On equivalence of Floer's and quantum cohomology.

Vladimir Sadov
Lyman Laboratory of Physics
Harvard University
Cambridge, MA 02138
and
L.D. Landau Institute for Theoretical Physics, Moscow

We show that the Floer cohomology and quantum cohomology rings of the almost Kahler manifold M, both defined over the Novikov ring of the loop space LM, are isomorphic. We do it using a BRST trivial deformation of the topological A-model. As an example we compute the Floer = quantum cohomology of the flag space $F/3$.
1. Introduction

Since after the ”quantum cohomology” ring $H^*_Q (= (c,c)$ ring in terms of N=2 sigma models) was introduced in [1], see also [2], [3], [4],[5] and [6], the natural question arose about its meaning in classical geometry. As the large volume limit of H^*_Q coincides with the ordinary cohomology ring $H^*(M)$ of the target space M, the challenge is to interpret the instanton corrections.

One way to do this in terms of the moduli space of holomorphic instantons was introduced in [2],[6],[5]. It is more or less standard by now and we refer the reader to [5], for a review of that approach. Closely related to, but not quite the same as the latter one, is the interpretation in terms of geometry of the parameterized loop space \mathcal{LM} of the target space, conjectured in [1][3]. It turns out that an appropriate object to deal with in this context is what the mathematicians call a Floer symplectic cohomology H^*_F [7], [8],[9].

H^*_F appear via the Witten-Floer [10], [11], [7]complex in \mathcal{LM}, whose vertices are the fixed points of some symplectomorphism ϕ of M and the edges are the ”pseudoholomorphic instantons” (defined below) connecting these fixed points. It is graded by the same abelian group 2Γ as the quantum cohomology H^*_Q (and for the same reason), a phenomenon known to physicists as the anomalous conservation of fermionic number. Under some natural assumptions [7],[12] one has $dim H^i_F = \sum_{\gamma \in \Gamma} b^{i+2}\gamma(M)$ where on the left hand side we identify the index of Betty numbers modulo 2Γ. Moreover, there is a natural action of $H^*(M)$ on H^*_F. It is defined in terms of intersection numbers in \mathcal{LM} of a finite dimensional cycle — a cell of the WF complex — with a finite codimensional one — a pullback of the cocycle on M under the natural projection $\mathcal{LM} \rightarrow M$. Having fixed the isomorphisms of vector spaces $h^i : H^i_F \equiv H^i_Q$, we may think that we have a new multiplication law (a ring structure) on $H^*(M)$. This is quite similar with how it happens for the quantum cohomology ring.

The whole ideology of the Floer theory renders it almost obvious, that there should be an isomorphism

$$H^*_Q \equiv H^*_F \quad (1.1)$$

Still, there are two obstacles for just the naive identification (1.1).

The first obstacle is that, as in [7]-[9], H^*_F is naturally defined over integer numbers Z. In particular, it cannot depend nontrivially on any continuous parameter. On the other hand, the quantum cohomology H^*_Q is defined over complex numbers and its ring structure depends on the Kahler structure of the target space.
The second problem is that by "pseudoholomorphic instantons" in Floer theory one understands the solutions of the equation

$$\frac{\partial X^i}{\partial \tau} + J^i_j \frac{\partial X^j}{\partial t} = \partial^i H(X, t)$$ \hspace{1cm} (1.2)

where J^i_j is an almost complex structure on M which relates the metrics G_{ij} and the Kähler form k_{ij}:

$$G_{ij} = J^n_k k_{nj}$$ \hspace{1cm} (1.3)

The function H on the right hand side of the equation (the hamiltonian) depends on the point on M and also depends periodically (with period 2π) on variable t. Fix some initial moment $t = 0$. The hamiltonian flow, generated by H, maps M to itself at each t. A map, generated when $t = 2\pi$, called a period map, gives a symplectomorphism ϕ. Thus the fixed points of ϕ are in one to one correspondence with the periodic with period 2π trajectories — the points of LM. By difficult analytic methods \cite{7},\cite{8}Floer has proved that in fact H^*_{ϕ} is independent of $H(X, t)$, for generic H. Unfortunately, $H = 0$ which gives the usual holomorphic instantons equation, is by no means generic for the Morse type theory.

It turns out that the first problem can be dealt with quite easily if we redefine both H^*_{Q} and H^*_{F} to be defined over some new ring, called a Novikov ring \cite{13}, \cite{14},\cite{15}. This trick is well known to mathematicians \cite{16},\cite{17}. It also makes possible to work with Floer theory on the Calabi-Yau manifold, which otherwise would be impossible.

Our strategy in dealing with the second difficulty will be to show how the "pseudoholomorphic instantons" appear in topological sigma model \cite{4},\cite{5},\cite{18}, properly deformed by adding a BRST-trivial piece to the action. Thus instead of trying to continue the Floer cohomology to the point $H = 0$ we "extend" the quantum cohomology to arbitrary H and show that it does not depend on H.

2. Morse theory for multivalued functions: Novikov rings

In order to organize the material better it seems convenient to begin with the explanation of ideas of the Novikov theory before having defined the Floer cohomology H^*_{F} in detail. The only thing we should know about H^*_{F} now is that it appears in a Morse theory for a multivalued function S on the loop space. That function is defined on the universal

\footnote{In the last reference the Novikov rings is different from ours and used for another reason (to work with nonexact symplectomorphisms).}
cover $\hat{\mathcal{L}}M$ of $\mathcal{L}M$ (it is necessarily abelian) and changes by $\oint_{\gamma} k$ as one moves along $\hat{\mathcal{L}}M$ by $\gamma \in \pi_1(\mathcal{L}M) = \pi_2(M)$, k is a Kahler form.

Consider first a situation in general, following closely the presentation of [13]. Let X be a closed manifold. We do not specify whether it is finite dimensional or not. Of course, in the latter case, which appears in Floer’s theory we have problems with compactness, but here we want to forget about it for a moment. Let $\gamma_1, \ldots, \gamma_n$ be a basis for the first homology group of X. For every closed 1-form ω on X we have n periods

$$k_j = \oint_{\gamma_j} \omega$$

The numbers k_1, \ldots, k_n are in general irrational and their linear combinations with integral coefficients form a free abelian group. The rank k of this group is called the *irrationality* of 1-form ω. Obviously, $k \leq n$. From now on we suppose that $k = n$ which means that ω is "generic enough".

