, \(a \ll a_0\), Newtonian gravity should be replaced by a repulsive term. If this modified theory of Newtonian dynamics (i.e., MOND) is correct, then there would be no need to invoke dark matter as an explanation for the high velocity dispersions of dwarf galaxies (Milgrom 1983b; 1995). But if MOND is to be a viable alternative to dark matter, then it must apply to all systems in which the acceleration falls below the characteristic MOND value, \(a_0 \simeq 1.2 \times 10^{-8}\text{ cm s}^{-2}\) — value chosen to match the rotation curves of low-surface brightness galaxies (Begeman, Broeils & Sanders 1991; McGaugh & de Blok 1998). Since this condition is met for Palomar 13, we now examine its internal dynamics within the MOND framework.

There are two relevant accelerations for Palomar 13: the
acceleration arising from the internal mass distribution, and an external component due to the Milky Way. We approximate the internal acceleration as \(a_{\text{int}} = GM(r)/r^2 \), where \(M(r) \) is mass enclosed with a radius, \(r \), for the best-fit King model shown in Figure 7. For an assumed mass-to-light ratio of \(\Upsilon_V = 2 \), the internal acceleration reaches a maximum value of \(a_{\text{int}} \simeq 1 \times 10^{-9} \) cm s\(^{-1}\) at \(r \simeq r_c \). The external acceleration may be approximated as \(a_{\text{ext}} = \Theta_\ast^2/R_G \), or \(a_{\text{ext}} = 6 \times 10^{-9} \) cm s\(^{-1}\) for \(\Theta_\ast = 220 \) km s\(^{-1}\) and \(R_G = 25.3 \) kpc. Thus, according to MOND, Palomar 13 is in the “quasi-Newtonian weak-field limit” since \(a_{\text{int}} < a_{\text{ext}} < a_0 \). In this regime, the Newtonian mass is related to the MOND mass by a factor, \(\mu \), which falls in the range \(1 \lessapprox \mu \lessapprox a_0/a_{\text{ext}} \) (Gerhard & Spergel 1992). From Table 4, the best-fit King-Michie model has \(\Upsilon_V \simeq 40^{+24}_{-3} \) in solar units. Thus, the mass-to-light ratio in MOND would be reduced by — at most — a factor of \(\mu \). Apparently, the high mass-to-light ratio of Palomar 13 persists (at the 2\(\sigma \) level) even within the MOND framework. We conclude that this explanation appears less appealing than those involving tidal disruption or dark matter.

6. SUMMARY AND CONCLUSIONS

An imaging and spectroscopic survey of globular clusters in the outer halo of the Milky Way has shown Palomar 13 to exhibit several puzzling features.

From an abundance analysis of our HIRES spectra for a single RGB star and isochrone fitting to the CMD, we estimate the metallicity of Palomar 13 to be \([Fe/H] = -1.9 \pm 0.2\) dex. We find a true distance modulus of \((m - M)_0 = 16.93 \pm 0.1 \) mag and a distance of \(R_S = 24.3^{+1.2}_{-1.1} \) kpc, placing Palomar 13 squarely in the outer halo. With \(M_V = -3.8 \) mag, this is the lowest luminosity object in our survey. The sparsely populated red giant and horizontal branches preclude a precise age determination, but a 14 Gyr isochrone is found to provide a reasonable match to the observed fiducial sequences. Thus, in terms of its stellar populations, Palomar 13 appears typical of globular clusters in the outer halo.

However, from a sample of 21 probable members with radial velocity measurements from HIRES, we find the systematic velocity and intrinsic velocity dispersion of Palomar 13 to be \(\sigma_v = 24.1 \pm 0.5 \) km s\(^{-1}\) and \(\sigma_p = 2.2 \pm 0.4 \) km s\(^{-1}\), respectively. This velocity dispersion is roughly four times higher than that expected on the basis of the observed luminosity and concentration. Taken at face value, this dispersion suggests a mass-to-light ratio of \(\Upsilon_V = 40^{+24}_{-17} \), with the exact value depending on the details of the modeling. This mass-to-light ratio is far higher than those found for globular clusters, but is comparable to those of Galactic dSph galaxies. The surface density profile is also found to be anomalous among Galactic globular clusters, in that it shows a significant number of apparent member stars beyond the tidal radius of a low concentration King-Michie model (i.e., \(c \sim 0.7 \), as has usually been claimed for Palomar 13). On the other hand, an excellent fit to the surface brightness profile over all radii is provided by a King-Michie model with \(c \sim 2 \), as well as by models of the type suggested by Dehnen (1993) and Navarro et al. (1997).

