THE HIGGS MODEL FOR ANYONS AND LIOUVILLE ACTION

MARCO MATONE*

Department of Physics “G. Galilei” - Istituto Nazionale di Fisica Nucleare
University of Padova
Via Marzolo, 8 - 35131 Padova, Italy

ABSTRACT

We connect Liouville theory, anyons and Higgs model in a purely geometrical way.

*Partly Supported by the European Community Research Programme Gauge Theories, applied supersymmetry and quantum gravity, contract SC1-CT92-0789
*e-mail: matone@padova.infn.it, mvxp45@:matone
1 The Higgs model for anyons

The main aim of this paper is to show that the Higgs model for anyons and Liouville theory are strictly related. The crucial point is based on the following remark

a. The configuration space of \( n \) anyons is the manifold of \( n \) unordered points in \( \hat{\mathcal{C}} = \mathcal{C} \cup \{ \infty \} \)

\[
M_n = (\hat{\mathcal{C}}^n \setminus \Delta_n) / \text{Symm}(n), \tag{1.1}
\]

with \( \Delta_n \) the diagonal subset where two or more punctures coincide.

b. The Liouville action on the Riemann sphere with \( n \)-punctures evaluated on the classical solution is the Kähler potential for the natural metric (the Weil-Petersson metric) on\(^1\)

\[
\mathcal{M}_n = (\hat{\mathcal{C}}^n \setminus \Delta_n) / \text{Symm}(n) \times \text{PSL}(2, \mathbb{C}). \tag{1.2}
\]

This remark implies that starting from anyons on \( \hat{\mathcal{C}} \) one can recover the two-form associated to the natural metric on the configuration space by first computing the Poincaré metric \( e^{\varphi_{cl}} \) on the punctured sphere and then, after evaluating the Liouville action for \( \varphi = \varphi_{cl} \), computing the curvature two-form of the Hermitian line bundle defined by classical action.

To understand the physical relevance of this remark we recall that the quantum Hamiltonian for \( n \) anyons is proportional to the covariant Laplacian on \( M_n \).

Actually, the connection between anyons and Liouville arises also in considering the critically coupled abelian Higgs model in (2+1)-dimensions where the space \( M_n \) plays a crucial role in the analysis of \( n \)th topological sector of the theory. Remarkably \( f = 2 \text{Re} \log \phi \), with \( \phi \) the Higgs field, satisfies the modified (non covariant) Liouville equation

\[
f_{\varphi_{cl}} = e^{\varphi} - 1, \tag{1.3}
\]

which is the second Bogomol’nyi equation. Notice that the non covariance (the \(-1\) in (1.3)) is due to the Higgs mass.

Let us consider the Lagrangian of the Higgs model (see [1, 2, 3] for details)

\[
\mathcal{L} = \frac{1}{2} D_\mu \phi D^\mu \phi - \frac{1}{4} F_{\mu \nu} F^{\mu \nu} - \frac{1}{8} \left( |\phi|^2 - 1 \right)^2, \quad \phi = \phi_1 + i \phi_2, \tag{1.4}
\]

\(^1\)The \( \text{PSL}(2, \mathbb{C}) \) group reflects the Möbius symmetry of the Riemann sphere. Thus one can consider \( \mathcal{M}_n \) as the configuration space for \( n - 3 \) anyons on the Riemann sphere with 3-punctures (for example at 0, 1 and \( \infty \)).
where

\[ D_\mu \phi = (\partial_\mu - i A_\mu) \phi, \quad F_{\mu \nu} = \partial_\mu A_\nu - \partial_\nu A_\mu, \]

and the metric has signature \((1, -1, -1)\).

In the temporal gauge the finiteness of the energy implies that at infinity the Higgs field is a pure phase. The magnetic flux through \(\mathbb{R}^2\) is

\[ \int F_{12} = 2\pi n, \quad (1.5) \]

where \(n\) is the winding number labelling the topological sectors of the map

\[ |\phi| : S_\infty^1 \longrightarrow U(1). \quad (1.6) \]

In the static configuration \(A_t = 0, \dot{\phi} = 0\), the energy has the lower bound \(E \geq \pi |n|\). The critical case \(E = \pi |n|\) arises when the Bogomol’nyi equations

\[ (D_1 + \text{sgn}(n)i D_2) \phi = 0, \quad F_{12} + \text{sgn}(n) \frac{1}{2} \left( |\phi|^2 - 1 \right) = 0, \quad (1.7) \]

are satisfied. It is crucial that in the \(n^{th}\) topological sector the space of smooth solutions is a manifold \(\widehat{M}_n\) of complex dimension \(n\). In particular, each solution is uniquely specified by the \(n\) unordered points \(\{z_k\}\) where the Higgs field is zero [4]. The same happens in considering the Liouville equation for the Poincaré metric on Riemann surfaces. In particular, due to the uniqueness of the solution of the Poincaré metric, to each complex structure of the \(n\)-punctured Riemann sphere (the unordered set of \(n\) points) corresponds a solution of the Liouville equation (see below for details).