There is a minimal free abelian covering $p : \hat{X} \to X$ such that the form $p^* \omega$ is exact:

$$p^* \omega = dS$$

The monodromy group is $\mathbb{Z}^n \equiv H^1(X)$, generated by the covering transformations $T_i : \hat{X} \to \hat{X}$, satisfying $T_i^* S = S + k_i$. Take on X a smooth metric such that the hamiltonian flow generated by ω lifts smoothly to a ∞-continuous flow on the covering space \hat{X}: each trajectory ends in a critical point or intersects all the level-surfaces of the function S on \hat{X}. Consider now a cellular decomposition \mathcal{C} (with the structure of complex) of X. For example, it can be a Morse decomposition defined as a collection of the surfaces of steepest descent starting from the critical points. This gives a collection of cells

$$\sigma_q^i, \ q = 1, \ldots, m_i$$

The complex \mathcal{C} lifts to a complex $\hat{\mathcal{C}}$ in \hat{X} with a free action of the monodromy group \mathbb{Z}^n on it. We can denote the cells of $\hat{\mathcal{C}}$ by

$$t_1^{s_1} t_2^{s_2} \cdots t_n^{s_n} \sigma_q^i, \ q = 1, \ldots, m_i$$

then the generators $T_i^{\pm 1}$ of the monodromy group act by multiplication by $t_i^{\pm 1}$. We define the boundary operator on $\hat{\mathcal{C}}$ by

$$\partial \sigma_q^i = \sum_p a_{pq}(t_1, \ldots, t_n) \sigma_p^{i-1}$$

3
where the coefficients \(a_{pq}(t_1, \ldots, t_n) \) are the formal series in \(t_i, t_i^{-1} \). To be precise, let us give a definition

Definition A ring \(K_n \) (a Novikov ring) consists of all such formal power series in \(t_1, \ldots, t_n, t_1^{-1}, \ldots, t_n^{-1} \) that the following two conditions are met:

a) There exists a number \(N(a) \) such that if

\[
a = \sum u_{s_1, \ldots, s_n} t_1^{s_1} \cdots t_n^{s_n}
\]

then the coefficient \(u_{s_1, \ldots, s_n} = 0 \) if \(\sum j s_j k_j < N(a) \).

b) There is only a finite number of nonzero coefficients in any domain

\[
N_1 < \sum j s_j k_j < N_2
\]

Example If \(n=1 \), then

\[K_n = Z[t^{-1}, t] \equiv \{ a = \sum_{n \geq N(a)} u_n t^n, \ u_n \in Z \} \]

— the Novikov ring coincides with all formal series with the finite negative part.

There is a natural embedding of the group ring of the monodromy group \(\mathbb{Z}^k \) to \(K_n \):

\[
0 \rightarrow Z[t_1, \ldots, t_n, t_1^{-1}, \ldots, t_n^{-1}] \rightarrow K_n
\]

This embedding generates the local system \(\mathcal{K} \) on \(X \) with coefficients in the ring \(K_n \) and the corresponding homology groups \(H_*(X, \mathcal{K}) \) are \(K_n \)-modules. It is the boundary operator of this local system complex that we have written in (2.5).

Having established the basic facts about Novikov rings in general situations, we are back to the loop spaces \(\mathcal{L}M \). We have the canonical isomorphism\(^2\)

\[
H_1(\mathcal{L}M) = H_2(M) = \pi_2(M)
\]

As a 1-form on the loop space \(\mathcal{L}M \) we choose a pullback \(\pi^*k \) under the natural projection \(\pi : \mathcal{L}M \rightarrow M \) of the Kahler form on \(M \).

Now let us apply what we have developed above to the quantum cohomology ring. One notices immediately that \(H^*_Q \) is in fact already defined over \(K_n \), if one identifies

\[
t_i = e^{\frac{i}{k}}
\]

\(^2 \) We suppose that \(M \) is simply connected.
Indeed, both the fundamental two- and three-forms, defining H^*_Q take values in series in t_1, \ldots, t_n with integer coefficients and easy to see that actually they take values in K_n. Moreover, we know that there can only appear the positive degrees of the generators t_1, \ldots, t_n in all these formulas. This is because we only consider the holomorphic maps into M for such maps the degree is always nonnegative. Thus in the definition of the Novikov ring given above, we can restrict ourselves to the series having no negative part. With this remark, we will use the term "Novikov ring" meaning the ring for the loop space constructed above.

From this point of view on the quantum cohomology we think of the variables t_1, \ldots, t_n as of indeterminates, but define H^*_Q over a bigger ring K_n instead of complex numbers C, so the Betti numbers do not change (generically).

3. A brief review of Floer symplectic cohomology

The purpose of this section is to briefly discuss the Floer theory in a way clarifying its resemblance to the quantum cohomology (modulo two obstacles, mentioned in the introduction). For example, from the very beginning we define it over the Novikov ring. Also, we don’t try to give any proofs in this section, referring the reader to [7]-[9],[12],[16],[17],[19],[20].

Let M be a Kahler manifold with a Kahler form k. This closed 2-form defines a symplectic structure on M, providing a one to one map between vector fields v and 1-forms ω on M given by the formula $\omega = k(v, \cdot)$. A vector field v preserves k iff ω is closed; v is called hamiltonian iff $\omega = dH$ is exact. A function H is called a Hamiltonian.

The Hamiltonian equation

$$\frac{dX^i}{dt} = v^i(X,t)$$

(3.1)

defines a family $u_H(t)$ of diffeomorphisms of M, preserving k (called symplectomorphisms). They are characterized by the condition that $X^i(t) = u^i_H(t, X)$ solves (3.1) for all $X \in M$.

The Floer theory studies fixed points of the period map $\text{Per} : u_H(t, X) \rightarrow u_H(t + 2\pi, X)$ for the Hamiltonian flows with periodic in t hamiltonians:

$$H(X,t + 2\pi) = H(X,t)$$

(3.2)

Such a points are in a one to one correspondence with the periodic trajectories of (3.1) having a period exactly 2π. It coincides with the ordinary Morse theory on M when H is
independent of t, as the fixed points of $u_H(t)$ are just the critical points of $H(X)$ then. For the time dependant hamiltonians $H(X,t)$ the Floer theory is a sort of a Morse theory on the loop space $\mathcal{L}M$ of M.

Let us consider a (multivalued) function S_H on $\mathcal{L}M$

$$S_H(z) = \int_{D^2} \phi^*(k) + \int_{S^1} H(X(t),t)dt$$ (3.3)

Here z is a point in $\mathcal{L}M$

$$z = \{X(t)|X(0) = X(2\pi)\}$$ (3.4)

and a smooth function ϕ furnishes a map of a disk $\phi : D^2 \to M$ with the boundary values $X(t)$, so $\partial D^2 = S^1$. Since $dk = 0$, S_H depends only on the homotopic type of ϕ with fixed boundary. This function becomes single valued on the minimal abelian cover $\widehat{\mathcal{L}M}$ of $\mathcal{L}M$ (with monodromy group \mathbb{Z}^k where $k = \text{rank} kH^2(M)$). When $\pi_2(M)$ has no torsion, $\widehat{\mathcal{L}M}$ coincides with the universal cover of $\mathcal{L}M$.

For a smooth vector field ξ on $\mathcal{L}M$ (in the point $z \in \mathcal{L}M$ it gives a vector field over the contour z in M) the ξ-derivative of S_H is well definite:

$$(\xi \cdot D)S_H(z) = \int_{S^1} \{k(z'(t),\xi(t)) + dH(\xi(t))(X(t),t)\}dt$$ (3.5)

A point z is a critical point of S_H iff (3.5) vanishes for all ξ, which happens iff $z = X(t)$ satisfies (3.1). As $z \in \mathcal{L}M$ is periodic with the period 2π by definition, it gives the fixed point of the period map we are after.

The trajectories of the gradient flow of S_H are the solutions3 $X^i(t,\tau) : S^1 \times R \to M$ of the partial differential equation (1.2). Two terms

$$G^i(X(t,\tau)) = J^j_j \frac{\partial X^j}{\partial t} - \partial^i H(X,t)$$ (3.6)

may be considered as a vector field on $\mathcal{L}M$ evaluated at $z(\tau)$ so (1.2) is a gradient flow equation on $\mathcal{L}M$:

$$\frac{\partial z(\tau)}{\partial \tau} = -G(z)$$ (3.7)

On the other hand, when $H(X,t) = 0$ (1.2) is just the Cauchy-Riemann equation for the holomorphic instantons.

