DEVELOPMENT OF SUPERCONDUCTING TUNING QUADRUPOLE CORRECTOR (MQT) PROTOTYPES FOR THE LHC

M. Allitt¹, S.A. Arshad², A. Hobl³, A. Ijspeert¹, M. Karppinen¹, D. Krischel³,
J. Mazet¹, J. Salminen⁴, M. Schillo³, R. Senis¹ and L. Walckiers¹

Abstract
The main quadrupoles of the Large Hadron Collider (LHC) are connected in families of focusing and defocusing magnets. In order to make tuning corrections in the machine a number of quadrupole corrector magnets (designated MQT) are necessary. These 56 mm diameter aperture magnets have to be compact, with a maximum length of 395 mm and a coil radial thickness of 5 to 7.5 mm, while generating a minimum field gradient of 110 T/m. Two design options have been explored, both using the “counter-winding” system developed at CERN for the fabrication of low cost corrector coils. The first design, with the poles composed of two double-pancake coils, each counter-wound using a single wire, superposed to create 4-layer coils, was developed and built by ACCEL Instruments GmbH. A second design where single coils were counter-wound using a 3-wire ribbon to obtain 6-layer coils was developed at CERN. This paper describes the two designs and reports on the performance of the prototypes during testing.

1 CERN, LHC Division
2 McKinsey, London, UK
3 Accel Instruments GmbH, Friedrich-Ebert-Str. 1, 51429 Bergisch Gladbach, Germany
4 Nokia, Helsinki, Finland

Presented at the 17th International Conference on Magnet Technology (MT17)
24-28 September 2001, Geneva, Switzerland
Development of Superconducting Tuning Quadrupole Corrector (MQT) Prototypes for the LHC

Abstract—The main quadrupoles of the Large Hadron Collider (LHC) are connected in families of focusing and defocusing magnets. In order to make tuning corrections in the machine a number of quadrupole corrector magnets (designated MQT) are necessary. These 56 mm diameter aperture magnets have to be compact, with a maximum length of 395 mm and a coil radial thickness of 5 to 7.5 mm, while generating a minimum field gradient of 110 T/m. Two design options have been explored, both using the “counter-winding” system developed at CERN for the fabrication of low cost corrector coils. The first design, with the poles composed of two double-pancake coils, each counter-wound using a single wire, superposed to create 4-layer coils, was developed and built by ACCEL Instruments GmbH. A second design where single coils were counter-wound using a 3-wire ribbon to obtain 6-layer coils was developed at CERN. This paper describes the two designs and reports on the performance of the prototypes during testing.

Index Terms—Corrector magnet.

I. INTRODUCTION

The Large Hadron Collider (LHC) will incorporate 320 MQT tuning quadrupole superconducting corrector magnets. These are to be mounted in main quadrupole (MQ) cold masses, and will operate in superfluid helium at 1.9 K. They need to provide a minimum field gradient of 110 T/m, at a nominal operating current of 550 A. Space limitations in the MQ cold mass and the fact that MQT is mounted within an iron shield in order to screen it from nearby busbars (which carry currents up to 13 kA) constrain the length and diameter of the MQT module to approximately 370 mm and 150 mm, respectively. The module bore has a diameter of 56 mm. For reliability the MQT working point is specified to be at approximately 60% of the critical current. Two different designs, designated MQTA and MQTB, have been considered, and prototypes of each constructed and tested.

II. MAGNET CONSTRUCTION

The construction methods used for the MQT prototypes have been developed at CERN with the aim of facilitating the industrial production of low cost, robust, superconducting corrector magnets that meet the demanding specifications of the LHC [1]. In both designs, the superconducting coils are wound using enamel insulated, copper stabilised NbTi conductor of rectangular cross-section, wet-wound around glass-fibre central posts. After curing, these coils are assembled on a mandrel and glued together using epoxy resin (Fig. 1 shows this procedure during the construction of MQTA), with a glass fibre end-plate to provide support for the electrical inter-connections. An epoxy pre-preg bandage wrapped around the coils and cured forms an insulation layer, around which iron scissor laminations [2] are stacked to form the return yoke of the magnet.