Topologically \(\widehat{M}_n\) coincides with \(\hat{\mathbb{C}}^n\). It is a remarkable fact that the abelian Higgs model (almost) provides a smooth metric and \(U(1)\) gauge field on \(\widehat{M}_n\). In particular the kinetic energy induces the metric

\[ ds^2 = \frac{1}{2} \int_C (d\phi \wedge d\phi + dA_1 \wedge dA_1). \quad (1.8) \]

The field evolution is described by geodesic motion on \(\widehat{M}_n\).

The \(z_k\)'s are good coordinates only on the subspace \(M_n\). Good global coordinates on \(M_n\) are provided by the coefficients of the polynomial [5]

\[ P_n(z) = \sum_{k=0}^n w_k z^k \equiv \prod_{k=1}^n (z - z_k). \quad (1.9) \]

Note that the field evolution defines deformation of the complex structure of the punctured sphere. Recently it has been shown that this deformation is strictly related with Liouville theory (see below).
In [1] Samols introduced the following metric on $M_n$

$$ds^2 = \frac{1}{2} \sum_{r,s=1}^{n} \left( \delta_{rs} + 2 \frac{\partial b_r}{\partial z_s} \right) d\bar{z}_r dz_s,$$

where the $b_r$'s satisfy the equations

$$\frac{\partial b_r}{\partial z_s} = \frac{\partial \overline{b_s}}{\partial z_r}. \tag{1.11}$$

## 2 The Liouville equation

Let us denote by $H$ the upper half plane and with $\Gamma$ a finitely generated Fuchsian group. A Riemann surface isomorphic to the quotient $H/\Gamma$ has the Poincaré metric $\hat{g}$ as the unique metric with scalar curvature $R_\hat{g} = -1$ compatible with its complex structure. This implies the uniqueness of the solution of the Liouville equation on $\Sigma$. The Poincaré metric on $H$ is

$$d\bar{s}^2 = \frac{|dw|^2}{(\text{Im } w)^2}. \tag{2.1}$$

Note that $PSL(2, \mathbb{R})$ transformations are isometries of $H$ endowed with the Poincaré metric.

An important property of $\Gamma$ is that it is isomorphic to the fundamental group $\pi_1(\Sigma)$. Uniformizing groups admit the following structure. Suppose $\Gamma$ uniformizes a surface of genus $g$ with $n$ punctures and $m$ elliptic points with indices $2 \le q_1^{-1} \le q_2^{-1} \le \ldots \le q_m^{-1} < \infty$. In this case the Fuchsian group is generated by $2h$ hyperbolic elements $H_1, \ldots, H_{2h}$, $m$ elliptic elements $E_1, \ldots, E_m$ and $n$ parabolic elements $P_1, \ldots, P_n$, satisfying the relations

$$E_i^{q_i^{-1}} = I, \quad \prod_{l=1}^{m} E_l \prod_{k=1}^{n} P_k \prod_{j=1}^{h} \left( H_{2j-1}^{-1} H_{2j} H_{2j-1}^{-1} \right) = I, \tag{2.2}$$

where the infinite cyclicity of parabolic fixed point stabilizers is understood.