3 They are also called the pseudoholomorphic instantons.
The function \(S_H(z) \) decreases along the trajectories of (3.7)

\[
\frac{\partial S_H(z)}{\partial \tau} = - \int_{S^1} \left| \frac{\partial X(t, \tau)}{\partial \tau} \right|^2 dt
\]

(3.8)

Thus the set of trajectories for which \(\int_R \int_{S^1} \left| \frac{\partial X(t, \tau)}{\partial \tau} \right|^2 dt d\tau \) is finite coincides with one of those for which \(S_H \) is bounded. Such trajectories connect the critical points of \(S_H \). We define the Morse complex \(\mathcal{C}_H \) as the set of bounded trajectories

\[
\mathcal{C}_H = \{ X(t, \tau) - \text{a solution of (1.2)} \mid \int_R \int_{S^1} \left| \frac{\partial X(t, \tau)}{\partial \tau} \right|^2 dt d\tau < \infty \}
\]

(3.9)

Let us define \(\mathcal{C}_H(z_+, z_-) \) as a set of trajectories in \(\mathcal{C}_H \) such that \(z(\tau) \to z_{\pm} \) when \(\tau \to \pm \infty \) and a set of \(k \)-trajectories \(\mathcal{C}_H^k(x, y) \) going from \(x \) to \(y \) as the set of all \(k \)-tuples \(z_i(\tau), \ldots, z_k(\tau) \) such that \(z_i(\tau) \in \mathcal{C}_H(x_{i-1}, x_i), x_0 = x, x_k = y \). A shift of the variable \(\tau \) preserves \(\mathcal{C}_H(z_+, z_-) \) so it makes sense to consider the quotient by the translational symmetry

\[
\tilde{\mathcal{C}}_H(z_+, z_-) = \mathcal{C}_H(z_+, z_-)/R
\]

(3.10)

The set \(Z \) of the critical points is graded by the analog of the Morse index \(\mu \). But unless \(c_1(M) = 0 \), i.e. unless \(M \) is a Calabi-Yau manifold, this is not a \(Z \) grading. Let \(\Gamma \subset Z \) be a lattice generated by the set of periods of \(c_1(M) \) on \(\pi_2(M) \), then there is a function \(\mu : Z \to Z/2\Gamma \) such that

\[
dim \mathcal{C}_H(x, y) = [\mu(x) - \mu(y)] \pmod{2\Gamma}
\]

(3.11)

There is the same situation for the quantum cohomology, where \(\mu \) is called a fermionic number. The ambiguity in (3.11) occurs because [21],[7] a sequence of paths in \(\mathcal{LM} \) can converge by splitting off a (pseudo)holomorphic sphere (instanton) \(w \), and for a joint of a path \(z(\tau) \in \mathcal{C}_H(x, y) \) with \(w \) we have

\[
\mu(z \# w) = \mu(x) - \mu(y) + 2c_1(w)
\]

(3.12)

This "splitting off a sphere" phenomenon also results in that the compactness properties of the cells \(\tilde{\mathcal{C}}_H(z_+, z_-) \) are not so good as they are in the finite dimensional Morse theory. But it can happen only for those components with dimensions bigger then 2. (Basically, because an \(S^1 \) action on the 2-sphere gives an additional degree of freedom.) Thus, as it were in finite dimensional case, the 0-dimensional component of \(\tilde{\mathcal{C}}_H(z_+, z_-) \) is finite and the 1-dimensional component is compact up to the boundaries from \(\tilde{\mathcal{C}}_H(z_+, z_-) \).
Now let Z^* be a free module generated by the critical points Z over the Novikov ring K. This module is graded by μ. For every isolated trajectory $z(\tau)$ belonging to the 0-dimensional component of $\tilde{C}_H(z_+,z_-)$, let $\sigma(z)$ denote its orientation W_i, F and $\rho(z) = t_1^{s_1(z)} \cdots t_n^{s_n(z)}$ denote the homomorphism which the local system K (defined in sec.2) associates with the path $z(\tau)$. We define the matrix element of the coboundary operator by the formula

$$< \delta y, x > = \sum_z \sigma(z) \rho(z)$$

(3.13)

where the sum is taken over all isolated trajectories in $C_H(z_+,z_-)$. Then the action of the coboundary operator on Z^* is given by

$$\delta y = \sum_{x \in Z} < \delta y, x > x$$

(3.14)

These formulas are to be compared with that obtained in [11] for the finite dimensional situation:

$$< \delta y, x > = \sum_z \sigma(z) e^{h(y) - h(x)}$$

(3.15)

When the Morse function is single valued, as in [11], the factors $e^{h(x)}$ can be absorbed by redefinition of the vertices x. When this is not the case, as in the Floer theory, the set of ”phase factors” $\rho(z) = e^{h(y) - h(x)}$ forms the nontrivial 1-cocycle on Z and cannot be canceled out by any renormalization. We see that the formula (3.15), which naturally appears in the context of supersymmetric quantum mechanics, knows already about the Novikov ring. The formula (3.13) should be considered as its counterpart for the topological sigma model where it computes the matrix element of the BRST operator between two wavefunctionals localized on the loops x and y respectively.

Computing the intersection numbers (weighed by ρ) of cycles in $\mathcal{L}M$ with cells $C_H(z_+,z_-)$ of the Floer complex, we could define the cup product $\cup : H^*(\mathcal{L}M) \times H^*_F \to H^*_F$. But because of noncompactness the intersection numbers are only defined for the particular dual classes of $H^*(\mathcal{L}M)$, pulled back from M by the zero time evaluation map $\pi : z = \{X(t)|X(0) = X(2\pi)\} \to X(0)$. This is similar to what we have for the quantum cohomology where we should compute the intersections only those cycles on the moduli space pulled back from M.

In order to define a restricted cup operation $\alpha \cup : H^*_F \to H^*_F$ we represent the cohomology class $\alpha \in H^p(M)$ by the dual singular simplex $\alpha : \bigcup_i \Delta^{|\alpha|}_i \to M$, $|\alpha| = dimM - p$ and set

$$\alpha \cap C_H(x,y) = \{(\lambda, z) \in \bigcup_i \Delta^{|\alpha|}_i \times C_H(x,y) | \alpha(\lambda) = X(0)\}$$

(3.16)
We have \(\text{dim}(\alpha \cap C_H(x, y)) = p - \text{dim} M \). Then we define the weighed intersection number as

\[
<x, \alpha \cup y> = \sum_p \sigma(p) \rho(p)
\]

(3.17)

where \(p \) runs over 0-dimensional part of \(\text{dim}(\alpha \cap C_H(x, y)) \) and \(\sigma(p) \) is the usual relative orientation factor \(\pm 1 \). The point \(p \) lies on one particular path \(z_p(\tau) \) and

\[
\rho(p) = \rho(z_p) = t_1^{\pm 1} \cdots t_m^{\pm n}
\]

(3.18)

is the homomorphism which the local system \(\mathcal{K} \) associates to \(z_p \). Finally, the cup operation \(\alpha \cup : Z^* \to Z^* \) is defined as

\[
\alpha \cup y = \sum_{x \in \mathbb{Z}} x < x, \alpha \cup y >
\]

(3.19)

So defined the cup operation commutes with the coboundary operator \(\delta \) and therefore descends to \(H_F^* \). The subtlety here is that for two arbitrary \(x, y \in Z^* \) the matrix element (3.17) depends on \(\alpha \) itself, not only on its cohomology class\(^4\). It becomes independent of the choice of any particular representative for \([\alpha] \in H^*(M)\) only after we descent from \(Z^* \) to \(H_F^* \). We will understand this better in the next section, in terms of decoupling of BRST-trivial states from the correlation functions of topological sigma model.

