Realistic shell-model calculations for proton particle-neutron hole nuclei around 132Sn

L. Coraggio

A. Covello A. Gargano N. Itaco

Dipartimento di Scienze Fisiche, Università di Napoli Federico II, and Istituto Nazionale di Fisica Nucleare, Complesso Universitario di Monte S. Angelo, Via Cintia, I-80126 Napoli, Italy

T.T.S. Kuo

Department of Physics, SUNY, Stony Brook, New York 11794

abstract

We have performed shell-model calculations for nuclei with proton particles and neutron holes around 132Sn using a realistic effective interaction derived from the CD-Bonn nucleon-nucleon potential. For the proton-neutron channel this is explicitly done in the particle-hole formalism. The calculated results are compared with the available experimental data, particular attention being focused on the proton particle-neutron hole multiplets. A very good agreement is obtained for all the four nuclei considered, 132Sb, 130Sb, 133Te and 131Sb. We predict many low-energy states which have no experimental counterpart. This may stimulate, and be helpful to, future experiments.