Realization of the Dirac bracket algebras through first class functions and quantization of constrained systems.

A.V.Bratchikov
Kuban State Technological University,
2 Moskovskaya Street, Krasnodar, 350072, Russia
E-mail:bratchikov@kubstu.ru

March, 2002

Abstract

It is shown that the Dirac bracket algebras are isomorphic to the original Poisson bracket algebras of first class functions subject to first class constraints. This realization suggests a new approach to quantization of constrained systems.

1. Almost all the schemes of quantization of dynamical systems with second class constraints are based on conversion of original constraints into first class ones. In the Dirac bracket approach [1] this conversion is achieved by modification of Poisson brackets. In the BRST method one introduces auxiliary variables and constructs the BRST charge which is first class. Auxiliary variables are also used in the conversion scheme of [2].

In this paper we present the approach where second class constraints are converted into first class ones without using modification of Poisson brackets or auxiliary variables. We construct the algebra with respect to the original Poisson bracket which is isomorphic to the Dirac bracket algebra. It is a quotient of the Poisson algebra of first class functions. This algebra is singled out by covariant conditions and includes only first class constraints.
The new realization enable us to replace quantization of the Dirac bracket algebras by quantization of first class functions subject to first class constraints. The latter seems to be more preferable. An operator version of this approach was used for quantization of two-dimensional coset conformal field theories [3].

We consider only systems with second class constraints bearing in mind that a system with first class constraints and gauge fixing is second class.

2. In this section we review the Dirac bracket approach [1] and introduce notations. Let M be a phase space with the phase variables η_n, $n = 1\ldots2N$, and the Poisson bracket

\[[\eta_m, \eta_n] = \omega_{mn}(\eta). \] \hspace{1cm} (1)

Let $H(\eta)$ be the original hamiltonian and $\varphi_j(\eta)$, $j = 1\ldots J$, the second class constraints

\[\det[\varphi_j, \varphi_k]|_{\varphi_j = 0} \neq 0. \] \hspace{1cm} (2)

The dynamic of the system under consideration is described by the Hamilton equations

\[\frac{d}{dt} \eta_n = [\eta_n, H_T], \quad \varphi_j = 0. \] \hspace{1cm} (3)

Here $H_T = H + \lambda_j \varphi_j$. Functions $\lambda_j = \lambda_j(\eta)$ are defined by the equation

\[[H_T, \varphi_j]|_{\varphi_j = 0} = 0. \] \hspace{1cm} (4)

Using (4) one can write equations (3) as

\[\frac{d}{dt} \eta_n = [\eta_n, H_T]^*, \quad \varphi_j = 0. \] \hspace{1cm} (5)

Here the Dirac bracket was introduced

\[[g, f]^* = [g, f] - [g, \varphi_j] c_{jk} [\varphi_k, f], \quad c_{jk}[\varphi_k, \varphi_l] = \delta_{jl}. \]

Let A be the algebra of functions on M with respect to the Dirac bracket. Let $\Phi \subset A$ be the subspace of the functions which vanish on constraint surface

\[\Phi = \{ u \in A \mid u = u_j(\eta)\varphi_j \}. \]

For $g \in A$

\[[g, \varphi_j]^* = 0. \] \hspace{1cm} (6)
From this it follows that for \(u \in \Phi, g \in A \)

\[[u, g]^{*} \in \Phi. \]

Hence \(\Phi \) is an ideal of \(A \) and the quotient \(A/\Phi \) is an algebra.

It was observed by Dirac [1] that equations (5) can be written in the form

\[
\frac{d}{dt}\eta_{n} \approx [\eta_{n}, H^{T}]^{*},
\]

where \(f \approx g \) means that \(f - g \in \Phi \).

Let \(\{g\} \in A/\Phi \) be the coset represented by function \(g \). Then equations (7) can be rewritten as

\[
\frac{d}{dt}\{\eta_{n}\} = \{[\eta_{n}, H^{T}]^{*}\}. \]

In \(A/\Phi \)

\[
\{[g, f]^{*}\} = \{[g], [f]\}^{*} \quad \text{(8)}
\]

and we get

\[
\frac{d}{dt}\{\eta_{n}\} = \{[\eta_{n}], [H^{T}]\}^{*}. \quad \text{(9)}
\]

In what follows we shall use first class functions. \(R(\eta) \) is called first class function [1] if

\[
[R, \varphi_{j}]|_{\varphi=0} = 0
\]

or

\[
[R, \varphi_{j}] = r_{jk}(\eta)\varphi_{k}. \quad \text{(10)}
\]

From equation (4) it follows that \(H^{T} \) is first class. It is known [1] that first class functions form an algebra with respect to the Poisson bracket. We shall denote this algebra by \(\Omega \).