From the point of view of the topological sigma model the bracket \(< x, \alpha \cup y > \equiv < x|\alpha|y > \) should be interpreted as a matrix element of the operators corresponding to \(\alpha \), taken between vacua \(x \) and \(y \). In the next section we give such interpretation and relate these matrix elements with three point correlation functions of the A-model.

In the Floer theory, we consider the elements of de Rham cohomology of \(M \) as linear operators, acting on \(H_F^* \), so there is a homomorphism

\[
\nu : H_{dR}^*(M) \longrightarrow \text{End}(H_F^*)
\]

(3.20)

It is not obvious, that the image of \(\nu \) is a ring, i.e. that it is preserved by the operator multiplication\(^5\). We shall see it is true only when we identify this image as the operator algebra of topological A-model, which is closed. It would be very interesting to be able to prove this fact directly from the definitions (3.17), (3.19).

\(^4\) I thank D. Kazhdan who pointed out this fact.

\(^5\) I thank I. Singer and C. Taubes for the discussions that helped to realize importance of this.
4. Floer theory as a topological quantum field theory

4.1. Pseudoholomorphic instantons in the topological A-model

In this section we give the physical interpretation of the Floer theory in terms of the topological sigma model [4],[18],[5]. It leads to identification of H^*_F as a quantum cohomology ring.

As usual, we start from the $N = 2$ supersymmetric sigma model and perform a topological twist so that one of the SUSY generators becomes a 1-form. Then the corresponding charge is the BRST operator Q. The $N = 2$ chiral multiplet of fields of the model contains

Bosons: world sheet scalar X^i — target space coordinates

world sheet one form F^i_α — target space vector

Fermions: world sheet scalar χ^i — target space vector

world sheet one form ρ^i_α — target space vector.

The field F^i_α is what is called the auxiliary field. Both ρ^i_α and F^i_α satisfy a self-duality constraint

$$\rho^i_\alpha = i\epsilon^i_\alpha J^j_\beta \rho^j_\beta$$

$$F^i_\alpha = \epsilon^i_\alpha \epsilon^j_\alpha F^j_\beta$$

The name 'auxiliary' stresses that F^i_α serves to close $N = 2$ algebra off shell and that it can be set to zero on shell. Here we want to show how it can be used to localize the path integral of the topological theory to the pseudoholomorphic instantons satisfying (1.2) with a nontrivial right hand side.

The BRST action on the fields of the multiplet is given by

$$[Q, X^i] = i\chi^i$$

$$\{Q, \chi^i\} = 0$$

$$\{Q, \rho^i_\alpha\} = F^i_\alpha + \partial_\alpha X^i + \epsilon^i_\alpha \epsilon^j_\beta J^j_\beta \partial_\beta X^i - i\Gamma^i_\alpha \chi^j_\beta \rho^k_\alpha + \frac{i}{2} \epsilon^i_\alpha D^j_\beta J^i_\alpha \chi^k_\beta \rho^j_\beta$$

We don’t need an awkward explicit formula for the commutator $[Q, F^i_\alpha]$; it is enough to know that it is fermionic and equals to zero on the subvariety $\chi^i = 0, \rho^i_\alpha = 0$ in the field space.
The physical operators (observables) of the model are the BRST cohomology, isomorphic to de Rham cohomology of M [4],[18]. To any p-form $\omega = A_{i_1 \cdots i_p} dx^{i_1} \cdots dx^{i_p}$ there corresponds an operator $O_\omega = A_{i_1 \cdots i_p} \chi^{i_1} \cdots \chi^{i_p}$ and

$$[Q, O_\omega] = O_{d\omega} \quad (4.4)$$

The isomorphism $H^*_{BRST} = H^*_{deRham}(M)$ follows from (4.4).

The next step is the computation of the matrix elements of the physical operators (the correlators). First of all, we should specify our two dimensional action. The standard choice, coming from $N = 2$ sigma model, is

$$A_0 = \int X^*(k) + \left\{ Q, \int \frac{1}{2} g^{\alpha \beta} G_{ij} \rho^i_\alpha (\partial_\alpha X^j - \frac{1}{2} F^j_\beta) \right\} \quad (4.5)$$

Then using the BRST fermionic symmetry, the path integral

$$< O_1 \cdots O_m > = \int D X^i D \chi^i D \rho^i_\alpha D F^i_\alpha O_1 \cdots O_m e^{A_0[X,\chi,\rho,F]} \quad (4.6)$$

can be localized [5] on the variety E_α of fixed points of Q (classically, we should treat Q as a vector field in the field space).

But first we want to get rid off the auxiliary field F^i_α. It can be done either by taking the Gaussian in F^i_α integral (4.6) or by using the equations of motion for F^i_α. If we choose the standard action (4.5), the (algebraic) equations of motion give $F^i_\alpha = 0$ so in (4.6) we can drop simultaneously the integration in F^i_α and F^i_α-dependent piece of the action in the exponent.

From (4.3) we see that on E_α the fermions vanish: $\chi^i = 0, \rho^i_\alpha = 0$ and the fields $X^i(z, \bar{z})$ satisfy the Cauchy-Riemann equation for the holomorphic maps from the world sheet into M.

Up to now this was a well known story [5] about A-model, leading to the notion of the quantum cohomology ring, characterized by the two- and three-point correlation functions on sphere. At this moment we can note, that the auxiliary field F^i_α is bosonic and there is nothing wrong if it has a nontrivial expectation $\Phi^i_\alpha(X, z, \bar{z})$ on shell, where $\Phi^i_\alpha(X, z, \bar{z})$ should satisfy the same self duality condition (4.2) as F^i_α. We can actually give to F^i_α the expectation Φ^i_α on shell, if we add to the action A_0 a BRST trivial piece

$$A = A_0 + \left\{ Q, \int g^{\alpha \beta} \rho^i_\alpha \Phi^i_\beta \right\} \quad (4.7)$$

6 This operator is a scalar on the world sheet. Besides, there are the physical operators which are 1- and 2-forms, the whole hierarchy related by the "descent equation" [5].
So in the sense of topological theory, the deformation (4.7) is trivial and all the correlation functions remain the same.

The conditions (4.3) gives now for the X^i fields on the fixed points locus \mathcal{E}_H the equation

$$\partial_\alpha X^i + \epsilon^i_\alpha x J^i_j \partial_\beta X^j = -\Phi^i_\alpha$$

(4.8)

(and the fermions vanish on \mathcal{E}_H as before).

To study the Floer theory, we only need the case when the world sheet is a cylinder $S^1 \times R^1$. Then we can introduce the global coordinates $(t \in S^1, \tau \in R^1)$, the same as in section 3. The field Φ^i_α has two components, related to each other by (4.2):

$$\Phi^i_\alpha = J^i_j \Phi^j_\tau$$

(4.9)

On the cylinder we can consistently take $\Phi^i_\alpha(X,t)$ to be a (periodic) function of the space coordinate t independent of the time coordinate τ. Then the energy is conserved in this a model.

