Did Globular Clusters Reionize the Universe?

Massimo Ricotti

Center for Astrophysics and Space Astronomy
University of Colorado, Boulder, CO 80309
ricotti@casa.colorado.edu

1 INTRODUCTION AND RATIONALE

Observation of Lyα absorption systems toward newly found high-redshift quasars (??) indicate that the redshift of reionization of the intergalactic medium (IGM) should be close to z = 6 (??). Perhaps the recent identification of a lensed galaxy at z = 6.56 points to a somewhat earlier redshift of reionization (??). Although quasars play a dominant role in photoionizing the IGM at z ≈ 3 (??), their dwindling numbers at z > 4 suggest the need for another ionization source. Unless a hidden population of quasars is found, radiation emitted by high-redshift massive stars seems necessary to reionize the universe. A key ingredient in determining the effectiveness by which galaxies photoionize the surrounding IGM is the parameter ⟨fesc⟩, defined here as the mean fraction of LyC photons escaping from galaxy halos into the IGM. To be an important source of ionizing photons and rival with quasars, a substantial fraction (~ 10%) of them must escape the gas layers of the galaxies (??).

Cosmological simulations and semi-analytical models of IGM reionization by stellar sources find that the ionizing background rises steeply at the redshift of reionization. Unfortunately a direct comparison between models is difficult because of different recipes used for star formation, clumping of the IGM or the definition of ⟨fesc⟩. But a result common to all the models is that, in order to reionize the IGM by z = 6−7, the escape fraction must be relatively large: ⟨fesc⟩ ≳ 10% assuming a Salpeter initial mass function (IMF) and the standard ΛCDM cosmological model. (?) finds that ⟨fesc⟩ should be about 15% for reionization at z = 6, but a smaller value ⟨fesc⟩ ≲ 10% is consistent with the observed ionizing background at z ~ 3. (?) finds that assuming a primordial power spectrum index n = 0.93, the preferred value from CMB and LSS data, reionization at z ≳ 6 requires a large ⟨fesc⟩; but this assumption produces an ionizing background at z ≳ 4, that is too large. The common assumption of a universal star formation efficiency (SFE) (e.g., the coefficient in front of the Schmidt-Law in some models or in others the fraction f∗ of baryons converted into stars) is consistent with the observed values of the star formation rate (SFR) at 0 < z < 5 and total star fraction Ω∗ at z = 0. However, the assumption of a constant ⟨fesc⟩ does not seem to be consistent with observations. An escape fraction ⟨fesc⟩ ~ 1 is required for reionization at z ~ 6.5 but the ionizing background at z ~ 3 is consistent with ⟨fesc⟩ ≲ 10% (?). Small values of ⟨fesc⟩ at z ≲ 3 are also supported by direct observations of the LyC emission from Lyman-break and starburst galaxies. (?) find an upper limit ⟨fesc⟩ < 16% at z ~ 3 (?). Simulations of low-redshift starbursts are consistent with ⟨fesc⟩ upper limits ranging from a few percent up to 10% (?).

Calculations of ⟨fesc⟩ from first principles are difficult. The main complications arise in simulating a realistic interstellar medium (ISM) that includes small-scale physics and feedback processes. Moreover the mean ⟨fesc⟩ results from the contribution of a variety of galaxies whose ISM properties are largely unknown at high redshift. Theoretical models (??) for the radiative transfer of ionizing radiation...
through the disk layer of spiral galaxies similar to the Milky Way find \(\langle f_{esc} \rangle \sim 6 - 10\% \). At high redshift the mean value of \(f_{esc} \) is expected to decrease almost exponentially with increasing redshift \((z)\); at \(z > 6 \), \(\langle f_{esc} \rangle \lesssim 0.1 - 1\% \) even assuming star formation rates typical of starburst galaxies \((e.g., \text{SFR} \sim 10 \text{ times that of the Milky Way})\). Using Monte-Carlo simulations, \(? \) have studied how \(\langle f_{esc} \rangle \) depends on galactic parameters. Assuming gas density profile in hydrostatic equilibrium in the dark matter \((\text{DM})\) potential, star density proportional to the gas density and a power law for the luminosity function of the OB associations, they found that \(\langle f_{esc} \rangle \propto (\epsilon f_{DM} M_{\text{gas}})^{-1/3} \exp\left[-(z_{\text{vir}} + 1)e^{-1/3}\right] \). Here \(\epsilon \) is proportional to the SFE, \(f_{DM} \) is the fraction of collapsed gas, \(z_{\text{vir}} \) is the virialization redshift and \(M_{\text{DM}} \) is the DM halo mass. The majority of photons that escape the halo come from the most luminous OB associations located in the outermost parts of the galaxy. Indeed \(? \) have shown that changing the luminosity function of the OB association and the density distribution of the stars has major effects on \(\langle f_{esc} \rangle \) \((\text{see their Figs. 8 and 9})\). In the aforementioned models, \(\langle f_{esc} \rangle \) should be regarded as an upper limit since dust extinction and absorption of ionizing radiation from the molecular cloud in which OB associations are born are neglected.

