We study the entanglement of thermal and ground states in Heisenberg \(XX\) qubit rings with a magnetic field. A general result is found that for even-number rings pairwise entanglement between two nearest qubits is independent on both the sign of exchange interaction constants and the sign of magnetic fields. As an example we study the entanglement in the four-qubit model and find that the ground state for this model without magnetic fields is shown to be a genuinely four-body maximally entangled state.

PACS numbers: 03.65.Ud, 75.10.Jm

Quantum entanglement is an important prediction of quantum mechanics and constitutes indeed a valuable resource in quantum information processing [1]. Much efforts are devoted to the study and characterization of it. Very recently one kind of natural entanglement, the thermal entanglement [2–7], is proposed and investigated. The investigations of this type of entanglement, ground-state entanglement [8,9] in quantum spin models, and relations [10,11] between quantum phase transition [12] and entanglement provide a bridge between the quantum information theory and condensed matter physics.

Consider a thermal equilibrium state in a canonical ensemble. In this situation the system state is described by the Gibbs’s density operator \(\rho_T = \exp(-H/kT)/Z\), where \(Z = \text{tr}[\exp(-H/kT)]\) is the partition function, \(H\) the system Hamiltonian, \(k\) is Boltzmann’s constant which we henceforth will take equal to 1, and \(T\) the temperature. As \(\rho_T\) represents a thermal state, the entanglement in the state is called thermal entanglement [2]. In a recent paper [6] we showed that in the isotropic Heisenberg \(XX\) model the thermal entanglement is completely determined by the partition function and directly related to the internal energy. In general the entanglement can not be determined only by the partition function.

In this paper, we consider a physical Heisenberg \(XX\) \(N\)-qubit ring with a magnetic field and aim to obtain some general results about the thermal and ground-state entanglement. We consider a four-qubit model as an example and examine in detail the properties of entanglement. Both the pairwise and genuinely many-body entanglement are considered.

In our model the qubits interact via the following Hamiltonian [13]

\[
H(J, B) = J \sum_{i=1}^{N} (\sigma_{iz}\sigma_{i+1z} + \sigma_{iy}\sigma_{i+1y}) + B \sum_{i=1}^{N} \sigma_{iz},
\]

where \(\sigma_{ix}, \sigma_{iy}, \sigma_{iz}\) is the vector of Pauli matrices, \(J\) is the exchange constant and \(B\) is the magnetic field. The positive and negative \(J\) correspond to the antiferromagnetic (AFM) and ferromagnetic (FM) case, respectively. We assume periodic boundary conditions, i.e., \(N+1 \equiv 1\). Therefore the model has the symmetry of translational invariance.

It is direct to check that the commutator \([H, S_z] = 0\), which guarantees that reduced density matrix \(\rho_{12}\) of two nearest-neighbor qubits, say qubit 1 and 2, for the thermal state \(\rho_T\) has the form [8]

\[
\rho_{12} = \begin{pmatrix} u_+ & w & z & 0 \\ w & z & w & 0 \\ z & w & z & 0 \\ 0 & 0 & 0 & u_- \end{pmatrix}
\]

in the standard basis \([|00\rangle, |01\rangle, |10\rangle, |11\rangle]\). Here \(S_z = \sum_{i=1}^{N} \sigma_{iz}/2\) are the collective spin operators. Note the non-diagonal element \(z\) is real due to the reflection symmetry. The reduced density matrix is directly related to various correlation functions \(G_{\alpha\beta} = \langle \sigma_{1\alpha}\sigma_{2\beta}\rangle = \text{tr}(\sigma_{1\alpha}\sigma_{2\beta}\rho_T)\) \((\alpha = x, y, z)\). Precisely the matrix elements can be written in terms of the correlation functions and the magnetization \(M = \text{tr}(\sum_{i=1}^{N} \sigma_{iz}\rho_T)\) as

\[
u_{\pm} = \frac{1}{4}(1 \pm 2M + G_{zz}),
\]

\[
z = \frac{1}{4}(G_{xx} + G_{yy}),
\]

where \(M = M/N\) is the magnetization per site. In deriving the above equation, we have used the translational invariance of the Hamiltonian.

Due to the fact \([H, S_z] = 0\) one has \(G_{xx} = G_{yy}\). Then, the concurrence [14] quantifying the entanglement of two qubits is readily obtained as [8]

\[
C = \max\{0, |G_{xx}| - \frac{1}{2}\sqrt{(1 + G_{zz})^2 - 4M^2}\},
\]

which is determined by the correlation function \(G_{xx}, G_{zz}\), and the magnetization. By using the translational invariance of the model Hamiltonian we find an useful relation

\[
G_{xx} = (\bar{U} - BM)/(2J),
\]

where \(\bar{U} = U/N\) is the internal energy per site and \(U\) is the internal energy. From the partition function we can obtain the internal energy and the magnetization through the well-known relations
where $\beta = 1/T$.