Based on the measured velocity dispersion and surface density profile, two possibilities present themselves: (1) either Palomar 13 has recently undergone catastrophic heating and mass loss, as might be expected on the basis of its orbital properties; or (2) its spatial extent, central concentration, and mass have been greatly underestimated in previous studies. Other factors, such as a large fraction of spectroscopic binary stars or the presence of a large number of heavy remnants, may play contribute to Palomar 13’s unusual properties but are, on their own, unlikely to provide a complete explanation of the observed structural and kinematic properties. Additional observations — particularly deep imaging with HST and ground-based mosaic cameras, and radial velocity measurements for an expanded sample of stars at large radii — should help discriminate between the various possibilities. In any event, it is clear that Palomar 13 merits further study, as it offers new insights into the structure and formation of the Galactic halo.

We thank Tad Pryor and an anonymous referee for numerous helpful comments. We also thank Gilles Bergond for his assistance with the CFHT observations, and Dean McLaughlin for providing some of the software used in the analysis. PC gratefully acknowledges support provided by the Sherman M. Fairchild Foundation during the initial stages of this work. SJG acknowledges partial support from the Bressler Foundation. This work was based in part on observations obtained at the W.M. Keck Observatory, which is operated jointly by the California Institute of Technology and the University of California. We are grateful to the W.M. Keck Foundation for their vision and generosity.

REFERENCES

Bahcall, J.N. 1986, APASSA, 24, 577
Ciatti, F., Rosino L., & Sassi, M., 1965, Kl. Veroff Remise - Sternwarte Bamberg, Bd. 4, No. 40, 228
Cuillandre, J.-C., Luppino, G., Starr, B., & Isani, S. 2000, SPIE, 4008, 1010
<table>
<thead>
<tr>
<th>Telescope</th>
<th>Date</th>
<th>Spectrograph</th>
<th>Imager</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keck II</td>
<td>10/09/1999</td>
<td>...</td>
<td>LRIS + BVI filters</td>
</tr>
<tr>
<td>CFHT</td>
<td>14/07/1999</td>
<td>...</td>
<td>CFH12K + VR filters</td>
</tr>
<tr>
<td>Keck I</td>
<td>21-22/08/1998</td>
<td>HIRES + C1 Decker</td>
<td>...</td>
</tr>
<tr>
<td>Keck I</td>
<td>15-16/10/1998</td>
<td>HIRES + C5 Decker</td>
<td>...</td>
</tr>
<tr>
<td>Keck I</td>
<td>15-16/07/1999</td>
<td>HIRES + C1 Decker</td>
<td>...</td>
</tr>
<tr>
<td>Keck I</td>
<td>11/08/1999</td>
<td>HIRES + C1 Decker</td>
<td>...</td>
</tr>
</tbody>
</table>
Table 2
RADIAL VELOCITIES FOR CANDIDATE RED GIANTS IN PALOMAR 13

<table>
<thead>
<tr>
<th>ID</th>
<th>R (′)</th>
<th>V (mag)</th>
<th>$(B - V)$ (mag)</th>
<th>T (sec)</th>
<th>HJD 2450000+</th>
<th>R_{TP} (km s$^{-1}$)</th>
<th>v_r (km s$^{-1}$)</th>
<th>(v_r) (km s$^{-1}$)</th>
<th>P(μ) (%)</th>
<th>Member?</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORS-13</td>
<td>113</td>
<td>16.55</td>
<td>0.89</td>
<td>180</td>
<td>1046.9063</td>
<td>17.61</td>
<td>-38.38±0.48</td>
<td>-38.90±0.29</td>
<td>0</td>
<td>N</td>
</tr>
<tr>