Setting $w = J_H^{-1}(z)$ in (2.1), where $J_H^{-1} : \Sigma \to H$ is the inverse of the uniformization map, we get the Poincaré metric on $\Sigma$

$$ds^2 = 2\hat{g}_{z\bar{z}} |dz|^2 = e^{\varphi(z, \bar{z})} |dz|^2, \tag{2.3}$$

where

$$e^{\varphi(z, \bar{z})} = \frac{|J_H^{-1}(z)'|^2}{(\text{Im } J_H^{-1}(z))^2}, \tag{2.4}$$

which is invariant under $SL(2, \mathbb{R})$ fractional transformations of $J_H^{-1}(z)$. Since

$$R_\hat{g} = -\hat{g}^{z\bar{z}} \partial_z \partial_{\bar{z}} \log \hat{g}_{z\bar{z}}, \quad \hat{g}^{z\bar{z}} = 2e^{-\varphi}, \tag{2.5}$$

3
the condition $R^c_d = -1$ is equivalent to the Liouville equation

$$
\partial_z \partial_{\bar{z}} \varphi_{cl}(z, \bar{z}) = 1/2 \varphi_{cl}(z, \bar{z}).
$$

(2.6)

Eq.(2.4) shows that from the explicit expression of the inverse map we can find the dependence of $e^c_d$ on the moduli of $\Sigma$. Conversely we can express the inverse map (to within a $SL(2, \mathbb{C})$ fractional transformation) in terms of $\varphi_{cl}$. This follows from the Schwarzian equation

$$
\{ J^{-1}_H, z \} = T^F(z),
$$

(2.7)

where

$$
T^F(z) = \varphi''_{cl} - 1/2 (\varphi'_{cl})^2,
$$

(2.8)

is the classical Liouville energy-momentum tensor and

$$
\{ f, z \} = \frac{f'''}{f'} - \frac{3}{2} \left( \frac{f''}{f'} \right)^2 = -2 \left( f' \right)^{\frac{1}{2}} \left( (f')^{-\frac{1}{2}} \right)'',
$$

(2.9)

is the Schwarzian derivative.

## 3 The Riemann sphere

Here we now discuss basic geometrical results on the Riemann sphere with $n$-punctures

$$
\Sigma = \mathcal{C} \setminus \{ z_1, \ldots, z_n \}, \quad \mathcal{C} \equiv \mathbb{C} \cup \{ \infty \}.
$$

(3.1)

Let $P_1, \ldots, P_n$, $n \geq 4$, be the set of parabolic generators of $\Gamma$ satisfying the constraint $P_1 \cdots P_n = 1$ and with the property that their parabolic fixed points $\{ w_1, \ldots, w_n \} \in \mathbb{R} \cup \{ \infty \}$ map onto $\{ z_1, \ldots, z_n \}$. The moduli space of $n$-punctured spheres is the space of classes of isomorphic $\Sigma$’s, that is

$$
\mathcal{M}_n = \{ (z_1, \ldots, z_n) \in \mathcal{C}^n | \text{ } z_j \neq z_k \text{ for } j \neq k \}/\text{Symm}(n) \times PSL(2, \mathbb{C}),
$$

(3.2)

where $\text{Symm}(n)$ acts by permuting $\{ z_1, \ldots, z_n \}$ whereas $PSL(2, \mathbb{C})$ acts by linear fractional transformations. By $PSL(2, \mathbb{C})$ we can recover the ‘standard normalization’: $z_{n-2} = 0$, $z_{n-1} = 1$ and $z_n = \infty$. Furthermore, without loss of generality, we assume that $w_{n-2} = 0$, $w_{n-1} = 1$ and $w_n = \infty$. For the classical Liouville tensor we have

$$
T^F(z) = \sum_{k=1}^{n-1} \left( \frac{1}{2(z - z_k)^2} + \frac{e_k}{z - z_k} \right), \quad \lim_{z \to \infty} T^F(z) = \frac{1}{2z^2} + \frac{e_n}{z^3} + O\left( \frac{1}{|z|^4} \right).
$$

(3.3)
Notice that $T^F$ is holomorphic on $\Sigma = \tilde{\mathcal{C}} \setminus \{z_1, \ldots, z_n\}$. Such a characteristic of $T^F$ extends to higher genus surfaces as well. This follows from the Liouville equation. Equivalently one can consider local univalence of the inverse map which implies that $\partial_z J^1_H(z) \neq 0$, $\forall z \in \Sigma$, so that the Schwarzian derivative of $J^1_H$ is holomorphic on $\Sigma$.

