THE RELATION BETWEEN LINEAR AND NON-LINEAR $N = 3, 4$
SUPERGRAVITY THEORIES *

Alexander Sevrin1, Kris Thielemans2 and Walter Troost1,2

1. Department of Physics
University of California at Berkeley
and
Theoretical Physics Group
Lawrence Berkeley Laboratory
Berkeley, CA 94720, U.S.A.

2. Instituut voor Theoretische Fysica
Universiteit Leuven
Celestijnenlaan 200D, B-3001 Leuven, Belgium

Abstract

The effective actions for $d = 2$, $N = 3, 4$ chiral supergravities with a linear and a non-linear
gauge algebra are related to each other by a quantum reduction, the latter is obtained from the
former by putting quantum currents equal to zero. This implies that the renormalisation factors
for the quantum actions are identical.

*This work was supported in part by the Director, Office of Energy Research, Office of High Energy and Nuclear
Physics, Division of High Energy Physics of the U.S. Department of Energy under Contract DE-AC03-76SF00098
and in part by the National Science Foundation under grant PHY90-21139.

†Bevoegdverklaard Navorser NFWO,Belgium
Disclaimer

This document was prepared as an account of work sponsored by the United States Government. Neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial products process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof of The Regents of the University of California and shall not be used for advertising or product endorsement purposes.

Lawrence Berkeley Laboratory is an equal opportunity employer.
1 Introduction

When a Lie algebra is generalised to a commutator algebra that is not linear in its generators, but contains quadratic or higher order polynomials as well, one obtains a non-linear algebra. Especially the infinite-dimensional variety showing up in CFT have recently been studied intensively, the most celebrated class being the W-algebras (for a review, see [1]), and in particular the W_3-algebra [2].

Among the properties that the W_3-algebra, for one, shares with linear algebras, is a remarkable renormalisation property of the quantum theory that arises when one couples the currents J generating these algebras to gauge fields A. The resulting induced action for the gauge fields is non-zero due to anomalies (central terms, quantum corrections) in the current commutators as compared to the classical Poisson brackets, and one can take this induced action as a starting point to quantise the gauge fields. For linear current algebras like affine Lie algebras and the Virasoro algebra this induced action Γ is proportional to the central charge, $\Gamma_{\text{ind}}[A] = c \Gamma^{(0)}[A]$. Also, the effective action $\Gamma_{\text{eff}}[A]$, or equivalently W, the generator of connected Green functions for A^\dagger, is related [3, 4] to the same basic functional by a field- and coupling renormalisation $\Gamma_{\text{eff}}[A] = Z\Gamma^{(0)}[Z_A A]$. There are several methods to compute these Z-factors [4, 5], with general agreement for $Z\Gamma$ and varying proposals for Z_A - for a discussion see [6]. For non-linear algebras on the other hand, the dependence of the induced action on the central charge is not simply proportionality, but instead it can be expanded in powers of $1/c$, $\Gamma_{\text{ind}}[A] = \sum_{i \geq 0} c^{1-i} \Gamma^{(i)}(A)$.

It is remarkable that nevertheless, for the quantum theory based on this action, the renormalisation property still holds: the effective action is still equal, up to renormalisation factors, to the ‘classical’ (i.e. lowest order in c) term $\Gamma^{(0)}[A]$ of the induced action. This was shown for W_3 to first order (and conjectured to be true to all orders) in [7]. This was recently proved in [8], and extended in [9] to arbitrary extensions of the Virasoro algebra that can be obtained from a Drinfeld-Sokolov reduction [10] of WZW models.

In this note we point out that there are a few cases, viz. $N = 3, 4$ supergravities where the renormalisation of the linear and non-linear effective actions is intimately related, due to the simple relation that exists between the $N = 3, 4$ linear [11, 12] and non-linear [13, 14] superconformal algebras. Namely, we will show in both cases that the effective action W of the non-linear theory results from that of the linear theory by putting to zero an appropriate set of currents (or integrating out an appropriate set of fields for Γ). By the same token, we will then have shown that for $N = 3, 4$ chiral supergravity the same type of cancellations occur, as

\footnote{Hereafter also called ‘effective action’ for brevity. The symbol used should resolve possible doubts on which functional is meant.}
referred to above for W_3. Namely, non-leading terms in the central charge in $\Gamma_{\text{ind}}[A]$ cancel with quantum contributions to Γ_{eff}. The identity of the renormalisation factors also follows.

2 $N = 3$ Supergravity

Both $N = 3$ superconformal algebras contain the energy-momentum tensor T, 3 supercharges G^a, $a \in \{1, 2, 3\}$ and an $so(3)$ affine Lie algebra, U^a, $a \in \{1, 2, 3\}$. The linear one [11] contains in addition a dimension $1/2$ fermion Q. The operator product expansions (OPEs) of the generators are (we use tildes for the non-linear algebra):

$$
TT = \frac{c}{2}[1], \quad \tilde{T}\tilde{T} = \frac{\tilde{c}}{2}[1],
$$

$$
T\Phi = h_\Phi[\Phi], \quad \tilde{T}\tilde{\Phi} = h_{\tilde{\Phi}}[\tilde{\Phi}],
$$