An aluminium cylinder mounted around the outer diameter of the yoke by shrink fitting holds the complete assembly together and provides the necessary pre-stress, transmitted via the scissor laminations which are free to slide past each other, to the coil assembly to prevent coil movement when the magnet is energised. The amount of pre-stress is controlled by precise machining of the bandage outer diameter, thus defining the radial interference between the yoke outer...
diameter and the shrinking cylinder inner diameter.

III. MAGNETIC DESIGNS

In both cases the magnetic designs were optimised using ROXIE \[2\]. MQTA was also modelled using the OPERA/TOSCA software package to provide a cross-check with the ROXIE results. The goal of the optimisation was to configure the coil block geometry so as to simultaneously maximise the integrated quadrupole field component B_2 and minimise the b_6 and b_{10} field harmonics. To keep the complexity of the construction to a minimum in order to obtain designs well suited to inexpensive production of series quantities, the use of spacers within coil blocks was not considered. This results in insufficient free parameters to allow both these harmonics to be reduced to zero at the same time. The optimisations were carried out using three dimensional (3D) models since the relatively short length of the coil results in a strong influence from the coil ends, in particular on the b_6 field harmonic. In both cases 2D mechanical models were used to calculate the radial interference required between the yoke and the shrinking cylinder at room temperature in order to obtain the necessary pre-stress levels at 1.9 K.

A. MQTA

The MQTA was developed and built by Accel Instruments GmbH, under contract from CERN. The design approach concentrated on the use of ‘double-pancake’ coils, made by counter-winding a single wire (see Table I) so that each double-pancake contains two layers wound simultaneously. Several winding tests were performed before finalising the central post design in order to facilitate the coil winding process and maximise the precision of the conductor placement. In the resulting optimised design each pole of the quadrupole is composed of two such double-pancakes superposed and connected in series by soldering to give four-layer coils, so that the magnet in fact consists of 8 coils. The coil cross-section is shown in Fig. 2.

![MQTA coil cross-section](image)

Fig. 2. MQTA coil cross-section. Two-layer coils are superposed and connected in series to make four-layer coils.

The iron yoke increases the field gradient by 60%, and holes in the yoke control the effects of the iron saturation on the field harmonics. The dimensions and positions of these holes were included in the optimisation procedure. Attempts to control b_{10} by varying the relative angular positions of the inner and outer coil blocks proved unsuccessful.

B. MQTB

The LHC will contain approximately 6,500 corrector magnets with 18 different types of coil. To reduce conductor costs it is desirable to standardise as far as possible the conductors used in these magnets. In order for the MQT conductor to be compatible with other corrector types, a second design, MQTB, was developed at CERN using a standardised wire (see Table I). A 4-layer design using this wire cannot provide the minimum required gradient of 110 T/m with an adequate safety margin, and also there is considerable interest in increasing the field gradient beyond this minimum, to at least 120 T/m. Therefore a 6-layer design was developed, with the magnet composed of 4 coils of 6 layers, each counter-wound using a ribbon of 3 wires. This ribbon was manufactured at CERN using a purpose-built machine that uses epoxy resin to glue single wires together and cures the resin in a continuous process. While this manufacturing method obviates the need to make series connections between superposed pancakes, it is instead necessary to make them between the conductors that make up the ribbon (see Fig. 3).

![MQTB electrical connections](image)

Fig. 3. MQTB electrical connections. Not only must the 4 coils be connected in series, but also the 6 layers in each coil.

The MQTB coil cross-section is shown in Fig. 4. In this design, variation of the b_6 harmonic with yoke saturation is controlled by optimising the dimensions of the yoke and the air gap between the yoke and the surrounding iron shield, rather than by the use of holes in the yoke.