Eq.(3.3) implies the following constraints on the accessary parameters

$$
\sum_{k=1}^{n-1} c_k = 0, \quad \sum_{k=1}^{n-1} c_k z_k = 1 - n/2, \quad \sum_{k=1}^{n-1} z_k(1 + c_k z_k) = c_n,
$$

so that $c_1, \ldots, c_{n-3}$ can be considered as the basic set. These parameters are functions on the space

$$
V^{(n)} = \{ (z_1, \ldots, z_{n-3}) \in \mathbb{C}^{n-3} | z_j \neq 0, 1; z_j \neq z_k, \text{ for } j \neq k \},
$$

which is a covering of $\mathcal{M}_n$ whereas the Teichmüller space $T_n$ is a covering of $V^{(n)}$ whose transformations form a subgroup of the modular group. Note that

$$
\mathcal{M}_n \cong V^{(n)}/\text{Symm}(n),
$$

where the action of $\text{Symm}(n)$ on $V^{(n)}$ is defined by comparing (3.2) with (3.6). In particular, if a permutation involves at least one of the punctures between 0, 1 and $\infty$, then we must perform a linear fractional transformation to recover the standard normalization. This means that the last three punctures of the transformed surface $\tilde{\Sigma}$ must be $\tilde{z}_{n-2} = 0$, $\tilde{z}_{n-1} = 1$, $\tilde{z}_n = \infty$. Thus if $\sigma_k \in \text{Symm}(n)$ interchanges $z_k$ and $z_{k+1}$, the coordinate on $\tilde{\Sigma}$ is

$$
\tilde{z} = \begin{cases} 
  z, & k = 1, \ldots, n - 4, \\
  (z - z_k)/(1 - z_k), & k = n - 3, \\
  1 - z, & k = n - 2, \\
  z/(z - 1), & k = n - 1.
\end{cases}
$$

### 4 Liouville action and the Weil-Petersson metric

Let us consider the Liouville action on the Riemann spheres with $n$-punctures [6]

$$
S^{(n)}_{\Sigma} = \lim_{r \to 0} S^{(n)}_r = \lim_{r \to 0} \left[ \int_{\Sigma_r} (\partial_z \varphi \partial_z \varphi + e^\varphi) + 2\pi (n \log r + 2(n - 2) \log |\log r|) \right],
$$

$$
\Sigma_r = \Sigma \setminus \left( \bigcup_{i=1}^{n-1} \{ z ||z - z_i| < r \} \cup \{ z ||z| > r^{-1} \} \right),
$$
where the field $\varphi$ is in the class of smooth functions on $\Sigma$ with the boundary condition given by the asymptotic behaviour of the classical solution

$$
\varphi_{cl}(z) = \begin{cases} 
-2\log|z - z_k| - 2\log|z - z_k| + O(1), \quad z \to z_k, \quad k \neq n, \\
-2\log|z| - 2\log|z| + O(1), \quad z \to \infty,
\end{cases}
$$

(4.2)

Eq.(4.1) shows that already at the classical level the Liouville action needs a regularization whose effect is to cancel the contributions coming from the non covariance\(^2\) of $|\varphi_z|^2$. This regularization provides a modular anomaly for the Liouville action which is strictly related to the geometry of the moduli space [7]. In particular, it turns out that the Liouville action evaluated on the classical solution $S_{cl}^{(n)}$ is not invariant under the action of $Symm(n)$ [7]

$$
S_{cl}^{(n)}(z_1, \ldots, z_{n-3}) - S_{cl}^{(n)}(\sigma_i(z_1, \ldots, z_{n-3}))
$$

$$
= \begin{cases} 
4\pi \sum_{k \neq i} |z_k - z_i| - 2\pi(n - 4) \log|z_i(z_i - 1)|, \quad i = 1, \ldots, n - 3, \\
4\pi \sum_{k=1}^{n-3} |z_k|, \quad i = n - 2, \\
4\pi \sum |z_k - 1|, \quad i = n - 1,
\end{cases}
$$

(4.3)

where $\sigma_i \in Symm(n), i \neq n$, is the transformation interchanging the $i$ and $n$ punctures. Furthermore, the asymptotic behaviour of the classical Liouville action when the punctures coalesce is [7]

$$
S_{cl}^{(n)}(z_1, \ldots, z_{n-3}) = \begin{cases} 
2\pi \log|z_k - z_i| + O(1), \quad z_i \to z_k, \quad k \neq n, \\
2\pi \log|z_i| + O(1) \quad z_i \to \infty.
\end{cases}
$$

(4.4)

It turns out that the Liouville action computed on the classical solution is a continuously differentiable function on $V^{(n)}$ and [6]

$$
-\frac{1}{2\pi} \frac{\partial S_{cl}^{(n)}}{\partial z_k} = c_k, \quad k = 1, \ldots, n - 3,
$$

(4.5)

where the $c_k$'s are the accessory parameters defined in (3.3).