The theoretical suggestion of a decreasing \(\langle f_{esc} \rangle \) with increasing redshift is in contrast with models for reionization that require \(\langle f_{esc} \rangle \sim 1 \) at \(z = 6 \). A different star formation mode, with very luminous OB associations forming in the outer parts of galaxy halos, could explain the large \(\langle f_{esc} \rangle \) required for reionization. Globular clusters \((\text{GCs})\) are possible observable relics of such a star formation mode. Their redshift of formation is compatible with redshift of reionization \((?)\). Because of their large star density they survived tidal destruction and represent the most luminous tail of the luminosity distribution of primordial OB associations. In \(\S \ 2.2 \) I explain that several models for the formation of proto-GCs imply an \(\langle f_{esc} \rangle \sim 1 \). I will also show that the total amount of stars in GCs observed today is sufficient to reionize the universe at \(z \sim 6 \) if their \(\langle f_{esc} \rangle \sim 1 \). This conclusion is reinforced if the GCs we observe today are only a fraction, \(1/\langle f_{esc} \rangle \), of primordial GCs as a consequence of mass segregation and tidal stripping.

The paper is organized as follows. In \(\S \ 2 \) I briefly review recent progress in our understanding of GC properties and formation theories; in \(\S \ 3 \) I discuss the model assumptions in light of GC observations and present the results. In \(\S \ 4 \) I present my conclusions.

\[\text{2 SHORT REVIEW ON GC SYSTEMS} \]

In this section I review some observational and theoretical results on GCs useful to the aim of this paper. I also try to justify my assumption \(\langle f_{esc} \rangle \sim 1 \) for GCs on the base of theoretical models of proto-GC formation.

\(\text{2.1 Observations} \)

Most galaxies have a bimodal GCs distribution indicating that luminous galaxies experience at least two major episodes of GCs formation. The bulk of the globulars in the main body of the Galactic halo appear to have formed during a short-lived burst \((\sim 0.5 - 2 \text{ Gyr})\) that took place about 13 Gyrs ago. This was followed by a second burst associated with the formation of the galactic bulges. Clusters may have been formed in dwarf spheroidal galaxies and accreted by the Galactic halo \((?)\). Massive cluster formation occurred in galaxies as small as the Fornax dwarf spheroidal but not in massive ones such as the small magellanic cloud \((?)\).

\[\text{2.1.1 Absolute and relative ages} \]

The method for determining the absolute age of GCs is based on fitting the observed color-magnitude diagram with theoretical evolutionary tracks. The systematics in the evolutionary model and the determination of the cluster distance are the major sources of errors. Recent determinations of the absolute age of old GCs find \(t_{GC} = 12.5 \pm 1.2 \text{ Gyr} \), consistent with radioactive dating of a very metal-poor star in the halo of our galaxy \((?)\). Relative ages of Galactic GCs can be determined with greater accuracy, since many systematic errors can be eliminated. In our Galaxy \(\Delta t_{GC} = 0.5 \text{ Gyr} \), but differences in age between GC systems in different galaxies could be \(\Delta t_{GC} \sim 2 \text{ Gyr} \).

\[\text{2.1.2 Specific frequency} \]

The specific frequency is defined as the number, \(N \), of GCs per \(M_V = -15 \) of parent galaxy light, \(S_N = N \times 10^{0.4(M_V+15)} \) (Harris & van den Bergh \(1981 \)). The most striking characteristic is that \(S_N \) is the major source of errors. Recent determinations of the absolute age of old GCs find \(t_{GC} = 12.5 \pm 1.2 \text{ Gyr} \), consistent with radioactive dating of a very metal-poor star in the halo of our galaxy \((?)\). Relative ages of Galactic GCs can be determined with greater accuracy, since many systematic errors can be eliminated. In our Galaxy \(\Delta t_{GC} = 0.5 \text{ Gyr} \), but differences in age between GC systems in different galaxies could be \(\Delta t_{GC} \sim 2 \text{ Gyr} \).