$$
G^a G^b = \delta^{ab} \frac{2\epsilon}{3}[1] - \epsilon^{abc} 2[U^c], \quad \tilde{G}^a \tilde{G}^b = \delta^{ab} \frac{2(\tilde{c}-1)}{3}[1] - \frac{2(\tilde{c}-1)}{c+1/2} \epsilon^{abc} [\tilde{U}^c] + \frac{3}{c+1/2} \tilde{U}^{[a} \tilde{U}^{b]} - \frac{2c+1}{3c} \delta^{ab} \tilde{T},
$$

$$
U^a U^b = -\frac{\tilde{c}}{2} \delta^{ab}[1] + \epsilon^{abc}[U^c], \quad \tilde{U}^a \tilde{U}^b = -\frac{\tilde{c}+1/2}{2} \delta^{ab}[1] + \epsilon^{abc}[\tilde{U}^c],
$$

$$
U^a G^b = \delta^{ab}[Q] + \epsilon^{abc}[G^c], \quad \tilde{U}^a \tilde{G}^b = \epsilon^{abc}[\tilde{G}^c],
$$

$$
Q G^a = [U^a], \quad QQ = -\frac{c}{2}[1],
$$

where $h_\Phi = h_{\tilde{\Phi}} = \frac{3}{2}, \frac{1}{2}, \frac{1}{2}$ for $\Phi = G^a, U^a, Q$.

The relation between the two algebras is [14] that Q commutes with the combinations that constitute the non-linear algebra

$$
\tilde{T} \equiv T - \frac{3}{2c} Q \partial Q, \quad \tilde{G}^a \equiv G^a + \frac{3}{c} U^a Q, \quad \tilde{U}^a \equiv U^a,
$$

while the central charges are related by $\tilde{c} = c - 1/2$.

The induced action Γ is defined by

$$
Z[h, \psi, A, \eta] = \exp \left[- \Gamma[h, \psi, A, \eta] \right] = \left\langle \exp \left[- \frac{1}{\pi} \int d^2 x \left(h(x) T(x) + \psi_a(x) G^a(x) + A_a(x) U^a(x) + \eta(x) Q(x) \right) \right] \right\rangle.
$$

and similarly, without the η-field, for the non-linear induced action $\tilde{\Gamma}$. These actions are completely determined by considering their transformation properties under $N = 3$ supergravity.
transformations. These transformations read, for the linear case:

\[
\begin{align*}
\delta h &= \bar{\partial} \epsilon + \epsilon \partial h - \partial \epsilon h + 2 \theta^a \psi_a, \\
\delta \psi^a &= \bar{\partial} \theta^a + \epsilon \partial \psi^a - \frac{1}{2} \theta^a \partial h - \partial \theta^a h - \varepsilon^{abc} (\theta^b A^c + \omega^b \psi^c), \\
\delta A^a &= \bar{\partial} \omega^a + \epsilon \partial A^a - \varepsilon^{abc} (\partial \theta^b \psi^c - \theta^b \partial \psi^c) + \theta^a \eta - \varepsilon^{abc} \omega^b A^c - \partial \omega^a h + \tau \psi^a, \\
\delta \eta &= \bar{\partial} \tau + \epsilon \partial \eta + \theta^a \partial A^a - \partial \omega^a \psi_a - \frac{1}{2} \tau \partial h - \partial \tau h.
\end{align*}
\] (2.4)

For the non-linear case, they are the same, except that there is of course no field \(\eta \) and no parameter \(\tau \), and \(\delta A_a \) contains a \(\tilde{c} \) dependent extra term

\[
\delta A_a^{\text{extra}} = \frac{3}{2 \tilde{c}} \varepsilon^{abc} (\partial \theta^b \psi^c - \theta^b \partial \psi^c).
\] (2.5)

The anomaly for the linear theory is:

\[
\delta \Gamma[h, \psi, A, \eta] = - \frac{c}{12 \pi} \int \epsilon \partial^3 h - \frac{c}{3 \pi} \int \theta^a \partial^2 \psi_a + \frac{c}{3 \pi} \int \omega^a \partial A_a + \frac{c}{3 \pi} \int \tau \eta.
\] (2.6)

Defining\(^8\)

\[
t = \frac{12 \pi}{c} \frac{\delta \Gamma}{\delta h}, \quad g^a = \frac{3 \pi}{c} \frac{\delta \Gamma}{\delta \psi^a}, \quad u^a = - \frac{3 \pi}{c} \frac{\delta \Gamma}{\delta A^a}, \quad q = - \frac{3 \pi}{c} \frac{\delta \Gamma}{\delta \eta},
\] (2.7)

we obtain the Ward identities for the linear theory by combining eqs. (2.4) and (2.6):

\[
\begin{align*}
\partial^3 h &= \nabla t - (2 \psi_a \partial + 6 \partial \psi_a) g^a + 4 \partial A_a u^a - (2 \eta \partial - 2 \partial \eta) q, \\
\partial^2 \psi_a &= \nabla g^a - \frac{1}{2} \psi^a t + \varepsilon^{abc} A_b u^c + \eta u^a + \varepsilon^{abc} (2 \partial \psi_b + \psi_b \partial) u^c + \partial A_a q, \\
\partial A_a &= \nabla u^a - \varepsilon^{abc} \psi_b g^c + \varepsilon^{abc} A_b u^c - (\psi_a \partial + \partial \psi_a) q, \\
\eta &= \nabla q - \psi_a u^a,
\end{align*}
\] (2.8)

where

\[
\nabla \Phi = (\bar{\partial} - h \partial - h_\Phi (\partial h)) \Phi,
\] (2.9)

with \(h_\Phi = 2, \frac{3}{2}, 1, \frac{1}{2} \) for \(\Phi = t, g^a, u^a, q \).

