Symmetry transformations in Batalin-Vilkovisky formalism.

Albert Schwarz*
Department of Mathematics, University of California,
Davis, CA 95616
ASSCHWARZ@UCDAVIS.EDU

Abstract

Let us suppose that the functional S on an odd symplectic manifold satisfies the quantum master equation $\Delta_\rho e^S = 0$. We prove that in some sense every quantum observable (i.e. every function H obeying $\Delta_\rho (He^S) = 0$) determines a symmetry of the theory with the action functional S.

This short note was inspired by the paper [2] where the results of [1] were applied to obtain the description of the gauge transformations in Batalin-Vilkovisky theory. We begin with the observation that [1] contains conditions of physical equivalence of different solutions to the master equivalence and use these conditions to give a very transparent analysis of symmetry transformations in BV-approach. Let us recall some notions and results of [1].

Let us fix a manifold M provided with odd symplectic structure (P-structure). Let us suppose that the volume element in M is specified by the density ρ. We say that this volume element determines an SP-structure in M if $\Delta_\rho^2 = 0$. (Here the operator Δ_ρ acts by the formula

$$\Delta_\rho A = \frac{1}{2} \text{div}_\rho K_A,$$

(1)

where K_A denotes the hamiltonian vector field corresponding to A and the divergence div_ρ is calculated with respect to the density ρ.) By definition a function S satisfies the quantum master equation on an SP-manifold M if

$$\Delta_\rho e^S = 0.$$

(2)

Such a function S can be considered as an action functional and determines physical quantitional by means of integration over Lagrangian submanifolds of M.

*Research supported in part by NSF grant No. DMS-9201366

1
The following statement was proven in [1](see Lemma 4 and Equ.(32)):

The density \(\tilde{\rho} = e^\sigma \rho \) determines a new \(SP \)-structure in \(M \) if and only if

\[
\Delta_\rho \sigma + \frac{1}{4} \{ \sigma, \sigma \} = 0. \tag{3}
\]

If \(S \) is a solution to the quantum master equation (1) then \(\tilde{S} = S - \frac{1}{2} \sigma \) satisfies the quantum master equation

\[
\Delta_\rho e^{\tilde{S}} = 0 \tag{4}
\]

corresponding to the new \(SP \)-structure. The action functional \(\tilde{S} = S - \frac{1}{2} \sigma \) on the manifold \(M \) with the new \(SP \)-structure describes the same physics as the action functional \(S \) on the manifold \(M \) with the old \(SP \)-structure. In particular

\[
\int_L e^{\tilde{S}} d\lambda = \int_L e^{S} d\lambda \tag{5}
\]

for every Lagrangian submanifold \(L \subset M \). (Here \(d\lambda \) and \(d\tilde{\lambda} \) denote the volume elements on \(L \) determined by new and old \(SP \)-structure correspondingly.)

One can introduce the notion of quantum observable for the theory with the action \(S \) on an \(SP \)-manifold \(M \) in the following way. We will say that an even function \(A \) determines a quantum observable if

\[
\Delta_\rho (A e^{\tilde{S}}) = 0 \tag{6}
\]

or, equivalently, if \(\Delta_\rho A + \{ A, S \} = 0 \). It is easy to check that for every observable \(A \) we have also \(\Delta_\rho (A e^S) = 0 \); in other words the quantum observables for the action functionals \(S \) and \(\tilde{S} \) coincide. Moreover

\[
\int_L A e^{\tilde{S}} d\tilde{\lambda} = \int_L A e^{S} d\lambda \tag{7}
\]

for every observable \(A \) and for every Lagrangian manifold \(L \). This equation can be considered as a little bit more precise expression of physical equivalence of action functionals \(S \) and \(\tilde{S} \) than (5). The condition (6) is equivalent to the requirement that \(S + \varepsilon A \) is a solution to the quantum master equation for infinitesimal \(\varepsilon \); therefore we can derive (7) applying (4) to the functionals \(S + \varepsilon A, \tilde{S} + \varepsilon A \) where \(\varepsilon \to 0 \).

Let us use the statement above in the case \(\sigma = 2S \). As was mentioned in [1], the equation (2) can be represented in the form \(\Delta_\rho e^{\sigma/2} = 0 \); therefore it is satisfied for \(\sigma = 2S \). We arrive to the following conclusion:

The theory with the action \(\rho \) is physically equivalent to the theory with the trivial action functional \(\tilde{S} = 0 \) and the \(SP \)-structure determined by the density \(\tilde{\rho} = e^{2S} \rho \).
The statement above can be used to analyze the symmetry transformations in Batalin-Vilkovisky approach. If $\tilde{S} = 0$ then the symmetries can be characterized as transformations of M preserving the symplectic structure and the density $\tilde{\rho} = e^{2S}\rho$. Infinitesimal symmetry transformation correspond therefore to Hamiltonian vector fields with zero divergence with respect to $\tilde{\rho}$, i.e. to functions H obeying $\Delta_\epsilon H = 0$. One can say therefore that infinitesimal symmetry transformations are in one-to-one correspondence with quantum observables of our theory. It is important to emphasize that the notion of observable does not change when we replace S by $\tilde{S} = 0$. Therefore we can describe symmetries also in terms of the original action S and the original measure $d\mu = \rho dx$. (This description follows immediately from the description of symmetry transformations in the formulation with $\tilde{S} = 0$; one can prove it directly using (5),(6),(7).)

We obtain that every function H satisfying $\Delta_\epsilon H + \{H, S\} = 0$ (every quantum observable) determines a symmetry in the following sense. Neither the action functional S, nor the density ρ are invariant with respect to an infinitesimal transformation with the Hamiltonian H, however the new action functional

$$\tilde{S} = S + \varepsilon \{H, S\}$$ \hspace{1cm} (8)

and the new measure

$$d\tilde{\mu} = d\mu (1 + 2\varepsilon \Delta_\epsilon H)$$ \hspace{1cm} (9)

describe the same physics as the old action functional S and the old measure $d\mu = \rho dx$.

Here ε is an infinitesimal parameter. The formula (9) follows immediately from (1) and from the standard formula

$$d\tilde{\mu} = d\mu + \varepsilon d\mu \ div_v K$$ \hspace{1cm} (10)

for the variation of measure by the infinitesimal transformation $x \to x + \varepsilon K$, where K is an arbitrary vector field.

It is essential to stress that quantum observables don’t remain intact by the symmetry transformation (8),(9). Namely, one should replace a quantum observable A by the observable $\tilde{A} = A + \varepsilon \{H, A\}$.

References