<td>ORS-118</td>
<td>102</td>
<td>17.00</td>
<td>0.93</td>
<td>270</td>
<td>1046.9147</td>
<td>13.04</td>
<td>25.43±0.64</td>
<td>24.92±0.21</td>
<td>0</td>
<td>Y</td>
</tr>
<tr>
<td>ORS-6</td>
<td>125</td>
<td>17.03</td>
<td>1.10</td>
<td>240</td>
<td>1046.9104</td>
<td>18.00</td>
<td>0.68±0.47</td>
<td>0.68±0.47</td>
<td>0</td>
<td>N</td>
</tr>
<tr>
<td>ORS-103</td>
<td>134</td>
<td>17.04</td>
<td>1.00</td>
<td>360</td>
<td>1046.9196</td>
<td>24.48</td>
<td>-56.72±0.35</td>
<td>-56.72±0.35</td>
<td>0</td>
<td>N</td>
</tr>
<tr>
<td>ORS-110</td>
<td>100</td>
<td>17.21</td>
<td>1.03</td>
<td>600</td>
<td>1046.9266</td>
<td>23.96</td>
<td>5.40±0.36</td>
<td>5.40±0.36</td>
<td>0</td>
<td>N</td>
</tr>
<tr>
<td>ORS-72</td>
<td>60</td>
<td>17.64</td>
<td>0.85</td>
<td>240</td>
<td>1046.9350</td>
<td>10.22</td>
<td>28.64±0.80</td>
<td>28.79±0.27</td>
<td>88</td>
<td>Y</td>
</tr>
<tr>
<td>ORS-31</td>
<td>95</td>
<td>17.76</td>
<td>0.83</td>
<td>750</td>
<td>1046.9456</td>
<td>10.70</td>
<td>26.31±0.77</td>
<td>25.09±0.35</td>
<td>79</td>
<td>Y</td>
</tr>
<tr>
<td>ORS-91</td>
<td>27</td>
<td>17.81</td>
<td>0.67</td>
<td>900</td>
<td>1047.9844</td>
<td>22.02</td>
<td>24.78±0.39</td>
<td>24.59±0.60</td>
<td>99</td>
<td>Y</td>
</tr>
<tr>
<td>V2</td>
<td>0</td>
<td>17.91</td>
<td>0.49</td>
<td>1200</td>
<td>1035.1025</td>
<td>9.32</td>
<td>25.39±0.87</td>
<td>25.39±0.87</td>
<td>...</td>
<td>Y</td>
</tr>
<tr>
<td>ORS-32</td>
<td>62</td>
<td>18.02</td>
<td>0.89</td>
<td>900</td>
<td>1046.9664</td>
<td>11.56</td>
<td>20.46±0.72</td>
<td>19.68±0.26</td>
<td>35</td>
<td>Y</td>
</tr>
<tr>
<td>ORS-41</td>
<td>64</td>
<td>18.59</td>
<td>0.76</td>
<td>1200</td>
<td>1046.9987</td>
<td>8.72</td>
<td>18.91±0.93</td>
<td>19.43±0.54</td>
<td>0</td>
<td>N</td>
</tr>
<tr>
<td>ORS-1</td>
<td>151</td>
<td>18.59</td>
<td>0.82</td>
<td>1200</td>
<td>1046.9799</td>
<td>13.35</td>
<td>-37.48±0.63</td>
<td>-37.48±0.63</td>
<td>0</td>
<td>N</td>
</tr>
<tr>
<td>ORS-101</td>
<td>39</td>
<td>18.65</td>
<td>0.94</td>
<td>1200</td>
<td>1047.0141</td>
<td>18.88</td>
<td>-17.39±0.45</td>
<td>-17.39±0.45</td>
<td>0</td>
<td>N</td>
</tr>
<tr>
<td>ORS-14</td>
<td>92</td>
<td>18.76</td>
<td>0.74</td>
<td>1500</td>
<td>1047.0337</td>
<td>17.63</td>
<td>-55.31±0.48</td>
<td>-55.31±0.48</td>
<td>0</td>
<td>N</td>
</tr>
<tr>
<td>ORS-86</td>
<td>14</td>
<td>18.81</td>
<td>0.77</td>
<td>1800</td>
<td>1047.8735</td>
<td>10.01</td>
<td>24.47±0.82</td>
<td>24.47±0.82</td>
<td>99</td>
<td>Y</td>
</tr>
<tr>
<td>ORS-36</td>
<td>41</td>
<td>18.98</td>
<td>0.75</td>
<td>1800</td>
<td>1047.0760</td>
<td>9.13</td>
<td>25.29±0.89</td>
<td>25.29±0.89</td>
<td>93</td>
<td>Y</td>
</tr>
<tr>
<td>ORS-63</td>
<td>6</td>
<td>19.02</td>
<td>0.76</td>
<td>1800</td>
<td>1047.0530</td>
<td>9.12</td>
<td>26.09±0.89</td>
<td>25.09±0.42</td>
<td>62</td>
<td>Y</td>
</tr>
<tr>
<td>ORS-87</td>
<td>16</td>
<td>19.05</td>
<td>0.72</td>
<td>1800</td>
<td>1047.9021</td>
<td>9.06</td>
<td>26.55±0.90</td>
<td>26.55±0.90</td>
<td>94</td>
<td>Y</td>
</tr>
<tr>
<td>ORS-111</td>
<td>52</td>
<td>19.36</td>
<td>0.75</td>
<td>600</td>
<td>1011.7306</td>
<td>3.86</td>
<td>23.19±1.86</td>
<td>23.19±1.86</td>