![MQTB coil cross-section](image)

Fig. 4. MQTB coil cross-section. Coils are made by counterwinding a 3-wire ribbon to make 6-layer coils.

The 2D design values of the magnetic parameters of MQTA and MQTB are summarised in Table II. The relatively high b_6 is required to cancel the contribution from the coil ends in both designs.

TABLE I

MQT PROTOTYPES CONDUCTOR PROPERTIES

<table>
<thead>
<tr>
<th></th>
<th>MQTA</th>
<th>MQTB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulated dimensions</td>
<td>1.43 mm × 0.63 mm</td>
<td>1.25 mm × 0.73 mm</td>
</tr>
<tr>
<td>Insulation thickness</td>
<td>0.06 mm</td>
<td>0.06 mm</td>
</tr>
<tr>
<td>Cu/Se ratio</td>
<td>1.6-1.62</td>
<td>1.6</td>
</tr>
<tr>
<td>Filament diameter</td>
<td>7 µm</td>
<td>7 - 10 µm</td>
</tr>
<tr>
<td>Residual resistance ratio</td>
<td>136-142</td>
<td>> 100</td>
</tr>
<tr>
<td>Critical current (5T, 4.2 K)</td>
<td>695 A ¡, 799 A Ï</td>
<td>≥ 650 A ¡, ≥ 715 A Ï</td>
</tr>
</tbody>
</table>

Short sample properties of the conductors used for manufacture of the MQT prototypes. ⊥: field perpendicular to broad face, //: field parallel to broad face.

TABLE II

COMPARISON OF MQT PROTOTYPES MAGNETIC DESIGN

<table>
<thead>
<tr>
<th></th>
<th>MQTA</th>
<th>MQTB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trans-coil (azimuthal × radial)</td>
<td>25 × 2; 21 × 2</td>
<td>20 × 6</td>
</tr>
<tr>
<td>Nominal current (A)</td>
<td>550</td>
<td>550</td>
</tr>
<tr>
<td>Nominal gradient (T/m)</td>
<td>115</td>
<td>131</td>
</tr>
<tr>
<td>Magnetic length (m)</td>
<td>0.33</td>
<td>0.32</td>
</tr>
<tr>
<td>b_1 (units)</td>
<td>33</td>
<td>24</td>
</tr>
<tr>
<td>b_5 (units)</td>
<td>-14</td>
<td>-15.2</td>
</tr>
<tr>
<td>Theoretical quench current at 4.3 K/1.9 K (A)</td>
<td>690/900</td>
<td>670/865</td>
</tr>
</tbody>
</table>

Gradients and harmonics are from 2D calculations at nominal current with a linear yoke. The harmonics are calculated at the standard LHC reference radius of 17 mm and quoted in units of B_1/10^4.

IV. TEST RESULTS

A. Training tests

The MQTA was initially trained at Accel Instruments at 4.3 K. Re-training at 4.3 K and further training at 1.9 K were then carried out at CERN. The results are shown in Fig. 5. During the initial training at 4.3 K the nominal operating current was exceeded at the third quench, and the magnet trained steadily to a value approaching the theoretical estimate of the critical current. At the final quench of this test program some detraining was seen. On re-training at CERN, the first quench agreed well with the final training quench at Accel Instruments and once again the magnet trained steadily to about 700 A. On cooling the magnet to 1.9 K no increase in the critical current was visible. Combined with the slow training at 4.3 K, this implies the presence of some mechanical limitation to the performance of the magnet.

To investigate the possibility that the lack of improvement in critical current at 1.9 K was due to insufficient pre-stress, the radial interference between the shrinking cylinder and the yoke was increased, changing the pre-stress of the coils at 1.9 K from an estimated 60 MPa to approximately 80 MPa. More training tests were then carried out. It is apparent that the increased pre-stress had a detrimental effect on the performance of the magnet, with the first 4.3 K quench occurring at 430 A and being followed by slow training up to about 620 A. Cooling to 1.9 K produced only a further 30 A increase in the critical current.