3. Let \(\Upsilon \) be the space of the first class functions which vanish on constraint surface

\[
\Upsilon = \{u \in \Omega \mid u = u_{j}(\eta)\varphi_{j}\}. \quad \text{(11)}
\]
Using (10) and (11) for \(u \in \Upsilon, g \in \Omega \), we get

\[[u, g]_{\varphi=0} = 0. \]

From this and definition (11) it follows

\[[u, g] \in \Upsilon. \] \hfill (12)

Hence \(\Upsilon \) is an ideal of \(\Omega \) and \(\Omega/\Upsilon \) is an algebra.

At this stage we have two algebras \(A/\Phi \) and \(\Omega/\Upsilon \). Our aim is to show that they are isomorphic.

Let us define the function \(T : \Omega/\Upsilon \to A/\Phi \)

\[T(\{g\}^\bullet) = \{g\}. \] \hfill (13)

Here \(\{g\}^\bullet \in \Omega/\Upsilon \) is the coset represented by \(g \). Since \(\{g\}^\bullet \subset \{g\} \), \(T \) does not depend on the choice of \(g \in \{g\}^\bullet \).

To each function \(g \in A \) one can put into correspondence the first class function

\[\tilde{g} = g - [g, \varphi_j]c_{jk}\varphi_k. \] \hfill (14)

Let \(g' \in \{g\} \) be a first class function. It can be written in the form

\[g' = g - [g, \varphi_j]c_{jk}\varphi_k + v_j\varphi_j \] \hfill (15)

where \(v_j = v_j(\eta) \) are some functions. Substituting \(g' \) into the equation

\[[g', \varphi_k]_{\varphi=0} = 0 \]

we obtain

\[[v_j\varphi_j, \varphi_k]_{\varphi=0} = 0. \]

From this and equation (15) it follows that each first class function \(g' \) from \(\{g\} \) is in \(\{g - [g, \varphi_j]c_{jk}\varphi_k\}^\bullet \). This allows us to define the inverse function \(T^{-1} : A/\Phi \to \Omega/\Upsilon \)

\[T^{-1}(\{g\}) = \{g - [g, \varphi_j]c_{jk}\varphi_k\}^\bullet. \] \hfill (16)

Thus we have shown that \(T \) defines the one-to-one correspondence between \(\Omega/\Upsilon \) and \(A/\Phi \).
In order to show that T is a homomorphism let us compute $T([\{g\}^\bullet, \{f\}^\bullet])$. Using definitions of Ω/Υ and T we have

$$T([\{g\}^\bullet, \{f\}^\bullet]) = T([\{g, f\}^\bullet]) = [\{g, f\}],$$

(17)

Since g and f are first class,

$$[g, \varphi_j] = g_{jj'} \varphi_{j'}, \quad [f, \varphi_k] = f_{kk'} \varphi_{k'},$$

and

$$[g, f]^\bullet = [g, f] + g_{jj'} \varphi_{j'} c_{jk} f_{kk'} \varphi_{k'}.$$

From this it follows that the right hand side of (17) can be written as

$$\{[g, f]\} = \{[g, f]^\bullet\}. \quad (18)$$

Using equation (8) and definition (13) we get

$$\{[g, f]^\bullet\} = \{[g], \{f\}\}^\bullet = [T([g]^\bullet), T([f]^\bullet)]^\bullet. \quad (19)$$

From equations (17)-(19) it follows that

$$T([\{g\}^\bullet, \{f\}^\bullet]) = [T([g]^\bullet), T([f]^\bullet)]^\bullet$$

(20)

and hence T is a homomorphism. Since T is an inversible function, algebras A/Φ and Ω/Υ are isomorphic.

Elements of Υ act as constraints in Ω. Due to (12), for $u, v \in \Upsilon$

$$[u, v] \in \Upsilon.$$

Hence constraints Υ are first class. Thus we have shown that the Dirac bracket algebra A/Φ is equivalent to the algebra of first class functions Ω subject to first class constraints Υ.

Equation (12) tells us that all the functions of Ω are first class with respect to constraints Υ. From this it follows that the system under consideration is invariant with respect to the gauge transformations

$$\delta_u g = [u, g]$$

where $u \in \Upsilon, g \in \Omega$.
According to (16) and (20) the image of Hamilton equations (9) in Ω/Υ is

$$\frac{d}{dt}\{\tilde{\eta}_n\}^* = [\{\tilde{\eta}_n\}^*, \{H^T\}^*].$$

Here $\tilde{\eta}_n = \eta_n - [\eta_n, \varphi_j]_{cjk}\varphi_k$.

References