In the section 4.2 we shall show, that in order to have a reasonable fermionic sector, we need to consider only hamiltonian vector fields Φ^i_τ, that is

$$\Phi^i_\tau = -\partial^i H$$

(4.10)

The function $H(X, t)$ is a hamiltonian. Then (4.8) is just the pseudoholomorphic instantons equation (1.2) we know from the Floer theory.

The only geometry of the world sheet we need to consider to compute the matrix elements (3.13), (3.17) in the Floer theory is that of the cylinder. Suppose now that our A-model lives over an arbitrary Riemann surface. Let us briefly discuss what are the restrictions on $\Phi^i_\alpha(X, z, \bar{z})$. First, there is no good way to divide globally the coordinates into space and time. If we want, as we usually do, that the energy be conserved we have to consider only the coordinate independent fields $\Phi^i_\alpha(X)$. Second, the consistency of the fermionic sector now requires that the both components of $\Phi^i_\alpha(X)$ be the hamiltonian fields. This condition, together with selfduality (4.2), forms an overdetermined system of equations for two hamiltonians $H_\alpha(X)$. The compatibility condition for this system equivalent to requirement for J^i_j to be a complex structure on M.

12
4.2. The operators and the states

The family \mathcal{E}_H of deformations of the standard variety \mathcal{E}_0 gives a family of localizations of the same topological field theory. Hence the set of the observables for \mathcal{E}_H is the same as for \mathcal{E}_0 and coincides with the de Rham cohomology $H^*_{\text{de Rham}}(M)$. What is new is that for generic $H \neq 0$ it is possible to localize the states in the theory to the critical loops set Z of the Floer complex. Indeed, the action is (we work on the cylinder):

$$A = \int \{ (\partial_\tau X^i + J^i_j \partial_t X^j + \Phi^i_\tau)^2 + ig^{\alpha\beta} \rho^i_\alpha D_\beta \chi^i + ... \} dt d\tau$$

(4.11)

so the bosonic piece of the potential energy of the string configuration z is given by

$$E[z] = \int \left(J^i_j \frac{dX^i}{dt} + \Phi^i_\tau \right)^2 dt$$

(4.12)

The set of the minima of $E[z]$ coincides with Z. Note that the potential energy functional comes entirely from the BRST trivial piece of the action. Making the coefficient before it arbitrarily large we make the walls around minima arbitrarily steep, so classically the string never flies away from the minima. Thus the wavefunctionals Ψ of the physical states should be the linear combinations of those $|x_i>$ localized to $x_i \in Z$

$$\Psi = \sum_{x_i \in Z} \lambda_i |x_i>$$

(4.13)

additionally satisfying the BRST condition $Q\Psi = 0$, modulo Q-trivial vectors.

The quadratic in fermions piece of the action is (we have used the equations of motion for X^i to simplify it)

$$A_F = \int \left\{ -iG_{ij} \rho^i_\tau \partial_\tau \chi^j + \rho^i_\tau \hat{M}_{ij} \chi^j \right\} dt d\tau$$

(4.14)

The mass operator \hat{M}_{ij} here is given by

$$\hat{M}_{ij} = J_{ij} \partial_\tau + (D_k J_{ij}) J^{km} \Phi_{m\tau} + D_i \Phi_{j\tau}$$

(4.15)

Following the standard argument in the quantum field theory, we want that \hat{M}_{ij} be Hermitian. It is necessary for conservation of the fermionic charge

$$\mu = \int G_{ij} \rho^i_\tau \chi^j dt$$

(4.16)
Hermiticity of \tilde{M}_{ij} requires

$$D_{[i} \Phi_{j]r} = \partial_{[i} \Phi_{j]r} = 0$$ \hspace{1cm} (4.17)

If we consider Φ_r as a 1-form on M, then (4.17) is equivalent to condition $d\Phi_r = 0$. As M is a simply connected manifold, any closed 1-form on it is exact, so there is a function $H(X, t)$ such that

$$\Phi_r = -dH(X, t)$$ \hspace{1cm} (4.18)

Thus Φ_r should be a hamiltonian vector field, as we claimed in section 4.1.

Note that the mass operator (4.15) is just a Hessian of the Floer functional $S[z]$:

$$\tilde{M}_{ij} = \frac{\delta^2 S[z]}{\delta X^i \delta X^j}$$ \hspace{1cm} (4.19)

From the usual interpretation in the quantum field theory, we conclude that the modes having positive masses (eigenvalues of \tilde{M}_{ij}), correspond to the particles and those having negative masses correspond to antiparticles. In order to have the stable fermionic vacuum at each minimum $z \in Z$ of E, the Dirac sea of antiparticles should be completely filled. The different minima $x, y \in Z$ have the different mass matrices M_{ij} and hence the fermionic vacua. Their fermionic numbers differ by $\mu(x) - \mu(y)$ modulo the anomaly lattice 2Γ (generated by evaluation of $2c_1(M)$ on the group $\pi_2(M)$).

It should also be possible to say this other way [22], [23], using semi-infinite differential forms on the loop space $\mathcal{L}M$. The Hessian (4.19) defines a polarization of the tangent bundle $T\mathcal{L}M$ at the critical point

$$T\mathcal{L}M = T\mathcal{L}M_- \oplus T\mathcal{L}M_+$$ \hspace{1cm} (4.20)

In turn, it gives a polarization in the Clifford algebra Cliff of $T\mathcal{L}M$ (Cliff is generated by taking the canonical anticommutators for the fields χ^i and ρ^i_r). We may consider a Verma module of Cliff associated with this polarization and formally present its vacuum vector as $\text{det} T\mathcal{L}M_-$. For the different critical points in Z, the corresponding polarizations in Cliff are hopefully compatible with each other and it is possible to define (modulo 2Γ) a relative degree $\mu(x) - \mu(y)$ of two different vacua x and y.

To find the physical states (4.13) we should compute the BRST cohomology on the space of the wavefunctionals localized to Z. The action of the BRST operator Q on their

\footnotetext{7}{In the language of the Morse theory, the particles correspond to the stable and antiparticles to the unstable cells of the minimum z.}
space is encoded in the matrix elements \(<x|Q|y> \) where \(x, y \in \mathcal{Z} \). We use the path integral representation

\[
<x|Q|y> = \int \mathcal{D}X^i \mathcal{D}\chi^i \mathcal{D}\rho^{\alpha}_i \, Q e^{4\mathcal{A}[X,\chi,\rho]} \tag{4.21}
\]

where the path integral is computed with the boundary conditions

\[
X(\tau = -\infty, t) = x(t) \\
X(\tau = +\infty, t) = y(t) \tag{4.22}
\]

and localize it to the pseudoholomorphic instantons. The term multiplying the exponent is the BRST charge

\[
Q = \int \{ J_{ij} \partial_t X^i + J^j_k \partial_t X^k + \Phi^i_r \} \chi^j + \frac{1}{2} D_k J_{ij} \chi^k \chi^j \, dt \tag{4.23}
\]

with fermionic number 1, so (4.21) is zero unless the space of the instantons connecting \(x \) to \(y \) is one dimensional modulo 2\(\Gamma \). It means that \(\mu(x) - \mu(y) \equiv 1 \) and that (4.21) is localized to the sum over the same instantons as appear in the expression (3.13) for the coboundary \(\delta \) of the Floer complex. For each such instanton the \(Q \)-nontrivial piece of the action \(\mathcal{A} \) gives a factor \(\rho = t_1^{s_1} \cdots t_n^{s_n} \) exactly the same as the multiplier of the local system \(\mathcal{K} \). The integration over fermions brings the factor \(\sigma = \pm 1 \) the same as in (3.13). We see that the matrix elements (4.21) of the BRST operator \(Q \) coincide with that (3.13) of the coboundary operator \(\delta \) of the Floer complex. Thus the Floer cohomology \(H^*_F \) computes just the physical states of our topological sigma model.