The Ward identities provide us with a set of functional differential equations for the induced action. Since these have no explicit dependence on \(c \), the induced action can be written as

\[
\Gamma[h, \psi, A, \eta] = c \Gamma^{(0)}[h, \psi, A, \eta],
\] (2.10)

\(^8\)All functional derivatives are left derivatives.
where $\Gamma^{(0)}$ is c-independent.

The non-linear theory can be treated in a parallel way. The anomaly is now

$$
\delta \tilde{\Gamma}[h, \psi, A] = -\frac{\tilde{c}}{12\pi} \int \epsilon \partial^3 h - \frac{\tilde{c} - 1}{3\pi} \int \theta^a \partial^2 \psi_a + \frac{\tilde{c} + 1/2}{3\pi} \int \omega^a \partial A_a - \frac{3}{\pi(\tilde{c} + 1/2)} \int \theta_a \psi_b \left(U^{(a)U^{b})}\right)_{\text{eff}}.
$$ (2.11)

The last term, which is due to the non-linear term in the algebra eq. (2.1), can further be rewritten as

$$
\left(U^{(a)U^{b})}\right)_{\text{eff}}(x) = \langle \tilde{U}^{(a)\tilde{U}^{b})}(x) \exp\left[-\frac{1}{\pi} \int \left(h\tilde{T} + \psi_a \tilde{G}^a + A_a \tilde{U}^a\right) \right]\rangle \exp\left[-\tilde{\Gamma}\right] \ (2.12)
$$

\begin{align*}
\left(U^{(a)U^{b})}\right)_{\text{eff}}(x) &= \left(\tilde{c} + 1/2 \right)^2 \frac{3}{3} \left(\frac{\tilde{c}}{\tilde{c} + 1/2} \right) \frac{3}{6} \lim_{y \rightarrow x} \left(\frac{\partial u^a(x)}{\partial A_b(y)} - \frac{\partial}{\partial x} \delta^{(2)}(x - y) \delta^{ab} + a \leftrightarrow b \right)
\end{align*}

The limit in the last term of eq. (2.13) reflects the point-splitting regularization of the composite terms in the $\tilde{G}\tilde{G}$ OPE (2.1). One notices that in the limit $\tilde{c} \rightarrow \infty$, u becomes \tilde{c} independent and one has simply

$$
\lim_{\tilde{c} \rightarrow \infty} \left(\frac{3}{\tilde{c} + 1/2} \right)^2 \left(U^{(a)U^{b})}\right)_{\text{eff}}(x) = u^a(x) u^b(x).
$$ (2.13)

Using eq. (2.13), we find that eq. (2.11) can be rewritten as:

$$
\delta \tilde{\Gamma}[h, \psi, A] = -\frac{\tilde{c}}{12\pi} \int \epsilon \partial^3 h - \frac{\tilde{c} - 1}{3\pi} \int \theta^a \partial^2 \psi_a + \frac{\tilde{c} + 1/2}{3\pi} \int \omega^a \partial A_a - \frac{3}{\pi(\tilde{c} + 1/2)} \int \theta_a \psi_b u^a u^b
\frac{1}{y \rightarrow x} \int \theta^{(a} \psi^{b)} \left(\frac{\partial u^a(x)}{\partial A_b(y)} - \frac{\partial}{\partial x} \delta^{(2)}(x - y) \delta^{ab} + a \leftrightarrow b \right)
$$ (2.14)

where the last term disappears in the large \tilde{c} limit. The term proportional to $\int \theta_a \psi_b u^a u^b$ in eq. (2.14) can be absorbed by adding a field dependent term in the transformation rule for A:

$$
\delta^{\text{nl}}_{\text{extra}} A_a = -\theta_a \psi_b u^b.
$$ (2.15)

Doing this, we find that in the large \tilde{c} limit, the anomaly reduces to the minimal one.

Combining the non-linear transformations with eq. (2.14), and defining

$$
\tilde{\ell} = \frac{12\pi}{\tilde{c}} \frac{\delta \tilde{\Gamma}}{\delta h} \quad \tilde{g}^a = \frac{3\pi}{\tilde{c} - 1} \frac{\delta \tilde{\Gamma}}{\delta \psi^a} \quad \tilde{u}^a = -\frac{3\pi}{\tilde{c} + 1/2} \frac{\delta \tilde{\Gamma}}{\delta A_a},
$$ (2.16)
we find the Ward identities for \(\tilde{\Gamma}[h,\psi,A] \) (they can also be found in [15]):