As a combination of Eqs.(5) and (6) the correlation function G_{xx} is solely determined by the partition function. Therefore the concurrence can be obtained from the partition function and the correlation function G_{zz}. We see that the partition function itself is not sufficient for determining the entanglement.

Except for the symmetries used in the above discussions there are also other symmetries in this model. Consider the operator $\Lambda_x \equiv \sigma_{1x} \otimes \sigma_{2x} \otimes \cdots \otimes \sigma_{N_{x}}$ satisfying $\Lambda_x^2 = 1$. We have the commutator $[\sigma_{i0}, \sigma_{i+10}, \Lambda_x] = 0$ and anticommutator $[\sigma_{iz}, \Lambda_x]_+ = 0$. Then we immediately obtain

$$G_{aa} = \text{tr}\{\Lambda_x \sigma_{1a} \sigma_{2a} \exp[-\beta H(J, B)]\Lambda_x\}/Z = \text{tr}\{\sigma_{1a} \sigma_{2a} \exp[-\beta H(J, -B)]\}/Z,$$
$$\bar{M} = \text{tr}\{\Lambda_x \sigma_{1z} \exp[-\beta H(J, B)]\Lambda_x\}/Z = -\text{tr}\{\sigma_{1z} \exp[-\beta H(J, -B)]\}/Z.$$

These equations tell us that the correlation function G_{aa} and the square of the magnetization is invariant under the transformation $B \rightarrow -B$. From Eq.(4) and the invariance of G_{aa} and $\bar{M}^2\overline{\bar{M}}$ we find

Proposition 1. The concurrence is invariant under the transformation $B \rightarrow -B$.

The proposition shows that the pairwise thermal entanglement of the two nearest qubits is independent on the sign of the magnetic field. And it is valid for both even and odd number of qubits.

In Ref. [8], we observe an interesting result that the pairwise thermal entanglement for two-qubit XX model with a magnetic field is independent on the sign of the exchange constant J. Now we generalize this result to the case of arbitrary even-number qubits.

For the case of even-number qubits we have

$$H(-J, B) = \Lambda_x H(J, B) \Lambda_x,$$
$$\Lambda_x = \sigma_{1x} \otimes \sigma_{3x} \otimes \cdots \otimes \sigma_{N-1x}.$$

Th transformation Λ_x changes the sign of the exchange constant J. Note that the definition of Λ_x is different from that of Λ_z. It is straightforward to prove that

$$G_{xx} = \text{tr}(\Lambda_x \sigma_{1x} \sigma_{2x} e^{-\beta H(J, B)} \Lambda_x) = -\text{tr}(\sigma_{1x} \sigma_{2x} e^{-\beta H(-J, B)}),$$
$$G_{zz} = \text{tr}(\Lambda_x \sigma_{1z} \sigma_{2z} e^{-\beta H(J, B)} \Lambda_x) = \text{tr}(\sigma_{1z} \sigma_{2z} e^{-\beta H(-J, B)}),$$
$$\bar{M} = \text{tr}(\sigma_{1z} e^{-\beta H(-J, B)}).$$

From these equations we see that the absolute value $|G_{xx}|$, the correlation function G_{zz}, and the magnetization are invariant under the transformation $J \rightarrow -J$. Then from Eq.(4) and the proposition 1 we arrive at

Proposition 2. For the even-number XX model with a magnetic field the pairwise thermal entanglement of two nearest qubits is independent on the sign of exchange constant J and the sign of magnetic field B.

The proposition shows that the entanglement of AFM qubit rings is the same as that of FM rings.

Now we consider the case of no magnetic fields. Then the magnetization will be zero and Eq.(4) reduces to $C = \frac{1}{4} \max\{0, [\bar{U}/J] - G_{zz} - 1\}$. We can prove that the internal energy is always negative. First, from the tracelessness property of the Pauli operators, it is immediate to check that in the limit of $T \rightarrow \infty$ one has $U = 0$. Further from the fact that $\partial U/\partial T > 0$ we conclude that U is always negative. Then we arrive at

Proposition 3. The concurrence of the nearest-neighbor qubits in the Heisenberg XX model without a magnetic field is given by

$$C = \begin{cases} \frac{1}{2} \max\{0, -\bar{U}/J - G_{zz} - 1\} & \text{for AFM}, \\ \frac{1}{2} \max\{0, \bar{U}/J - G_{zz} - 1\} & \text{for FM}. \end{cases} \quad (7)$$