Actually, we can find the matrix elements of any observable \(\mathcal{O}_\omega \) in the same fashion:

\[
<x|\mathcal{O}_\omega|y> = \int \mathcal{D}X^i \mathcal{D}\chi^i \mathcal{D}\rho^{\alpha}_i \, \mathcal{O}_\omega e^{4\mathcal{A}[X,\chi,\rho]} \tag{4.24}
\]

computing the path integral with the same boundary conditions (4.22) and localizing it to the instanton configurations. If \(\omega \) has a fermion number \(p \), then (4.24) is zero unless the space of instantons connecting \(x \) to \(y \) is \(p \)-dimensional, so \(\mu(x) - \mu(y) = p \). Repeating the computation for the matrix elements of \(\mathcal{O}_\omega \) we see that (4.24) coincides with the matrix element (3.17) of the operator \(\omega \) in the Floer theory.

Now we can understand better the remark following the formula (3.17). Unless \(Q|x> = Q|y> = 0 \), i.e. unless \(|x> \) and \(|y> \) are the physical states, the matrix element \(<x|\mathcal{O}_\delta|y> \neq 0 \) in general, so (4.24) depends on the choice of the representative \(\mathcal{O}_\omega \) for the BRST cohomology class or equivalently, on the choice of the representative \(\omega \) for de
Rham cohomology $H^*_{dR}(M)$. Only after we restrict to the physical states (4.13) do the matrix elements of the observables become the functions on $H^*_{dR}(M)$.

So far we dealt with operators and states independently. But it is a general fact that in the topological theories there is a one to one correspondence between the operators and states. Now we want to work out this correspondence explicitly. It will enable us to identify the matrix elements (4.24) with the 3-point correlation functions in the A-model and thereby to establish the isomorphism of the Floer's and quantum cohomology.

To do that, we specify to the Hamiltonians $H(X)$ independent of t and such that the corresponding Hamiltonian flows on M do not have periodic trajectories at all\(^8\). For such $H(X)$, the critical loops of the Floer functional $S[z]$ are just the points and coincide with the critical points of $H(X)$ on M and the critical set Z is described by the usual Morse theory. In [11], which we try to generalize in this paper, the Morse theory on M is related to the $N=1$ Supersymmetric Quantum Mechanics (SQM). This SQM is nothing but the zero-modes approximation of the string theory, described by our topological sigma model.

Let us show, that the SQM approximation for the matrix elements of the BRST operator Q, is exact. To see it is true, it is enough to show that the instantons, which appear in (3.13), (4.21) are point-like, i.e. correspond to the propagation of the string as of a point, not the loop. It would mean that only the zero modes are important. But this follows from the fact that the relevant in (3.13) instantons are isolated, i.e. belong to the one dimensional cell of the Floer complex. If an instanton could be represented as a joint of a point-like trajectory with a 2-sphere, there would be 2-parametric freedom to move this sphere around, so such instanton would belong to at least 2-dimensional cell. This proves that the matrix elements of the coboundary operator of the Floer complex coincide with that of the coboundary operator of the Witten complex on M, so their cohomology, as abelian groups, are canonically isomorphic. This is the statement of the Theorem 5 of [7]!, and our dimension-counting argument is borrowed from its proof.

Of course, the matrix elements (4.24) of the observables O_ω are localized to the 2- and higher dimensional cells of the Floer complex and cannot be computed just by SQM.

We are ready now to construct a canonical isomorphism between the states H^*_F and the operators $H_*(M)$ of the topological sigma model. Let us define two nondegenerate pairings of K-modules (K is a Novikov ring)

\[
(.,.): H^p_F \otimes_K H^p(M) \to K \\
\{.,.\}: H^{n-p}_F \otimes_K H^p(M) \to K
\]

\[\text{(4.25)}\]

\(^8\) It is always possible to choose a pair J_j, H such that this condition is met, see [7].
in a following way. The lowest- and highest degree cohomology $H^0_W \subset H^0_F$ and $H^n_W \subset H^n_F$ of the Witten complex on M are always generated by one element each. Let us call them bot and top respectively. They are the in and out vacua of the theory dual to each other:

$$<\text{bot}|\mathcal{O}_M|\text{top}> = 1$$

(4.26)

where $[M]$ is the fundamental class in $H^n(M)$ and the correlation functions (4.6) of the sigma model are

$$<\mathcal{O}_1 \cdots \mathcal{O}_m> = <\text{bot}|\mathcal{O}_1 \cdots \mathcal{O}_m|\text{top}>$$

(4.27)

The formula (4.27) is the fundamental relation in the quantum field theory. Then the pairings we want to define are:

$$<\omega, x> = <\text{bot}|\mathcal{O}_\omega|x>$$

(4.28)

where $\omega \in H^p(M)$, $x \in H^p_F$ and

$$\{\omega, y\} = <y|\mathcal{O}_\omega|\text{top}>$$

(4.29)

where $\omega \in H^p(M)$, $y \in H^{n-p}_F$. Both these pairings are nondegenerate, because in the SQM approximation, when $t_i = 0$ for all i, the pairing $(\ , \)$ is the Poincare duality and $\{\ , \ \}$ is the Poincare isomorphism (using the canonical duality $(H_p(M))^* = H^p(M)$). Hence their determinants, as functions of t_1, \ldots, t_m, are not equal to zero.

These pairings are related to the two-point correlation functions of observables (the quantum intersection numbers)

$$<\mathcal{O}_{\omega_1}\mathcal{O}_{\omega_2}>= \sum_{x \in H^p_F} <\text{bot}|\mathcal{O}_{\omega_1}|x><x|\mathcal{O}_{\omega_2}|\text{top}> = \sum_{x \in H^p_F} (\mathcal{O}_{\omega_1}, x) \{\mathcal{O}_{\omega_2}, x\}$$

(4.30)

which is just a statement of completeness of the physical states of the quantum theory. Thus the pairings above give both the isomorphism between the operators and the states:

$h^p : H^p_F = H^p(M)$ and the quantum intersection matrix. The 3-point functions are related to the matrix elements (4.24) by the formula

$$<\mathcal{O}_{\omega_1}\mathcal{O}_{\omega_2}\mathcal{O}_{\omega_3}>= \sum_{x, y \in H^p_F} (\mathcal{O}_{\omega_1}, x) <x|\mathcal{O}_{\omega_2}|y> \{\mathcal{O}_{\omega_3}, y\}$$

(4.31)

Note that the (super)commutativity and associativity of the algebra of observables \mathcal{O}_ω give the relations for the matrix elements (4.24), equivalent to the supercommutativity and associativity of the cup operation $\omega \cup$ in the Floer theory.

In other words, the cohomology $H^*(M)$ with the cup product multiplication from the Floer theory is isomorphic to the quantum cohomology ring.
5. Some examples

Now we would like to present some computations, partly described in [7], showing how our ”matrix” approach really works.

5.1. Projective spaces

This is the simplest possible example. The homology H^*_F and the action of $H^*_{dR}(\mathbb{CP}^1)$ on it were computed by Floer himself in [7]. It is very instructive to repeat his argument.