\[
\begin{align*}
\partial^3 h &= \nabla \ell - \left(1 - \frac{1}{\tilde{c}} \right) \left(2 \psi_a \partial + 6 \partial \psi^a \right) \tilde{g}^a + 4 \left(1 + \frac{1}{2\tilde{c}} \right) \partial A_a \tilde{u}^a, \\
\partial^2 \psi_a &= \nabla \tilde{g}^a - \left(\frac{1}{2} + \frac{1}{2\tilde{c}} \right) \tilde{g}^a \tilde{\ell} + \varepsilon^{abc} A_b \tilde{g}^c + \varepsilon^{abc} \left(2 \partial \psi_b + \psi_b \partial \right) \tilde{u}^c - \left(1 + \frac{3}{2\tilde{c} - 2} \right) \left(\frac{3}{\tilde{c} + 1/2} \right)^2 \psi_b \left(U(a) U(b) \right)_{\text{eff}}, \\
\partial A_a &= \nabla \tilde{u}^a - \left(1 - \frac{3}{2\tilde{c} + 1} \right) \varepsilon^{abc} \psi_b \tilde{g}^c + \varepsilon^{abc} A_b \tilde{u}^c,
\end{align*}
\]

(2.17)

The normalisation of the currents has been chosen so that the anomalous terms on the l.h.s have coefficient unity. The explicit \(\tilde{c} \) dependence of the Ward identities arises from several sources: the fact that in the non-linear algebra, eq.(2.1) some couplings are explicitly \(\tilde{c} \)-dependent, the \(\tilde{c} \) dependence of the transformation, eq.(2.5), and the field-non-linearity. The dependence implies that the induced action is given by a \(1/\tilde{c} \) expansion:

\[
\tilde{\Gamma}_{\text{ind}}[h,\psi,A] = \sum_{i \geq 0} \tilde{c}^{1-i} \tilde{\Gamma}^{(i)}[h,\psi,A].
\]

(2.18)

This is familiar from \(W_3 \) [7].

Turning back to the Ward identities for the linear theory eq. (2.8), we observe a remarkable relation with the non-linear ones. If we take \(\tilde{c} = c + 1/2 \) and put \(q = 0 \), we find from the last identity in eq. (2.8) that \(\eta = -\psi_a u^a \). Substituting this back into the first three identities in eq.(2.8), yields precisely the Ward identities for the non-linear theory eq. (2.17) in the \(c \to \infty \) limit. Also, the extra term in the non-linear \(\delta A_a \) (eq. 2.5), that was added to bring the anomaly to a minimal form, now effectively re-inserts the \(\theta^a \eta \) term that dropped out of the linear transformation, eq.(2.4). This strongly suggests that the relation between the effective theories should be obtained by putting the current \(q \) equal to zero on the quantum level. We will now derive this fact.

First we rewrite eq. (2.3) using eq. (2.2), the crucial ingredient being that \(Q \) commutes with the non-linear algebra, thus factorising the averages:

\[
Z[h,\psi,A,\eta] = \left\langle \exp \left[-\frac{1}{\pi} \int (h \tilde{T} + \psi_a \tilde{G}^a + A_a \tilde{U}^a) \right] \left\langle \exp \left[-\frac{1}{\pi} \int (h T_Q + \hat{\eta} Q) \right] \right\rangle_Q \right\rangle
= \left\langle \exp \left[-\frac{1}{\pi} \int (h \tilde{T} + \psi_a \tilde{G}^a + A_a \tilde{U}^a) - \Gamma[h,\hat{\eta}] \right] \right\rangle
\]

(2.19)

where

\[
T_Q = \frac{2}{3\tilde{c}} Q \partial Q, \quad \hat{\eta} = \eta - \frac{1}{3\tilde{c}} \psi_a U^a.
\]

(2.20)
The Q integral can easily be expressed in terms of the Polyakov action:

$$\Gamma[h, \hat{\eta}] = \frac{1}{48\pi} \Gamma_{\text{Pol}}[h] - \frac{c}{6\pi} \int \hat{\eta} \nabla \hat{\eta},$$ \hspace{1cm} (2.21)

where $\nabla = \bar{\partial} - h \partial - \frac{1}{2} \partial h$ and

$$\Gamma_{\text{Pol}}[h] = \int \partial^2 h \frac{1}{\partial} \frac{1}{1 - h \frac{\partial}{\partial} h^2}. $$ \hspace{1cm} (2.22)

Using eqs. (2.19) and (2.21), we find

$$\exp \left[- \tilde{\Gamma}[h, \psi, A] \right] = \exp \left[\Gamma[h, \hat{\eta}] = \eta + \frac{\pi}{3c} \psi_b \frac{\delta}{\delta A_b} \right] \exp \left[- \Gamma[h, \psi, A, \eta] \right].$$ \hspace{1cm} (2.23)

The double functional derivative in the exponential is well defined due to the presence of the non-local operator ∇^{-1}. This formula was checked explicitly on the correlation functions using [17]. Introducing the Fourier transform of Γ w.r.t. A:

$$\exp \left[- \Gamma[h, \psi, A, \eta] \right] = \int [du] \exp \left[- \Gamma[h, \psi, u, \eta] + \frac{c}{3\pi} \int u^a A_a \right],$$ \hspace{1cm} (2.24)

eq. (2.23) further reduces to

$$\exp \left[- \tilde{\Gamma}[h, \psi, A] \right] = \exp \left[\frac{1}{48\pi} \Gamma_{\text{Pol}}[h] \right] \int [du] \exp \left[- \Gamma[h, \psi, u, \eta] \right] \exp \left[- \frac{c}{6\pi} \int (\eta + \psi_b u^b) \nabla (\eta + \psi_b u^b) + \frac{c}{3\pi} \int u^a A_a \right].$$ \hspace{1cm} (2.25)