From the proposition we know that even for the case of no magnetic fields the partition function itself can not determine the entanglement. In the limit of $T \rightarrow 0$, the above equation reduces to

$$C = \begin{cases} \frac{1}{2} \max\{0, E^{(0)} - G_{zz}^{(0)} - 1\} & \text{for AFM}, \\ \frac{1}{2} \max\{0, E^{(0)} - G_{zz}^{(0)} - 1\} & \text{for FM}. \end{cases} \quad (8)$$

where $E^{(0)}$ is the ground-state energy and $G_{zz}^{(0)}$ is the correlation function on the ground state. Therefore the ground-state pairwise entanglement of the system is determined by both the ground-state energy and the correlation function $G_{zz}^{(0)}$. Next we consider a four-qubit XX model as an example.

To study the pairwise entanglement we need to solve the eigenvalue problems of the four-qubit Hamiltonian. We work in the invariant subspace spanned by vectors of fixed number r of reversed spins. The subspace $r = 0 (r = 4)$ is trivially containing only one eigenstate $|0000\rangle (|1111\rangle)$ with eigenvalue $4B(-4B)$. The subspace $r = 1$ is 4-dimensional. The corresponding eigenvectors and eigenvalues are given by

$$|k\rangle = \frac{1}{2} \sum_{n=1}^{4} \exp(-i\pi n/2)|n\rangle_0 (k = 0, ..., 3), \quad (9)$$

and $4J \cos(k\pi/2) + 2B$, respectively. Here the ‘number state’ $|n\rangle_0 = T^{n-1}|1\rangle_0 |1\rangle_0 ... |1\rangle_0 = |0000\rangle$, and T is the cyclic right shift operator which commutes with the Hamiltonian H [15]. Due to the fact that H commutes Λ_x, $|k\rangle' = \Lambda_x |k\rangle$ is also a eigenstate with eigenvalue $4J \cos(k\pi/2) - 2B$. The states $|k\rangle$ and $|k\rangle'$ are the so-called W states [16] whose corresponding concurrence is $1/2$. We have diagonalized the Hamiltonian in the subspaces of $r = 0, 1, 3, 4$. Now we diagonalize the Hamiltonian in the subspace $r = 2$ and use the following notations:
The action of the Hamiltonian is then described by
\[H|n\rangle_1 = 2J \sum_{m=1}^{2} |m\rangle_2, \quad H|m\rangle_2 = 2J \sum_{n=1}^{4} |n\rangle_1. \] (11)

By diagonalizing the corresponding 6 matrix the eigenvalues and eigenstates are given by
\[E_{\pm} = \pm 4J \sqrt{2}, \quad |\Psi_{\pm}\rangle = \frac{1}{\sqrt{2}} \left(\sum_{n=1}^{2} |n\rangle_1 \pm \sqrt{2} \sum_{m=1}^{2} |m\rangle_2 \right), \]
\[E_1 = 0, \quad |\Psi_1\rangle = \frac{1}{\sqrt{2}} (|1100\rangle - |0101\rangle), \]
\[E_2 = 0, \quad |\Psi_2\rangle = \frac{1}{\sqrt{2}} (|1100\rangle - |0011\rangle), \] (12)
\[E_3 = 0, \quad |\Psi_3\rangle = \frac{1}{\sqrt{2}} (|1001\rangle - |0110\rangle), \]
\[E_4 = 0, \quad |\Psi_4\rangle = \frac{1}{2} (|1100\rangle + |0011\rangle - |1101\rangle - |0110\rangle). \]

From Eqs.(9) and (12) all the eigenvalues are obtained as \(\pm 4B \) (1), \(\pm 2B \) (2), \(4J \pm 2B \) (1), \(-4J \pm 2B \) (1), \(\pm 4J/2 \) (1), 0 (4), where the numbers in the parenthesis denote the degeneracy. Then the partition function simply follows as
\[Z = 4 + 2 \cosh(4\sqrt{2}B) + 2 \cosh(4B) + 4[1 + \cosh(4B)] \cosh(2B). \] (13)

From Eqs.(6), (9), (12) and (13), we get the internal energy, magnetization, and correlation function \(G_{zz} \),
\[-ZU = 2J \sqrt{2} \sinh(4\sqrt{2}B) + 2B \sinh(4B) + 2B[1 + \cosh(4B)] \sinh(2B) + 4J \sinh(4B) \cosh(2B), \]
\[-ZM = 2 \sinh(4B) + 2[1 + \cosh(4B)] \sinh(2B), \]
\[ZG_{zz} = 2 \cosh(4B) - \cosh(4\sqrt{2}B) - 1. \] (14)

Then according to the relation (5) the correlation function \(G_{xx} \) is obtained as
\[G_{xx}Z = -\sqrt{2} \sinh(4\sqrt{2}B) - 2 \sinh(4B) \cosh(2B). \] (15)

The combination of Eqs.(14),(15), and (4) gives the exact expression of the concurrence. It is easy to see that the concurrence is independent on the sign of \(J \) and \(B \), which is consistent with the general result given by proposition 2 for even-number qubits.