<td>99</td>
<td>Y</td>
</tr>
<tr>
<td>ORS-23</td>
<td>77</td>
<td>19.49</td>
<td>1.50</td>
<td>2400</td>
<td>1047.1068</td>
<td>10.01</td>
<td>18.57±0.82</td>
<td>18.57±0.82</td>
<td>0</td>
<td>N</td>
</tr>
<tr>
<td>ORS-18</td>
<td>112</td>
<td>19.62</td>
<td>0.73</td>
<td>1000</td>
<td>1102.7253</td>
<td>4.36</td>
<td>25.16±1.68</td>
<td>25.16±1.68</td>
<td>...</td>
<td>Y</td>
</tr>
<tr>
<td>ORS-38</td>
<td>40</td>
<td>19.65</td>
<td>0.74</td>
<td>1000</td>
<td>1101.7489</td>
<td>4.49</td>
<td>19.52±1.64</td>
<td>21.64±0.72</td>
<td>88</td>
<td>Y</td>
</tr>
<tr>
<td>ORS-39</td>
<td>18</td>
<td>19.70</td>
<td>0.72</td>
<td>2100</td>
<td>1375.0528</td>
<td>11.70</td>
<td>25.45±0.71</td>
<td>25.45±0.71</td>
<td>91</td>
<td>Y</td>
</tr>
<tr>
<td>ORS-78</td>
<td>19</td>
<td>19.73</td>
<td>0.72</td>
<td>1000</td>
<td>1102.7404</td>
<td>5.26</td>
<td>22.34±1.44</td>
<td>22.34±1.44</td>
<td>78</td>
<td>Y</td>
</tr>
<tr>
<td>ORS-50</td>
<td>22</td>
<td>19.76</td>
<td>0.72</td>
<td>2700</td>
<td>1376.0226</td>
<td>9.66</td>
<td>24.15±0.85</td>
<td>24.15±0.85</td>
<td>98</td>
<td>Y</td>
</tr>
<tr>
<td>ORS-96</td>
<td>32</td>
<td>19.80</td>
<td>0.71</td>
<td>1000</td>
<td>1102.7542</td>
<td>6.52</td>
<td>25.38±1.20</td>
<td>25.38±1.20</td>
<td>99</td>
<td>Y</td>
</tr>
<tr>
<td>ORS-5</td>
<td>117</td>
<td>19.86</td>
<td>0.72</td>
<td>2700</td>
<td>1375.9867</td>
<td>9.99</td>
<td>20.95±0.82</td>
<td>20.95±0.82</td>
<td>98</td>
<td>Y</td>
</tr>
<tr>
<td>ORS-88</td>
<td>37</td>
<td>20.11</td>
<td>0.71</td>
<td>2100</td>
<td>1376.0541</td>
<td>7.34</td>
<td>24.61±1.08</td>
<td>24.61±1.08</td>
<td>78</td>
<td>Y</td>
</tr>
</tbody>
</table>
Table 3

Observed and Derived Parameters for Palomar 13

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Units</th>
<th>Reference*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right Ascension</td>
<td>(\alpha) (J2000)</td>
<td>23:06:44.8 h:m:s</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Declination</td>
<td>(\delta) (J2000)</td>
<td>+12:46:18 (\circ)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Apparent Distance Modulus ((m - M)_V)</td>
<td></td>
<td>17.27±0.1 mag</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>True Distance Modulus ((m - M)_0)</td>
<td></td>
<td>16.93±0.1 mag</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Reddening</td>
<td>(E(B - V))</td>
<td>0.11±0.02 mag</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Galactic Coordinates ((l,b))</td>
<td></td>
<td>(87.1, -42.7) deg</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Distance</td>
<td>(R_S)</td>
<td>24.3(^{+1.2}_{-1.1}) kpc</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Reddening</td>
<td>(E(B - V))</td>
<td>-1.9±0.2 dex</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Perigalacticon distance (R_p)</td>
<td></td>
<td>11.2 kpc</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Apogalacticon distance (R_a)</td>
<td></td>
<td>80.2 kpc</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Orbital Period</td>
<td>(P)</td>
<td>1.1 Gyr</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Eccentricity</td>
<td>(e)</td>
<td>0.76</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Maximum Likelihood Mean Velocity</td>
