Gravitational Waves from a Fissioning White Hole

Roberto Gómez gomez@psc.edu Pittsburgh Supercomputing Center, 4400 Fifth Ave., Pittsburgh, Pennsylvania 15213 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260

Sascha Husa Albert Einstein Institute, Max Planck Gesellschaft, Haus 1, Am Mühlenberg, Golm, Germany Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260

Luis Lehner Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1

Jeffrey Winicour Albert Einstein Institute, Max Planck Gesellschaft, Haus 1, Am Mühlenberg, Golm, Germany Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260

abstract

We present a fully nonlinear calculation of the waveform of the gravitational radiation emitted in the fission of a vacuum white hole. At early times, the waveforms agree with close-approximation perturbative calculations but they reveal dramatic time and angular dependence in the nonlinear regime. The results pave the way for a subsequent computation of the radiation emitted after a binary black hole merger.
Bondi time