\[\langle f_{esc} \rangle = M_{gc} f_{\text{esc}} N m_{gc} M = S_N f_{\text{esc}} (M/L) \times 0.00585, \]

where \(M_{gc} \) is the total mass of the GC system, \(m_{gc} = 5 \times 10^5 M_\odot \) is the mean mass of GCs today, \(M \) is the stellar mass and \((M/L) \) is the mass to light ratio of the galaxy. In the next paragraph we show that, because of dynamical evolution, \(m_{gc} \) and \(N \) are expected to be larger at the time of GC formation than today. Therefore, the parameter \(f_{\text{esc}} \geq 1 \) is introduced to account for dynamical disruption of GCs during their lifetime.

\[\text{2.1.3 IMF, Metallicity and Dynamical Evolution} \]

The IMF of GCs is not known. The present mass function is known only between 0.2 and 0.8 \(M_\odot \) since high-mass stars are lost because of two-body relaxation and stellar evolution processes. Theoretical models show that the shape is consistent with a Salpeter-like IMF. The mean metallicity of old GCs is \(Z \sim 0.03 Z_\odot \). One of the most remarkable properties of GCs is the uniformity of their internal metallicity \(\Delta [Fe/H] \lesssim 0.1 \). This implies that the bulk of the stars that constitute a GC formed in a single monolithic burst of star formation. A typical GC emits \(S \approx 3 \times 10^{33} \text{ s}^{-1} \) ionizing photons in a burst lasting 4 Myrs: about 300 times the ionizing luminosity of largest OB associations in our Galaxy.
During their lifetime GCs lose a large part of their initial mass or are completely destroyed by internal and external processes. Prominent internal processes are mass loss by stellar evolution (about half of the initial mass is lost) and two-body relaxation, the effects of which are mass segregation (change in the mass function) and core collapse (expansion and evaporation). External processes can be divided roughly into two classes: gravitational shocks from GC motion through the disk or bulge of the galaxy, and tidal forces, which cause mass loss due to tidal truncation. Numerical simulations show that about 50%-90% of the mass of GCs is lost due to external processes, depending on the host galaxy environment, initial concentration and IMF of the proto-GCs (??). Many of the low-metallicity halo field stars in the Milky-Way could be debris of disrupted GCs. The mass in stars in the halo is about 100 times the mass in GCs. Therefore the parameter f_{dis}, defined in § 2.1.2, could be as large as $f_{\text{dis}} = 100$. Overall f_{dis} is not well constrained since it depends on unknown properties of the proto-GCs. According to results of N-body simulations f_{dis} should be in the $f_{\text{dis}} \sim 2 - 10$ range.

2.2 Why is $f_{\text{esc}} \approx 1$ plausible for GCs?

I discuss separately two issues: (i) the f_{esc} from the gas cloud in which the GC forms, and (ii) the f_{esc} through any surrounding gas in the galaxy.

(i) The evidence for $f_{\text{esc}} \approx 1$ comes from the observed properties of present-day GCs. The fact that they are compact self-gravitating systems with low and uniform metallicity points to a high efficiency of conversion of gas into stars. A longer timescale of star formation would have enriched the gas of metals and the mechanical feedback from SN explosions would have stopped further star formation. If $f_{s} \approx 10\%$ of the gas is converted into stars in a single burst (with duration ≈ 4 Myr) at the center of a spheroidal galaxy, following the simple calculations shown in (?) [see their eq. (18)] at $z = 6$ we have,

$$f_{\text{esc}} = 1 - 0.06(1 - f_{s})^{2} f_{s} (1 + z)^{4} \approx 50\%.$$ \hspace{0.5cm} (2)

(ii) The justification for $f_{\text{esc}} \approx 1$ is model dependent but in general there are two main arguments: a) the high efficiency of star formation f_{s}, and b) the sites of proto-GC formation in the outermost parts of the galaxy.