<td>(\langle v_r \rangle_s)</td>
<td>24.1±0.5 km (s^{-1})</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Maximum Likelihood Dispersion</td>
<td>(\sigma_p)</td>
<td>2.2±0.4 km (s^{-1})</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>King-Michie Model of Siegel et al. (2001)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core Radius</td>
<td>(r_c)</td>
<td>39 arcsec</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Tidal Radius</td>
<td>(r_t)</td>
<td>4.6 pc</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Central Projected Luminosity Density</td>
<td>(\mu_{V,0})</td>
<td>23.39 mag arcsec(^{-2})</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Concentration</td>
<td>(c)</td>
<td>0.7</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Integrated Luminosity</td>
<td>(L_V)</td>
<td>(1.2 \times 10^3) (L_{V,\odot})</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Best-fit King-Michie Model</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core Radius</td>
<td>(r_c)</td>
<td>(14\pm2) arcsec</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Tidal Radius</td>
<td>(r_t)</td>
<td>(1.70\pm0.24) pc</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Central Projected Luminosity Density</td>
<td>(\mu_{V,0})</td>
<td>(22.54^{+0.20}_{-0.17}) mag arcsec(^{-2})</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Concentration</td>
<td>(c)</td>
<td>(2.0\pm0.15)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Integrated Luminosity</td>
<td>(L_V)</td>
<td>((2.8 \pm 0.4) \times 10^3) (L_{V,\odot})</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Mass-to-Light Ratio</td>
<td>(Y_V)</td>
<td>(40^{+24}{-17}) (M{\odot}/L_{V,\odot})</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Dehnen Model</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power-Law Index</td>
<td>(\gamma)</td>
<td>(1.46\pm0.06)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Scale Radius</td>
<td>(a)</td>
<td>(135\pm9) arcsec</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Integrated Luminosity</td>
<td>(L_V)</td>
<td>((3.5 \pm 0.1) \times 10^3) (L_{V,\odot})</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>NFW Model</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scale Radius</td>
<td>(r_s)</td>
<td>(24\pm1) arcsec</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Central Luminosity Density</td>
<td>(\rho_0^V)</td>
<td>(4.3\pm0.4) (L_{V,\odot}) pc(^{-3})</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Central Mass Density</td>
<td>(\rho_d)</td>
<td>(80\pm31) (M_{\odot}) pc(^{-3})</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Central Mass-to-Light Ratio</td>
<td>(Y_V)</td>
<td>(19^{+8}{-1}) (M{\odot}/L_{V,\odot})</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

*References for Table 3: (1) Siegel et al. (2001); (2) This paper; (3) Schlegel, Finkbeiner & Davis (1998)