Notice that by (3.4) and (4.5) it follows that

$$
\sum_{k=1}^{n-3} \frac{\partial S_{cl}^{(n)}}{\partial z_k} = 2\pi(c_{n-1} + c_{n-2}), \quad \sum_{k=1}^{n-3} z_k \frac{\partial S_{cl}^{(n)}}{\partial z_k} = \pi(n - 2 + 2c_{n-1}),
$$

$$
\sum_{k=1}^{n-3} z_k \frac{\partial S_{cl}^{(n)}}{\partial z_k} = 2\pi \left( c_{n-1} - c_n + 1 + \sum_{k=1}^{n-3} z_k \right).
$$

(4.6)

\(^2\)Recall that $e^\varphi$ is a $(1,1)$-differential.
Since $S^{(n)}_d$ is real, eq.(4.5) yields
\[
(\partial + \overline{\theta}) S^{(n)}_d = -2\pi \sum_{k=1}^{n-3} (c_k d\bar{z}_k + \bar{c}_k dz_k),
\]
(4.7)
and
\[
\frac{\partial c_j}{\partial z_k} = \frac{\partial c_k}{\partial z_j}, \quad j, k = 1, \ldots, n - 3,
\]
(4.8)
\[
\frac{\partial c_j}{\partial \bar{z}_k} = \frac{\partial \bar{c}_k}{\partial \bar{z}_j}, \quad j, k = 1, \ldots, n - 3.
\]
(4.9)

We stress the strict similarity between (4.9) for the accessory parameters and the Samols equations (1.11).

Another important result in [6] is
\[
\frac{\partial c_j}{\partial \bar{z}_k} = \frac{1}{2\pi} \left\langle \frac{\partial}{\partial z_j}, \frac{\partial}{\partial \bar{z}_k} \right\rangle, \quad j, k = 1, \ldots, n - 3,
\]
(4.10)
where the brackets denote the Weil-Petersson metric on the Teichmüller space $T_n$ projected onto $V^{(n)}$. Therefore by (4.5)
\[
\frac{\partial^2 S^{(n)}_d}{\partial z_j \partial \bar{z}_k} = -\left\langle \frac{\partial}{\partial z_j}, \frac{\partial}{\partial \bar{z}_k} \right\rangle, \quad j, k = 1, \ldots, n - 3,
\]
(4.11)
that is
\[
\omega_{WP} = \frac{i}{2} \partial S^{(n)}_d = -i\pi \sum_{j,k=1}^{n-3} \frac{\partial c_k}{\partial \bar{z}_j} dz_j \wedge d\bar{z}_k,
\]
(4.12)
where $\omega_{WP}$ is the Weil-Petersson two-form on $V^{(n)}$. Thus the Liouville action evaluated on the classical solution is the Kähler potential for the Weil-Petersson two-form defining the symplectic structure on $V^{(n)}$.

5 Geometric quantization

The symplectic structure considered above allows us to consider the following Poisson bracket relations [8]
\[
\{c_j, c_k\}_{WP} = 0, \quad \{c_j, z_k\}_{WP} = \frac{i}{\pi} \delta_{jk},
\]
(5.1)
where the brackets are defined with respect to Weil-Petersson metric $\omega_{WP}$. These relations suggest to performing the geometric quantization of the space $\mathcal{M}_n$. To do this we must define a suitable line bundle. Let us consider the function [7]
\[
f_{\sigma_k, n} = \frac{\prod_{j\neq k}^{n-3} (z_j - z_k)^2}{(z_k(z_k - 1))^{n-4}}, \quad k = 1, \ldots, n - 3,
\]

7
\[ f_{\sigma_{n-2}, n} = \prod_{j=1}^{n-3} z_j^2, \quad f_{\sigma_{n-1}, n} = \prod_{j=1}^{n-3} (z_j - 1)^2. \]  

(5.2)

The extension by the composition \( f_{\sigma_1 \circ \sigma_2} = (f_{\sigma_1} \circ f_{\sigma_2}) \) defines a 1-cocycle \( \{f_\sigma\}_{\sigma \in \text{Symm}(n)} \) of \( \text{Symm}(n) \) \([7]\). Let us now consider the holomorphic line bundle

\[ \mathcal{L}_n = V^{(n)} \times \mathbb{C}/\text{Symm}(n), \]