As the lhs of eq. (2.25) is η-independent the rhs should also be. We can integrate both sides over η with a measure chosen such that the integral is equal to one:

$$\exp \left[- \frac{1}{48\pi} \Gamma_{\text{Pol}}[h] \right] \int [d\eta] \exp \left[\frac{c}{6\pi} \int (\eta + \psi_b u^b) \nabla (\eta + \psi_b u^b) \right] = 1.$$ \hspace{1cm} (2.26)

Combining this with eq. (2.25), we obtain finally a very simple expression for $\tilde{\Gamma}[h, \psi, A]$ in terms of $\Gamma[h, \psi, u, \eta]$:

$$\exp \left[- \tilde{\Gamma}[h, \psi, A] \right] = \int [d\eta] \exp \left[- \Gamma[h, \psi, u, \eta] \right].$$ \hspace{1cm} (2.27)

Introducing the generating functionals W

$$\exp \left[- W[t, g, u, q] \right] = \int [dh][d\psi][dA][d\eta] \exp \left[- \Gamma[h, \psi, A, \eta] \right] + \frac{1}{12\pi} \int (ht + 4\psi^a g_a - 4A_a u^a - 4q).$$ \hspace{1cm} (2.28)
and similarly for \tilde{W} (without the η-term), one finds by combining eqs. (2.27,2.28), an extremely simple expression of the relation between the quantum theories of induced $N = 3$ supergravities based on the linear and non-linear algebras:

$$\tilde{W}[t, g, u] = W[t, g, u, q = 0].$$

(2.29)

Therefore, the two theories are related by a *quantum* Hamiltonian reduction.

3 $N = 4$ Supergravity

Now we extend the method applied for $N = 3$ to the case of $N = 4$. Again, there is a linear $N = 4$ algebra and a non-linear one, obtained [14] by decoupling 4 free fermions and a $U(1)$ current. In the previous case we made use in the derivation of the explicit form of the action induced by integrating out the fermions. In the present case no explicit expression is available for the corresponding quantity, but we will see that in fact it is not needed.

The $N = 4$ superconformal algebra [12] is generated by the energy-momentum tensor T, 4 supercharges G^a, $a \in \{1, 2, 3, 4\}$, an $so(4)$ affine Lie algebra, $U_{ab} = -U_{ba}$, $a, b \in \{1, 2, 3, 4\}$, 4 free fermions Q^a and a $U(1)$ current P. The two $su(2)$- algebras have levels k_+ and k_-. The supercharges G^a and the dimension $1/2$ fields Q^a form two $(2, 2)$ representations of $SU(2) \otimes SU(2)$. The central charge is given by:

$$c = \frac{6 k_+ k_-}{k_+ + k_-}.$$

(3.1)

The OPEs are (we omit the OPES of T):

$$G^a G^b = \frac{3c}{2} \delta^{ab}[1] + [-2 U^{ab} + \zeta \varepsilon^{abcd} U^{cd}]$$

$$U^{ab} U^{cd} = \frac{k}{2} \left(\delta^{ad} \delta^{bc} - \delta^{ac} \delta^{bd} - \zeta \varepsilon^{abcd} \right) [1]$$

$$+ \left[\delta^{bd} U^{ac} - \delta^{bc} U^{ad} - \delta^{ad} U^{bc} + \delta^{ac} U^{bd} \right]$$

$$U^{ab} G^c = -\zeta \left(\delta^{bc} [Q^a] - \delta^{ac} [Q^b] \right) + \varepsilon^{abcd} [Q^d] - \left(\delta^{bc} [G^a] - \delta^{ac} [G^b] \right)$$

$$Q^a G^b = \delta^{ab} [P] - \frac{1}{2} \varepsilon^{abcd} [U^{cd}]$$

$$Q^a U^{bc} = \delta^{ac} [Q^b] - \delta^{ab} [Q^c]$$

$$P G^a = [Q^a]$$

$$P P = -\frac{k}{2} [1]$$

7
\[Q^a Q^b = -\frac{k}{2} \delta^{ab}[1] \tag{3.2} \]

where \(k = k_+ + k_- \) and \(\zeta = (k_+ - k_-)/k \).

The induced action \(\Gamma[h, \psi, A, b, \eta] \) is defined as in (2.3). All the structure constants of the linear algebra (3.2) depend only on the ratio \(k_+/k_- \). Apart from this ratio, \(k \) enters as a proportionality constant for all two-point functions. As a consequence, \(\Gamma \) depends on that ratio in a non-trivial way, but its \(k \)-dependence is simply an overall factor \(k \).