MQTB underwent training tests at 4.3 K and 1.9 K at CERN. In the first series of tests, training was slow and the magnet remained well below the theoretical critical current, as shown in Fig. 6.

To see the effect of increasing the pre-stress in MQTB, a 0.05 mm stainless steel foil was then fitted between the shrinking cylinder bore and the yoke outer diameter to increase the radial interference to 0.12 mm and the pre-stress to an estimated 80 MPa at 1.9 K. The magnet was then re-tested. In this instance this procedure significantly improved the performance of the magnet. At 4.3 K the magnet began training at 650 A, although it should be noted that it is common for an impregnated magnet to retain memory of previous training tests after the pre-stress has been modified.

The theoretical critical current, 670 A, was reached at 1.9 K, as shown in Fig. 6. After increasing the pre-stress the magnet reached the theoretical critical current at both 4.3 K and 1.9 K.

B. Magnetic field quality

The magnetic field was measured as a function of excitation current at CERN at 1.9 K for both MQTA and MQTB. In the LHC, the collision and injection energies are 7 Tev and 0.45 TeV, respectively. With a target gradient at collision of 110 T/m ($B_2 = 1.87$ T at a radius of 17 mm) and therefore at injection of $110 \times 0.45/7 = 7$ T/m, the loadline measurements of MQTA give an excitation of 541.2 A at collision and 33.9 A at injection. For MQTB, taking the target...
gradient at collision to be 120 T/m ($B_2 = 2.04$ T at 17 mm),
the currents at collision and injection were found to be 493.4
A and 33.1 A, respectively. The integrated strength of the
magnetic field multipoles at collision and injection strengths
are shown in fig. 7 for MQTA and fig. 8 for MQTB.

Non-linear effects from iron saturation are evident in both
magnets. At collision, the observed magnetic field
components of both prototypes were found to lie within the
range of variation to be expected, taking into account the
random field errors introduced by the use of general
tolerances of ±0.1 mm during their fabrication. MQTB has a
higher residual integrated b_{10} than MQTA by about 10 units,b_6 is similar for the two magnets at approximately 7 units.

However, at injection MQTB was found to have a higher
than expected b_6 of 34 units (1.4×10^5 Tm), compared to
MQTA with a b_6 of 11 units (4.5×10^5 Tm). Further
investigation of the multipoles by making measurements when
passing through zero current from opposite directions (see
Figs. 9 and 10), shows that hysteresis due to persistent
currents in the superconducting filaments makes a significant
contribution at low excitations to the b_6 harmonics of both
magnets.

V. CONCLUSIONS
Two different designs of MQT tuning quadrupole corrector
magnets have been developed and tested. The MQTA, with 4-
layer coils designed to meet the original 110 T/m gradient
requirement of the LHC, provided this nominal gradient at
78% of the loadline at 4.3 K, but the critical current did not
improve at 1.9 K. Increasing the pre-stress in the coils caused
a deterioration in the performance of the magnet. The MQTB
with 6-layer coils designed to produce a gradient of 120 T/m
trained to theoretical critical current at both 4.3 K and 1.9 K,
and provided the nominal gradient at 57% (73%) of the
loadline at 1.9 K (4.3 K). For both prototypes magnetic field
multipoles at collision energy were within the expected ranges
considering the manufacturing tolerances. At injection energy
hysteresis effects make a significant contribution to the b_6
field component.

Following the satisfactory performance of the prototype,
the MQTB design has been selected as the design to be used
for the MQT correctors in the LHC, since it generates a
greater field gradient and is expected to be the least expensive
of the two designs to fabricate in series quantities.

VI. REFERENCES
[1] M. Allitt et al., “Principles developed for the construction of the high
performance, low-cost superconducting LHC corrector magnets”, IEEE
laminations”, EPAC-96, Sitges, Spain, June 1996.
accelerator magnets”, Proc. ACES’95, Monterey,
CA, USA, March 20-24, 1995. LHC Note 354, Geneva, Switzerland
1995.