(5.3)
on \( \mathcal{M}_n \) where the action of \( \sigma \in \text{Symm}(n) \) is defined by \( (x, z) \rightarrow (\sigma x, f_\sigma(x)z) \), \( x \in V^{(n)} \), \( z \in \mathbb{C} \). Since

\[ \exp \left( \frac{S_{cl}^{(n)} \circ \sigma}{\pi} \right) |f_\sigma|^2 = \exp \left( \frac{S_{cl}^{(n)}}{\pi} \right), \]

(5.4)
it follows that \( \exp(S_{cl}^{(n)}/\pi) \) is a Hermitian metric in the line bundle \( \mathcal{L}_n \rightarrow \mathcal{M}_n \). By \( (4.5) \) \( \exp(S_{cl}^{(n)}/\pi) \) has connection form \( -2 \sum_i c_i dz_i \) and, by \( (4.12) \), curvature two-form \( -\frac{2i}{\pi} \omega_{WP} \) \([7]\). The covariant derivatives are

\[ \partial_k = \partial_{z_k} - \partial_{\bar{z}_k} \frac{S_{cl}^{(n)}}{\pi} = \partial_{z_k} + 2c_k, \quad \overline{\partial}_k = \partial_{\bar{z}_k}. \]

(5.5)

In the geometric quantization the Hilbert states are sections of \( \mathcal{L}_n \) annihilated by ‘half’ of the derivatives (polarization). The natural choice is

\[ \mathcal{H} = \left\{ \psi \in \mathcal{L}_n | \overline{\partial}_k \psi = 0 \right\}, \]

(5.6)

with inner product

\[ \langle \psi_1 | \psi_2 \rangle = \frac{1}{n!(n-3)!} \int_{\mathcal{M}_n} d(WP) e^{-\frac{S_{cl}^{(n)}}{4}} \overline{\psi_1} \psi_2, \]

(5.7)

where

\[ d(WP) \equiv \left( \wedge^{n-3} \frac{i}{2} \overline{\partial} \partial S_{cl}^{(n)} \right), \]

(5.8)

that by \( (4.12) \) is the Weil-Petersson volume form. An alternative to \( (5.8) \) is to use the volume form \( \wedge^{n-3} \omega \) where

\[ \omega = \frac{i}{2} \overline{\partial} \partial \log \det \left| \frac{\partial^2 S_{cl}^{(n)}}{\partial \overline{z}_j \partial z_k} \right|. \]

(5.9)

However, in general, the correspondence principle can be proved only if the scalar product is defined with respect to the volume form associated with the Kähler potential \([9]\). This means that in our case we must use the Weil-Petersson volume form.
We conclude the discussion on the geometric quantization of $\mathcal{M}_n$ by noticing that there is an alternative for the polarization choice in the geometric quantization above, namely

$$\mathcal{H} = \{ \tilde{\psi} \in \mathcal{L}_n | D_k \tilde{\psi} = 0 \}, \quad (5.10)$$

that is, the states and the classical Liouville action are related by

$$\partial_{z_k} S_d^{(n)} = \pi \partial_{z_k} \log \tilde{\psi}. \quad (5.11)$$

6 Anyons, Higgs and Liouville theory

Let us make some remarks. A crucial aspect that should be further investigated concerns the classical-quantum interplay arising both in Liouville and anyons theories\(^3\). In [10, 11] it has been emphasized that the regularization arising at the classical level for the Liouville action is strictly related to the conformal properties both of quantum and classical (Poincaré metric) Liouville operators. A similar approach should be applied to anyons to provide a geometrical interpretation of the statistics. As in the case of conformal weights in 2D quantum gravity [11] we can consider anyons as elliptic points whose ramification index fixes the statistics.

The approach considered here makes it possible [12] to connect anyons theory with the geometrical approach to quantum gravity recently considered in [10, 13, 11].

Another interesting aspect is the connection between Liouville and Higgs. This provides a way to consider the Higgs model in a 2D gravity framework.

Finally we note that our results should be useful to investigate the underlying geometry\(^4\) of the approach considered in [14].

Acknowledgements. I would like to thank P.A. Marchetti for stimulating discussions.

References


\(^3\)Notice that one must regard vortices as unlabelled particles not only quantum mechanically but also classically [3].

\(^4\)A crucial object in [14] is the braid group $B_n = \pi_1 (\mathcal{M}_n)$.

9


    hepth/9308125.

    121 (1989) 177.