Using the following definitions
\[
t = \frac{12\pi}{c} \frac{\delta \Gamma}{\delta h}, \quad g^a = \frac{3\pi}{c} \frac{\delta \Gamma}{\delta \psi_a}, \quad u^{ab} = -\frac{\pi}{k} \frac{\delta \Gamma}{\delta A_{ab}}, \quad q^a = -\frac{2\pi}{k} \frac{\delta \Gamma}{\delta \eta_a}, \quad p = -\frac{2\pi}{k} \frac{\delta \Gamma}{\delta b} \tag{3.3} \]

and \(\gamma = 6k/c \), the Ward-identities are
\[
\partial^2 h = \nabla t - 2(\psi_a \partial + 3\partial \psi_a) g^a + 2\gamma \partial A_{ab} u^{ab} + \frac{\gamma}{2} \left(\partial \eta_a - \eta_a \partial \right) q^a + \gamma \partial b p
\]
\[
\partial^2 \psi_a = \nabla g^a - 2A_{ab} g^b - \frac{1}{2} \psi_a t + \frac{\gamma}{4} \varepsilon_{abcd} \eta_b u^{cd} + \frac{\gamma}{4} (\psi_b \partial + 2\partial \psi_b) (2u^{ab} - \zeta \varepsilon_{abcd} u^{cd})
\]
\[
+ \frac{\gamma}{4} \partial b q^a + \frac{\gamma}{2} \zeta A_{ab} \partial q^b + \frac{\gamma}{4} \varepsilon_{abcd} \partial A_{be} q^d + \frac{\gamma}{4} \eta_a p
\]
\[
\partial A_{ab} + \frac{\zeta}{2} \varepsilon_{abcd} \partial A_{cd} = \nabla u^{ab} - 4A_{[ca} u^{b]c} - \frac{4}{\gamma} \psi_{[a} g^{b]} + \eta_{[a} q^{b]} - \zeta \left(\psi_{[a} \partial + \partial \psi_{[a} \right) q^{b]}
\]
\[- \frac{1}{2} \varepsilon_{abcd} (\psi_e \partial + \partial \psi_e) q^d
\]
\[
\eta_a = \nabla \psi_a - 2A_{ab} \psi_b + \varepsilon_{abcd} \psi_b u^{cd}
\]
\[
\partial b = \nabla p - (\psi_a \partial + \partial \psi_a) q^a. \tag{3.4} \]

The non-linear \(N = 4 \) superconformal algebra has the same structure as 3.2 but there is no \(P \) and \(Q^a \). The central charge is related to the \(su(2) \)-levels by \(\tilde{c} = \frac{3(k + 2k_+ k_-)}{2 + k} \). We only give the \(\tilde{G} \tilde{G} \) OPE explicitly:
\[
\tilde{G}^a \tilde{G}^b = \frac{4k_+ k_-}{k + 2} \delta^{ab} [1] - \frac{2k}{k + 2} [\tilde{U}^{ab}] + \frac{k_+ - k_-}{k + 2} \varepsilon_{abcd} [\tilde{U}^{cd}]
\]
\[+ \frac{2k}{k + 2} \frac{1}{4(k + 2)} \varepsilon_{abcd} \varepsilon_{efg} (\tilde{U}^{cd} \tilde{U}^{ef} + \tilde{U}^{ef} \tilde{U}^{cd}) \] \tag{3.5}

To write down the Ward-identities in this case, we define
\[
\tilde{t} = \frac{12\pi}{\tilde{c}} \frac{\delta \tilde{\Gamma}}{\delta \tilde{h}}, \quad \tilde{g}^a = \frac{(k + 2)\pi}{2k_+ k_-} \frac{\delta \tilde{\Gamma}}{\delta \tilde{\psi}_a}, \quad \tilde{u}^{ab} = -\frac{\pi}{k} \frac{\delta \tilde{\Gamma}}{\delta A_{ab}}. \tag{3.6} \]
and
\[\tilde{\gamma} = \frac{\tilde{k}(\tilde{k} + 2)}{\tilde{k}_+\tilde{k}_-}, \quad \tilde{\kappa} = \frac{6\tilde{k}}{\tilde{c}}, \quad \tilde{\zeta} = \frac{\tilde{k}_+ - \tilde{k}_-}{\tilde{k}}. \] (3.7)

\[
\partial^3 h = \nabla \tilde{t} - \frac{2\tilde{\kappa}}{\tilde{\gamma}} (\psi_a \partial + 3 \partial \psi_a) \tilde{g}^a + 2\tilde{\kappa} \partial A_{ab} \tilde{u}^{ab} \\
\partial^2 \psi_a = \nabla \tilde{g}^a - 2 A_{ab} \tilde{g}^b - \frac{\tilde{\gamma}}{2\tilde{k}} \psi_a \tilde{t} - \frac{\tilde{\gamma}}{4k(k + 2)} \varepsilon_{acdg} \varepsilon_{befg} \psi_b \left((\tilde{U}^{cd} \tilde{U}^{ef})_{\text{eff}} + (\tilde{U}^{ef} \tilde{U}^{cd})_{\text{eff}} \right) \\
+ \frac{\tilde{\zeta}}{4(\tilde{k} + 2)} (\psi_b \partial + 2 \partial \psi_b)(2\tilde{u}^{ab} - \tilde{\zeta} \varepsilon_{abcd} \tilde{u}^{cd}) \\
\partial A_{ab} + \frac{\tilde{\zeta}}{2} \varepsilon_{abcd} \partial A_{cd} = \nabla \tilde{u}^{ab} - 4 A_{c[a} \tilde{u}^{b]c} - \frac{4}{\tilde{\gamma}} \psi_a \tilde{g}^a (3.8)
\]