Fig. 1.— V-band image of Palomar 13 taken with the Low-Resolution Imaging Spectrometer on the Keck II telescope. This image measures 5.8×7.3. The solid circle shows the core radius ($r_c = 14''$) of the best-fit King-Michie model. The dashed circle denotes the “break” radius where the possible excess in the background-subtracted surface density profile begins: $R_b \simeq 1'$ (see §5.1). The shortest of the three arrows shows the direction of the absolute proper motion from Siegel et al. (2001). The intermediate arrow points in the direction perpendicular to the Galactic plane, while the long arrow points in the direction of the Galactic center. Stars judged to be probable cluster members based on their radial velocities and proper motions are circled. The size of each circle is proportional to the absolute value of the difference in the measured radial velocity from the systemic velocity of the cluster. Red and blue circles denote stars with positive and negative velocity residuals, respectively. Non-members are indicated by open squares.
Fig. 2.— (Upper Panels) Difference in V magnitudes for stars in common between our LRIS photometric study and those of Ortolani, Rosino & Sandage (1985; O85), Borissova, Markov & Spassova (1997; B97) and Siegel et al. (2001; S01). (Lower Panels) Difference in $(B-V)$ color for stars in common between our LRIS photometric study and those of Ortolani, Rosino & Sandage (1985; O85), Borissova, Markov & Spassova (1997; B97) and Siegel et al. (2001; S01).
Fig. 3.— Proper motion membership probability from Siegel et al. (2001), plotted against mean radial velocity for candidate Palomar 13 stars. The dotted curves show approximate velocity distributions along this line of sight for disk and halo field stars (see text for details). The dashed vertical line indicates the systemic velocity of Palomar 13. The error bar in the upper left corner shows the typical uncertainty in the measured radial velocity. Open squares show non-members, while probable cluster members are indicated by the filled circles. Note that this latter sample includes one star (ORS-118) which has $P(\mu) = 0\%$ according to Siegel et al. (2001). We argue that this star is in fact a cluster member since it: (1) has a radial velocity which is indistinguishable from cluster systemic velocity; (2) is located precisely on the red giant branch in the cluster color-magnitude diagram; and (3) has a metallicity of $[\text{Fe/H}] = -1.98 \pm 0.31$ dex measured from our HIRES spectra.
Fig. 4.— (Left Panel) V, $(B - V)$ color magnitude diagram for Palomar 13 based on our LRIS images. A total of 840 objects are plotted in this figure. Open circles indicate probable cluster members, determined from our HIRES radial velocities. The size of each circle is proportional to the absolute value of velocity residual with respect to the cluster’s systemic velocity. Radial velocity non-member stars are indicated by the filled squares. Known RR Lyrae variables are indicated by the stars; the circled variable is V2. The solid curve shows an isochrone from Bergbusch & VandenBerg (1992) having an age of $T = 14$ Gyr and a metallicity $[\text{Fe/H}] = -1.78$, which has been shifted by $E(B-V) = 0.11$ mag (Schlegel et al. 1998) and $(m-M)_V = 17.27$ mag. (Right Panel) V, $(V - I)$ color-magnitude diagram for Palomar 13 derived from our LRIS images. The symbols are the same as in the previous panel.