Let us take the Hamiltonian vector field

$$v = z \frac{\partial}{\partial z} + \bar{z} \frac{\partial}{\partial \bar{z}}$$

(5.1)

It does not have periodic trajectories and only fixed points are the north (N) and the south (S) poles of the sphere $S^2 = \mathbb{CP}^1$. Thus in the loop space $\mathcal{L}\mathbb{CP}^1$ the critical set of the Floer functional (3.3) consists just of these two points. By the universal cover map $\widetilde{\mathcal{L}\mathbb{CP}^1} \to \mathcal{L}\mathbb{CP}^1$ the set (N, S) is covered by the points $(\ldots, N(-1), S(-1), N(0), S(0), N(1), S(1), \ldots)$ so that $N(k) \to N$ and $S(k) \to S$. In fact, this picture represents [23] the affine Weyl diagram for $\widetilde{sl(2)}$.

The trajectories going from $N(k)$ to $S(k)$ are the ”classical” ones. Downstairs they cover a 2-parametric set of trajectories of the vector field v. As a set of points, this set coincides with the base projective line itself.

On the other hand, the trajectories from $S(k)$ to $N(k+1)$ are essentially stringy — they have homotopic type of \mathbb{CP}^1. Again, there is a 2-parametric family of them due to the action of \mathbb{C}^* on the world sheet (a sphere with two marked points). Each such trajectory covers the base \mathbb{CP}^1.

Again, this can be represented by the affine Weyl diagram, if we denote the 2-dimensional cells of the Floer complex by the arrows connecting the vertices $(\ldots, N(-1), S(-1), N(0), S(0), N(1), S(1), \ldots)$.

As in the usual Morse theory for \mathbb{CP}^1, there is no 1-dimensional cells, hence the coboundary operator is trivial and the Floer cohomology is represented by N (of degree 0) and S (of degree 2). Integrated over \mathbb{CP}^1, the first Chern class of the tangent bundle gives 2, so the fermionic number anomaly is 4.

Now let us find the matrix elements of the generator x of $H^*_{dR}(\mathbb{CP}^1)$ between S and N. The element $<N|x|S>$ comes from integration of (the pullback of) x on
\(C^5(N,S) = \mathbf{CP}^1 \), each trajectory is homotopically trivial in the loop space. Therefore, the "classical" answer \(< N|x|S >= 1 \) holds true.

Unlike the usual Morse theory, there is also a nontrivial matrix element \(< S|x|N >\). Formally it is possible because \(\mu(N) - \mu(S) = 2 - 4 = -2 \equiv 2(mod4) \). There is indeed a 2-parametric family of stringy trajectories from \(S \) to \(N \) as we saw above. The integral of the pullback of \(x \) over it is again the integral of \(x \) over \(\mathbf{CP}^1 \). But now the homotopic type of each trajectory is not trivial and to obtain the matrix element (3.17) we need to multiply the integral of \(x \) by (3.18) equal to \(t = \exp - \int k \). Thus \(< S|x|N >= t \). Therefore, the matrix representation of the operator \(O_x \) is

\[
O_x = \begin{pmatrix} 0 & 1 \\ t & 0 \end{pmatrix}
\]

(5.2)

It satisfies the relation

\[
O_x O_x = t
\]

(5.3)

well known for \(\mathbf{CP}^1 \) sigma model.

The straightforward generalization of the example above is \(\mathbf{CP}^n \). It was also done in [7]. Again, there is no 1-dimensional cells in the Floer complex and \(H^*_F \) is spanned by the critical points of (\(S^1 \) equivariant) Morse function on \(\mathbf{CP}^n \) of degrees \(0, 2, \ldots, 2n \). The fermionic number anomaly is \(2(n + 1) \).

The de Rham cohomology \(H^*_{dR}(\mathbf{CP}^n) \) are generated as a ring by one element \(x \). We can again find the matrix representation for the operator \(O_x \), which generates the quantum ring. In this example it is also true that \(O_x O_x = O_{x+t} \), for \(k + l < n + 1 \); nothing like this should be true in general.

There two simple remarks we want to make before we write the formula for \(O_x \). Let \(M \) be an almost Kahler manifold with \(c_1 > 1 \) and \(x \in H^2(M) \). Then the matrix elements of \(x \) on the main diagonal and above, like \(< z_m | x | z_{m'} > \), \(m' \geq m \), do not depend on \(t_1, \ldots, t_n \) and can be computed classically. Indeed, to get the matrix element the pullback of \(x \) should be integrated over some two-cycle of the Floer complex. But if this cycle consisted of stringy trajectories, (which would lead to \(t_i \) dependence), then by the index theorem it would belong to the cell of the dimension at least 4. The other simplification for the matrix elements of \(x \in H^2(M) \) is that the 2-cells of the Floer complex, for the purposes of intersection theory, are representable by the 2-cells on \(M \) itself, just like it was for \(\mathbf{CP}^1 \). This is because these 2-cells consist either of point-like classical trajectories or of a single 2-sphere in \(M \), reparametrized by \(\mathbb{C}^* \).
All the matrix elements below the main diagonal are always due to the stringy paths. The formula for \mathcal{O}_x is

$$
\mathcal{O}_x = \begin{pmatrix}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & 1 \\
t & 0 & \cdots & 0 & 0
\end{pmatrix}
$$

(5.4)

To obtain (5.4) we note that as $c_1 = (n+1)x$, only $< z_{2n} | x | z_0 >$ can be a nontrivial matrix element below diagonal (as $0 - 2n + 2(n+1) \cdot 1 = 2$). The 2-cell $C^2(z_{2n}, z_0)$ consists of paths from z_{2n} to z_0 of degree 1 and coincides with a straight line (z_{2n}, z_0) for the appropriate choice of hamiltonian. It explains the degree 1 of t as well as a numerical coefficient 1 before it in (5.4). The operator \mathcal{O}_x satisfies

$$
\mathcal{O}_x^n = t
$$

(5.5)

5.2. Flag spaces

A less trivial generalization of the example with \mathbb{CP}^1 is the flag space Fl_n, which can be realized as a coset

$$
Fl_n = U(n)/(U(1))^n
$$

(5.6)

Its second cohomology group is \mathbb{Z}^{n-1} generated by x_1, \ldots, x_{n-1}. Cohomology of Fl_n, as a ring[24], is generated by x_i with the relations which are homogenous components of the single relation

$$
\prod_{i=1,\ldots,n}(1 + x_i) = 1
$$

(5.7)

We will compute the matrix elements of x_1, x_2 in the Floer theory for the simplest nontrivial example of 3-dimensional flag space Fl_3. A way we do this, using an affine Weyl group for $\widehat{sl}(3)$, can be generalized for all other flag spaces.

The Floer theory for the loop spaces of flags was considered in [23]. The critical point set in $\mathcal{LF}l_n$ is parameterized by the elements of the finite Weyl group. The cover map $\mathcal{LF}l_n \to \mathcal{LF}l_n$ covers it by the affine Weyl group. A simplest example to look at is $Fl_2 = \mathbb{CP}^1$, considered in the previous section. There are no 1-cells in the Floer complex; to describe all the 2-cells we need an auxiliary geometric construction.