As in the previous section, we will use the results of [14] on the construction of a non-linear algebra by eliminating free fermion fields. In the present case it turns out that, at the same time, one can also eliminate the \(U(1) \)-field \(P \). The new currents are

\[
\tilde{T} = T + \frac{1}{k} PP + \frac{1}{k} \partial Q^c Q^c \\
\tilde{G}^a = G^a + \frac{2}{k} PQ^a + \varepsilon_{abcd} \left(\frac{2}{3k^2} Q^b Q^c Q^d + \frac{1}{k} Q^b \tilde{U}^{cd} \right) \\
\tilde{U}^{ab} = U^{ab} - \frac{2}{k} Q^a Q^b \] (3.9)

and the constants in the algebras are related by \(\tilde{k}_\pm = k_\pm - 1 \), and thus \(\tilde{c} = c - 3 \). Again, we find agreement between the large \(k \)-limit of the Ward identities putting \(q^a \) and \(p \) to zero, and solve \(\eta^a \) and \(\partial b \) from the two last identities of (3.4). Note that the \(b \)-field is present only as a derivative in eq. (3.4). Thus again the suggestion presents itself that the non-linear action can be obtained by putting some currents to zero.

We now set out to write the non-linear effective action in terms of the effective action of the linear theory. In analogy with the \(N = 3 \) case, it would seem that, again, the operators of the non-linear theory can be written as the difference of the operators of the linear theory, and a realisation of the linear theory given by the free fermions. In the present case, this simple linear combination works for the integer spin currents \(\tilde{T} \) and \(\tilde{U} \), but not for \(\tilde{G} \). A second complication is that, due to the presence of a tri-linear term (in \(Q \)) in the relation between \(\tilde{G} \) and \(G \), integrating out the \(Q \)-fields is more involved. Nevertheless, we can still obtain an explicit formula relating the effective actions.
There is a variety of ways to derive this relation, starting by rewriting the decompositions of (3.9) in different ways. We will use the following form:

\[G^a + \frac{1}{k} \varepsilon_{abcd} Q^b U^{cd} = \tilde{G}^a - \frac{2}{k} P Q^a + \frac{4}{3k^2} \varepsilon_{abcd} Q^b Q^c Q^d. \]

(3.10)

This leads immediately to

\[\langle \exp \left[- \frac{1}{\pi} \int \left(hT + \psi_a G^a + A_{ab} U^{ab} + bP + \eta_a Q^a + \frac{1}{k} \varepsilon_{abcd} \psi_a Q^b U^{cd} \right) \right] \rangle = \langle \exp \left[- \frac{1}{\pi} \int \left(\left(\tilde{h}T + \psi_a \tilde{G}^a + A_{ab} \tilde{U}^{ab} \right)
+ \frac{1}{k} \left(-hP^2 - h\partial Q^a Q_a - 2\psi_a P Q^a + 2A_{ab} Q^a Q^b + bP + \eta_a Q^a \right) + \frac{4}{3k^2} \varepsilon_{abcd} \psi_a Q^b Q^c Q^d \right) \right] \rangle. \]

(3.11)

Again the crucial step is that in the rhs, the expectation value factorizes: the average over \(Q^a \) and \(P \) can be computed separately, since these fields commute with the non-linear SUSY-algebra. This average is in fact closely related to the partition function for the linear \(N = 4 \) algebra with \(k_+ = k_- = 1 \) and \(c = 3 \), up to the renormalisation of some coefficients. We have

\[Z^{c=3} = \langle \exp \left[- \frac{1}{\pi} \int \left(\frac{h}{2} \left(\hat{P} \hat{P} + \partial \hat{Q}_a \hat{Q}^a \right)
- \psi_a \left(\hat{P} \hat{Q}^a + \frac{1}{6} \varepsilon_{abcd} \hat{Q}^b \hat{Q}^c \hat{Q}^d \right) + A_{ab} \hat{Q}^a \hat{Q}^b + b \hat{P} + \eta_a \hat{Q}^a \right) \right] \rangle \]

(3.12)

where the average value is over free fermions \(\hat{Q}^a \) and a free \(U(1) \)-current \(\hat{P} \). These are normalised in a \(k \)-independent fashion

\[\hat{P} \hat{P} = [-1], \quad \hat{Q}^a \hat{Q}^b = -\delta^{ab}[1] \]

(3.13)

and the explicit form [16, 12] of the currents making up the \(c = 3 \) algebra has been used. The average can be represented as a functional integral with measure

\[[d\hat{Q}] [d\hat{P}] \exp \left[- \frac{1}{2\pi} (\hat{P} \frac{\partial}{\partial \hat{P}} + \hat{Q}^a \frac{\partial}{\partial \hat{Q}_a}) \right] . \]

(3.14)

The (non-local) form of the free action for \(\hat{P} \) follows from it’s two-point function: it is the usual (local) free scalar field action if one writes \(\hat{P} = \partial \phi \). The connection between the linear theory, the non-linear theory, and the \(c = 3 \) realisation is then

\[\exp \left[- \frac{\pi}{k} \varepsilon_{abcd} \psi_a \frac{\delta}{\delta \eta_b} \frac{\delta}{\delta A_{cd}} \right] Z[\psi, A, \eta, b] = \tilde{Z}[^{\tilde{\psi}, A}] \exp \left[\frac{\pi^2}{3k^2} (4 + \sqrt{2k}) \varepsilon_{abcd} \psi_a \frac{\delta}{\delta \eta_b} \frac{\delta}{\delta \eta_c} \frac{\delta}{\delta \eta_d} \right] Z^{c=3}[\psi, A, \eta \sqrt{k/2}, b \sqrt{k/2}]. \]