Fig. 5.— Surface density profile for Palomar 13 based on our Keck and CFHT photometry (squares and circles, respectively). Open symbols show the surface density profile before background subtraction; filled symbols show the profile found after subtracting backgrounds of $\Sigma_b = 0.65$ and 0.62 stars per arcmin$^{-2}$, respectively, for the Keck and CFHT observations. For comparison, the surface density profile of Siegel et al. (2001) is illustrated by the open triangles, after scaling their counts upward by a factor of $(629/119) \approx 5.28$ (i.e., the ratio of the number of stars used to derive the respective profiles). The dotted curve shows a King model with concentration parameter $c = 0.7$ and core radius $r_c = 39''$ suggested by Siegel et al. (2001). The dashed curve shows the formal best-fit King-Michie model. The three dashed lines beginning at $R \approx 1'$ indicate profiles of the form predicted by Johnston et al (2001) for extra-tidal stars: $\Sigma \propto R^{-\gamma}$ with $\gamma = 0.5$, 1.5 and 2.5.
Fig. 6.— Instrumental V, $(V - r)$ color magnitude diagrams based on our CFHT images in three radial regimes. The left panel shows all objects within the canonical tidal radius, $r_t = 188''$, reported by Siegel et al. (2001). The dotted rectangles shows the magnitude and color limits used to reject probable non-members. Circed points indicate probable radial velocity members for which we have reliable CFHT photometry. All objects located beyond this radius are plotted in the middle panel, where the dashed curve shows the Palomar 13 fiducial sequence from the previous panel. Objects at radii greater than twice the canonical tidal radius are plotted in the right panel.
Fig. 7.— V-band surface brightness profile for Palomar 13. Pentagons and squares represent surface photometry and star counts based on our Keck imaging, respectively. Surface photometry and star counts using our CFHT imaging are indicated by the triangles and circles. The King-Michie model which best fits this surface brightness profile is shown by the dashed curve. By contrast, the King-Michie model with structural parameters found by Siegel et al. (2001) from their surface density profile (see Figure 5) is indicated by dotted curve, shifted in the vertical direction. The solid curve shows the NFW model which best fits the surface density profile, while the long-dashed curve shows the best-fit Dehnen model. The dotted curves at the cluster center shows typical stellar profiles on our Keck and CFHT images, scaled to the luminosity of V2 — the bright variable which defines the cluster center.
Fig. 8.— (Upper Panel) Heliocentric radial velocity for probable cluster members plotted against distance from the cluster center (filled circles). The dashed line indicated the cluster’s systemic velocity. The arrows denote the approximate “break” radius, $R_b \approx 1'$, where the possible excess in the cluster’s surface density profile begins. (Lower Panel) Velocity dispersion profile for Palomar 13. The open circle shows the intrinsic velocity dispersion for the entire sample of stars, plotted at the mean radius of the sample. The two filled circles show the intrinsic velocity dispersion which is found if the sample is divided into two radial bins containing 11 and 10 stars each. The different curves (labeled 1-4) indicate various model fits to the data; a detailed description of each model is presented in the text.
Fig. 9.— (Upper Panel) Histogram of position angles for stars in our photometric database which are located in the radial range $1' \leq R \leq 2'88$. The dashed line shows the mean number of stars per azimuthal bin, while the dotted curve shows the best-fit sinusoid: $N \propto (4.5 \pm 1.7) \sin[2\Theta + (60^\circ \pm 11^\circ)]$. This curve has density maxima at $\Theta_p = 15^\circ$ and 195°. (Lower Panel) Mean stellar surface density in the range $1' \leq R \leq 2'88$ for each of four 90° sectors centered on cluster center. The dashed and dotted curves correspond to the mean surface density and sinusoid described in the upper panel (i.e., with a best-fit amplitude of 2.4 ± 0.9 arcmin$^{-2}$). Surface densities are shown for three different orientations of the quadrants: in the first case (filled circles), the sector boundaries are offset by $\pm 45^\circ$ from the position angle of the vector which points in the direction of Palomar 13’s absolute proper motion (i.e., the short arrow in Figure 1). In the second case (open circles), the boundaries are offset by $\pm 45^\circ$ from the position angle of the vector which points in the direction of the Galactic center (i.e., the long arrow in Figure 1). In the final case (open squares), the boundaries are offset by $\pm 45^\circ$ from the position angle of the vector which points in the direction perpendicular to the Galactic disk (i.e., the intermediate arrow in Figure 1). The orientations of these three vectors are indicated by the respective arrows. There is only marginal evidence for a preferred orientation of Palomar 13 stars in this radial range.