Let us think of the elements x_1, x_2 as of two simple roots of $sl(3)$. There are two standard embeddings of $sl(2)$ to $sl(3)$ sending a simple root of $sl(2)$ either to x_1 or to x_2. These maps can be continued to the maps of groups $SL(2) \to SL(3)$ which, in turn, induce two maps $\mathbb{CP}^1 \to Fl_3$ which send the generator x of $H_2(\mathbb{CP}^1)$ to either x_1 or x_2. 20
This construction extends to give the maps of the (universal covers of) loop spaces. Looking at the diagram for the affine Weyl group for $\tilde{sl}(3)^0$ we see that it can be covered by the straight lines parallel to any simple root. Each such straight line correspond to some particular embedding $L\mathbb{CP}^1 \to L\widetilde{Fl}_3$. A pattern of critical points along the straight line coincides with that one for $L\mathbb{CP}^1$: when projected downstairs to the base flag space Fl_3 it covers two (which ones, depends on the particular straight line) critical points we denote by N, S. These two points we can identify with the critical points on the preimage $L\mathbb{CP}^1$. The arrangement of critical points upstairs is $(\ldots, N^{(-1)}, S^{(-1)}, N^{(0)}, S^{(0)}, N^{(1)}, S^{(1)}, \ldots)$.

Now let us choose on Fl_3 such hamiltonian vector field that it respects both embeddings $\mathbb{CP}^1 \to Fl_3$. In the finite-dimensional Morse theory it means that the whole flow, connecting N to S, belongs to the preimage \mathbb{CP}^1. Then this property is promoted to the loop spaces. It means that the matrix elements of x_1, x_2 between N and S can effectively be computed within a Floer theory for a projective line \mathbb{CP}^1. Not every pair of critical points whose indices differ by $2(mod 4)$ lies on a straight line parallel to a simple root. For them, the degree count shows that only the matrix elements $<top|x_i|bot>\propto t_1t_2$ can be non-zero, and the commutativity of two matrix operators O_{x_1}, O_{x_2} fixes the integral coefficients before t_1t_2.

Ultimately, the operators O_{x_1} and O_{x_2} are given by

$$O_{x_1} = \begin{pmatrix}
0 & 1 & 0 & 0 & 0 & 0 \\
t_1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & -1 & -1 & 0 \\
0 & 0 & -t_1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
t_1t_2 & 0 & 0 & 0 & t_1 & 0
\end{pmatrix} \quad (5.8)$$

$$O_{x_2} = \begin{pmatrix}
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & -1 & 0 \\
t_2 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 \\
0 & -t_2 & 0 & 0 & 0 & 0 \\
-t_1t_2 & 0 & 0 & -t_2 & 0 & 0
\end{pmatrix} \quad (5.9)$$

\footnote{It is a 2-lattice with hexagonal point group.}
They generate an algebra with relations

\[O_{x_1}^2 + O_{x_1} O_{x_2} + O_{x_2} = (t_1 + t_2) \]
\[O_{x_1}^2 = t_1 O_{x_1} - t_1 O_{x_1} \]
\[O_{x_2}^2 = t_2 O_{x_2} - t_2 O_{x_1} \]
\[O_{x_1} O_{x_2} + O_{x_1} O_{x_2} = t_2 O_{x_1} + t_1 O_{x_2} \] (5.10)

which can be considered as a two-parametric deformation of (5.7).

5.3. Calabi-Yau manifolds

Almost all the known nontrivial examples of quantum cohomology of CY manifolds are obtained using mirror symmetry. Mirror symmetry reduces the problem of computation of quantum cohomology $H^*_Q(M)$ to some computation in the Variation of Mixed Hodge Structure Theory of the mirror pair \hat{W}. The latter problem is usually relatively easier.

As a first application of the general theory we may just transfer all these results to the Floer theory, which give the first examples of the latter for the CY manifolds. Note, that unless we consider the Floer complex over the Novikov ring, the boundary operator is not defined — its matrix elements are represented by the divergent series due to summation over all maps of the cylinder to itself. The same is true for the matrix elements of de Rham cohomology.

On the other hand, in the string theory computations for the 3-dimensional CY, we are mostly interested in the matrix elements of the second de Rham cohomology ($H^{1,1}_Q(M)$, to be precise), which generate the marginal deformations of the corresponding superconformal theory. A remark in the section about projective spaces tells that these can be computed just looking at the 2-cycles of the CY manifold itself, without going up to the loop space. We hope it may make possible to do a direct computation in some examples.

6. Conclusion

Roughly speaking, there are two ingredients in the Floer theory. One of them, the algebraic one, is very neat, we tried to stress it in the section 3. The second — analytic — ingredient is what makes the Floer theory so difficult. In this paper we tried to substitute the language of the topological quantum field theory for the analytic language of Floer et al. From the mathematician point of view, it may seem as trading the bad for the worse.
The real advantage of our approach from this point of view is that it makes the independence of H^{p}_{k} of the hamiltonian H and the complex structure J an immediate consequence of the BRST invariance, without any assumptions about H. In particular, the choice $H = 0$ is admissible. On the other hand, for $H = 0$ the path integral defining the sigma model has a combinatorial definition[5]in terms of the moduli spaces of holomorphic instantons. It is an object of study of algebraic geometry and does not require infinite-dimensional analysis to deal with.

We hope, that to think about the same object, using two languages, may be helpful for both. For the topological theory, it may be useful to have a picture where all the physical states are localized to the particular loops.

In the quantum cohomology, the sign factors $\sigma = \pm 1$ explain the origin of the minus signs in the formulas in examples. In the purely holomorphic case, minuses can not appear as intersection numbers of two holomorphic varieties (coming with their natural orientations) are always positive. Thus the minus sign signals that the situation is not generic [5]. It means that the dimension of the some connected component of the moduli space of instantons is strictly greater than its lower bound given by the Riemann-Roch. In such situation, one has to compute the Euler characteristic of a certain vector bundle on this (properly compactified) component of the moduli space. The Euler characteristic can already be negative. The key point here is that there are no "generic deformations" in the algebraic geometry in a sense of differential topology, so we cannot resolve the "degeneration" within complex-analytic category. As far as I understand, introduction of an almost complex structure instead the complex one does not help much, because the intersection numbers are still positive for such varieties.

The way out is to break the holomorphicity. This is exactly what we did with (1.2). Deformed by H, the theory is no longer complex-analytic. For example, the real dimension of cells of the Floer complex can be odd. Thus the intersection numbers have arbitrary signs. More importantly, now we can reduce any degenerate situation to the generic one without affecting the results of computation.

Another interesting possibility appears when we think about quantum cohomology in terms of the Novikov ring. It is known for the finite dimensional Novikov theory [13][14][15]that in the space of representations of the fundamental group of the manifold X, there are some "jumping subvarieties". On them, the betti numbers of the Novikov cohomology jump up. In the present situation, the space of representations is just a torus T^{k}, dual to the second cohomology group $H^{2}(M)$. What are the jumping subvarities? Do they have something to do with the boundaries of the Kahler cone?
Acknowledgements

I thank A. Astashkevich, M. Bershadsky, S. P. Novikov, S. Piunikhin and C. Vafa for the useful discussions. The remarks of D. Kazhdan and I. Singer were important at the final stage of the work.

Research supported in part by the Packard Foundation and by NSF grant PHY-87-14654
References

[17] Le Hong Van, K. Ono Symplectic fixed points, Calabi invariants and Novikov homology preprint MPI/93-27
[19] D. Salamon Morse theory, the Conley index and the Floer homology Bull. L. M. S. 22 (1990)13-140

[24] R. Bott, F. Tu *Differential Forms in Algebraic Topology*