(3.15)

*Note that there are no normal ordering problems as the OPEs of the relevant operators turn out to be non-singular (e.g. the term cubic in the \(Q^a \) is an antisymmetric combination).
Contrary to the $N = 3$ case, where the Polyakov partition function was obtained very explicitly, this connection is not particularly useful, but the representation (3.14) of $Z_{c=3}$ as a functional integral can be used effectively. Indeed, when we take the Fourier transform of eq. 3.15, i.e. we integrate (3.15) with

$$
\int [dh][d\psi][dA][db][d\eta] \exp \left[\frac{1}{\pi} \int \left(h t + \psi_a g^a + A_{ab} u^{ab} + b p + \eta_a q^a \right) \right],
$$

we obtain using eqs. 3.12 and 3.14

$$
\exp \left[-W[t, g^a - \frac{1}{k} \sigma_{abcd} q^b u^{cd}, u, p, q] \right] = \exp \left[-\frac{1}{\pi k}(p \bar{\partial} p + q^a \bar{\partial} q_a) \right]
$$

$$
\exp \left[-\tilde{W}[t + \frac{1}{k} (p^2 + \partial q), g^a + \frac{2}{k} p q^a - \frac{4}{3k^2} \sigma_{abcd} q^b c^d q^d, u^{ab} - \frac{2}{k} q^a q^b] \right]
$$

(3.17)

giving the concise relation

$$
\tilde{W}[t, g^a, u^{ab}] + \frac{1}{\pi k}(p \bar{\partial} p + q^a \bar{\partial} q_a)
$$

$$
= W[t] - \frac{1}{k} (p^2 + \partial q, q_a),
$$

$$
g^a - \frac{2}{k} p q^a - \frac{1}{k} \sigma_{abcd} q^b u^{cd} - \frac{2}{3k^2} \sigma_{abcd} q^b c^d q^d, u^{ab} + \frac{2}{k} q^a q^b, p, q^a]
$$

(3.18)

Putting the free p and q^a-currents equal to zero, one obtains the equality of effective actions:

$$
\tilde{W}[t, g^a, u^{ab}] = W[t, g^a, u^{ab}, p = 0, q^a = 0].
$$

(3.19)

4 Discussion

We take for granted that the linear theory is given by simple renormalisations of the 'classical' theory, as described in the introduction. Then eqs. (2.29) and (3.19) immediately transfer this property to the non-linear theory. Moreover, since the 'classical' parts are equal also (as implied by the $c \rightarrow \infty$ limit of the Ward identities) the renormalisation factors for both theories are the same (for couplings as well as for fields) if one takes into account the shifts in the values for the central extensions c, k_+ and k_-. This fact can be confirmed by looking at explicit calculations of these renormalisation factors. For $N = 3$, a semiclassical approximation to the

The effective action W is defined by the Fourier transform of Z, and similarly for \tilde{W}.
non-linear renormalisation factors was set up in [15]. This calculation was amended in [9], which also contains an all-order calculation of these factors. On the other hand, [9] also contains a semiclassical derivation of the factors for the linear algebras, and the $N = 4$ factors as well. The results are:

\[
\begin{array}{ll}
\text{non-linear all-order} & \text{linear semiclassical} \\
N = 3 & \\
Z_\Gamma = \frac{2c+1}{2} - 3 & Z_\Gamma = c - 3 \\
Z_h = \frac{2c+1}{2c-3} & Z_h = \frac{c}{c-3} \\
N = 4 & \\
Z_\Gamma = \tilde{c} + 3 & Z_\Gamma = c \\
Z_h = 1 & Z_h = 1 \\
\end{array}
\]

and the other field renormalisation factors (Z_{ψ}, Z_u, Z_q, Z_p) for the effective action are the same. Clearly, these results coincide if one takes into account that $c = \tilde{c} + \frac{1}{2} (\text{resp. } \tilde{c} + 3)$.

The remarkable property that the values of the central extensions of the Virasoro and affine algebras are related by $c = 6k + n$ with $n \in \mathbb{Z}$, is shared by a number of other non-linear superconformal and quasisuperconformal algebras. These contain only one dimension two field, a number of (bosonic and fermionic) dimension $3/2$ fields, and an affine superalgebra by which we will identify them. There are the $osp(m|2n)$ cases with $|m - 2n - 3| \leq 1$ (with $m = 3, 4$ and $n = 0$ treated in this paper, and $m = 2, n = 0$ the ordinary $N = 2$ superalgebra) and the $u(n|m)$ cases with $|n - m - 2| \leq 1$ from the series in [18], and further the $osp(n|2m) \oplus sl_2$ algebras with $|n - 2m + 3| \leq 1$ from [19]. These same algebras arise also (among others) by quantum Drinfeld-Sokolov reduction from the list [9] where there are no corrections to the coupling beyond one loop. This is reminiscent of $N = 2$ supergravity, and consequently also of supersymmetry non-renormalisation theorems[20], but the evidence is not conclusive. It would be interesting to investigate whether one can extend the analysis of the present paper in this direction.
References