Fig. 10.— (Upper Panel) Mean radial velocity vs. position angle, Θ, for the sample of 21 probable member stars. The dashed line indicates the systemic velocity, while the dotted curve shows the best-fit sinusoid of the form $\langle v_r \rangle = \langle v_r \rangle_s + A \sin(\Theta + \Theta_p)$, where $\langle v_r \rangle_s \equiv 24.1$ km s$^{-1}$. A weighted least-squares fit yields $A = 2.1 \pm 1.0$ km s$^{-1}$ and $\Theta_p = 48 \pm 47^\circ$, while an unweighted fit gives $A = 0.8 \pm 1.0$ km s$^{-1}$ and $\Theta_p = 104 \pm 130^\circ$. We conclude that there is no evidence for rotation among the full sample of Palomar 13 members. (Lower Panel) Same as above, except for the eight stars located at, or beyond, the “break radius” of $R_b \sim 1'$. The weighted best-fit sinusoid is shown by the dotted curve, which has parameters $A = 3.0 \pm 3.0$ km s$^{-1}$ and $\Theta_p = 60 \pm 65^\circ$. An unweighted fit gives $A = 2.0 \pm 1.7$ km s$^{-1}$ and $\Theta_p = 84 \pm 44^\circ$. Thus, as with the full sample, we find no evidence for statistically significant rotation for those stars at large radii.
Fig. 11.— Comparison of the observed luminosity function for Palomar 13 with theoretical luminosity functions for $V \gtrsim 21.5$ mag. Data points from Keck are shown by the squares; circle indicate measurements from CFHT. The theoretical luminosity functions have been generated from the $[\text{Fe/H}] = -1.78$ dex, 14 Gyr isochrone of Bergbusch & VandenBerg (1992). Six different values of the mass function exponent, x, are shown; from top to bottom, the dashed curves have $x = 2.5, 2.0, 1.5, 1.0, 0.5$ and 0.0. The steep dropoffs at $V \gtrsim 23.5$ mag (CFHT) and $V \gtrsim 24$ mag (Keck) are due to photometric incompleteness. Thus, to the completeness limits of our data, we find no evidence for a steeply rising luminosity function in Palomar 13. On the contrary, the observed luminosity function appears quite flat, with $x \sim 0$, indicating an possible underabundance of low-mass stars.
Fig. 12.— Scaling relations for stellar systems. Local Group dwarf spheroidal galaxies (data from Mateo 1998) are indicated by open circles. Open squares show the results for a sample of dwarf irregulars and spirals taken from Côté et al. (2000). Galactic globular clusters having measured velocity dispersions are shown by the dots (Pryor & Meylan 1993; Harris 1996). Palomar 13 is indicated by the large filled circle.
Fig. 13.— Additional scaling relations for galaxies and Galactic globular clusters. The symbols are the same as in the previous figure.
Fig. 14.— (Upper Panel) Metallicity-luminosity relation for dE/dSph galaxies (filled circles). Palomar 13 is indicated by the open square.

The dashed line shows the best-fit relation from Côté et al. (2000), extrapolated to faint magnitudes. (Middle Panel) V-band mass-to-light ratio, Υ_V, versus absolute visual magnitude for Local Group dE/dSph galaxies (see Côté et al. 1999). The dashed curve shows the relation for dwarf consisting of luminous stellar components with $\Upsilon_V = 2$ that are embedded in dark matter halos of mass $M = 2 \times 10^7 M_\odot$. Palomar 13 obeys neither this, nor the above, empirical scaling relation for dwarf galaxies. (Lower Panel) Correlation between mass-to-light ratio, metallicity and central V-band surface brightness for Local Group dE/dSph galaxies (filled circles). The dashed line shows the linear relation proposed by Prada & Burkert (2001). Palomar 13 is in reasonable agreement with the proposed correlation.