Figure 1 gives a three-dimensional plot of the concurrence again the temperature and magnetic field. We observe a threshold temperature \(T_c = 2.36338 \) after which the entanglement disappears. It is interesting to see that the threshold temperature is independent on the magnetic field \(B \) for our four-qubit model. For two-qubit \(XX \) model the threshold temperature is also independent on \(B \) [3]. We further observe that near the zero temperature there exists a dip when the magnetic field changes. The dip is due to the energy level cross at point \(B_{c1} = 2(\sqrt{2} - 1) = 0.82843 \). When \(B \) increases form \(B = 2 \) near the zero temperature the entanglement disappears quickly since there is another level crossing point \(B_{c2} = 2 \) after which the ground state becomes |1111\rangle. We also see that it is possible to increase entanglement by increasing the temperature in the range of magnetic field \(B > 2 \).

Now we discuss the ground-state entanglement \((T = 0)\). When \(B < B_{c1} \), the ground state is \(|\Psi_+\rangle \) with the eigenvalue \(E_{(0)} = -4\sqrt{2}B \). It is direct to check that \(G_{zz}^{(0)} = -1/2 \). Then according to Eq.(8), the concurrence is obtained as \(C = \sqrt{2}/2 - 1/4 = 0.45711 \). When \(B_{c1} < B < B_{c2} \) the ground state is \(|k = 2\rangle \)' and the corresponding concurrence is 1/2. When \(B > B_{c2} \) the ground state becomes |1111\rangle, so there exists no entanglement.

Thus far we have discussed the pairwise entanglement in both the ground state and the thermal state. Now we discuss the many-body entanglement in the ground state. Recently Coffman et al [17] used concurrence to examine three-qubit systems, and introduced the concept of the 3–tangle, as a way to quantify the amount of 3–way entanglement in three-qubit systems. Later Wong and Christensen [18] generalize 3–tangle to even-number \(N–tangle \). The \(N–tangle \) is defined as
\[\tau_{1,2,...,N} \equiv |\langle \psi | \sigma_{1y} \otimes \sigma_{2y} \otimes ... \otimes \sigma_{Ny} | \psi^* \rangle|^2, \] (16)
with \(|\psi\rangle \) a multiqubit pure state. The \(N–tangle \) works only for even number of qubits.

For the ground state \(|\Psi_-\rangle \) we have \(|\Psi_-^*\rangle = |\Psi_-\rangle \), and
\[\sigma_{1y} \otimes \sigma_{2y} \otimes \sigma_{3y} \otimes \sigma_{4y} |\Psi_-\rangle = |\Psi_-\rangle, \] (17)
i.e., the ground state is an eigenstate of the operator \(\sigma_{1y} \otimes \sigma_{2y} \otimes \sigma_{3y} \otimes \sigma_{4y} \). Therefore we find \(\tau_{1,2,...,4} = 1 \), which means that the ground state has genuine maximal four-body entanglement. For another two ground states when varying the magnetic field it is easy to check that \(\tau_{1,2,...,4} = 0 \), which means that the ground state have no genuine four-body entanglement. Note that the ground state \(|k = 2\rangle \)' has pairwise entanglement but no four-body entanglement.

In conclusion we have found that the pairwise thermal entanglement of two nearest qubits is independent on the sign of exchange constants and the sign of magnetic fields in the \(XX \) even-number qubit ring with a magnetic field. For determining the concurrence we need to know not only the partition function but also one correlation function \(G_{zz} \). For the four-qubit model we observe that there exists a threshold temperature which is independent on the magnetic field. The effects of level crossing on the thermal entanglement and ground-state
entanglement are also discussed. Finally we find that the ground state is a genuine four-body maximally entangled state according to the many-body entanglement measure, N-tangle.

ACKNOWLEDGMENTS

The authors thanks for the helpful discussions with Paolo Zanardi, Irene D’Amico, Hongchen Fu, Prof. Allan I. Solomon, Prof. Joachim Stolze, and Prof. Guenter Mahler. This work has been supported by the European Community through grant IST-1999-10596 (Q-ACTA).

FIG. 1. The concurrence against the temperature and magnetic field. The parameter $J = 1$.