In the “cosmological objects model” ($30 < z_{f} < 7$) of (?) GCs form with efficiency $f_{s} \approx 100\%$, implying $f_{\text{esc}} = 1$ (note that such a high f_{s} is not found in numerical simulations of first object formation (??)). In “hierarchical formation models” ($10 < z_{f} < 3$) (????) GCs form in the disk or spheroid of galaxies with mass $M_{g} \sim 10^{-10} M_{\odot}$. Compact GCs survive the accretion by larger galaxies while the rest of the galaxy is tidally stripped. Assuming that 1 – 10 GCs form in a galaxy with $M_{g} \sim 10^{-7} - 10^{-6} M_{\odot}$ implies $f_{s} \sim 10\%$ and therefore $f_{\text{esc}} \geq 50\%$. f_{esc} is larger than in eq. (2) if proto-GCs are located off-center (e.g., if they form from cloud-cloud collisions during the galaxy assembly) or if part of the gas in the halo is collisonally ionized as a consequence of the virialization process.

In models such as the “supershell fragmentation” ($z_{f} < 10$) or the “thermal instability” ($z_{f} < 7$) of (?) $f_{\text{esc}} \approx 1$ since proto-GCs form in the outermost part of an already collisionally ionized halo.

In summary, since f_{esc} depends strongly on the luminosity of the OB associations and on their location, proto-GCs, being several hundred times more luminous than Galactic OB associations, should have a comparably larger f_{esc}.

3 Method and Results

In this section I estimate the number of ionizing photons emitted per baryon by Hubble time, N_{ph}, by GC formation. In § 3.1 I derive N_{ph}, assuming that all GCs observed at $z = 0$ formed in a time period Δt_{GC} with constant formation rate. In § 3.2 I use the Press-Schechter formalism to model more realistically the formation rate of old GCs.

3.1 The simplest estimate

I start by estimating the fraction, ω_{GC}, of cosmic baryons converted into GC stars. By definition $\omega_{\text{GC}} = \omega_{b,6} \epsilon_{\text{GC}}$, where $\omega_{b,6}$ is the fraction of baryons in stars at $z = 0$, and ϵ_{GC} is the efficiency of GC formation defined in § 2.1.2. In all the calculations I assume $\Omega_{c} = 0.04$. In Table 1, I summarize the star census at $z = 0$ according to (?) and I derive ϵ_{GC} using eq. (1), assuming $f_{\text{dis}} = 1$. Using similar arguments (?) finds a universal efficiency of globular cluster formation $\epsilon_{\text{GC}} = (0.26 \pm 0.05)\%$, in agreement with the simpler estimate presented here. It follows that $\omega_{\text{GC}} = f_{\text{dis}}(2.7^{+2.3}_{-1.7} \times 10^{-4})$ at $z = 0$.

The total number of ionizing photons per unit time emitted by GCs is $\eta \omega_{b,6} f_{\text{dis}} / \Delta t_{\text{GC}}$, where η is the number of ionizing photons emitted per baryon converted into stars, and $\omega_{b,6} \approx 2.1 \omega_{\text{GC}}$ takes into account the mass loss due to stellar winds and SN explosions adopting an instantaneous-burst star formation law. GCs did not recycle this lost mass since they formed in a single burst of star formation. η depends on the IMF and on the metallicity of the star. I calculate η using a Salpeter IMF and metallicity $Z = 0.03 Z_{\odot}$ (see § 2.1.3) with Starburst99 code (?), and find $\eta = 8967$. The number of ionizing photons per baryon emitted in a Hubble time at $z = 6$ is,

$$N_{\text{ph}}^{\text{GC}} = \eta \omega_{\text{GC}} f_{\text{dis}} t_{H} (z = 6) \Delta t_{\text{GC}} = (5.1^{+4.3}_{-3.2}) f_{\text{dis}} \Delta t_{\text{GC}} \text{ (Gyr)},$$ \hspace{0.5cm} (3)

where I have assumed $f_{\text{esc}} = 1$ and Hubble time at $z = 6$ $t_{H} = 1 \pm 0.1$ Gyr. I expect $1 \leq f_{\text{dis}} \leq 100$ and $0.5 \leq \Delta t_{\text{GC}} \lesssim 2$ Gyr. A conservative estimate of $f_{\text{dis}} \gtrsim 2$ and $\Delta t_{\text{GC}} \gtrsim 2$ Gyr (i.e., $10 < z_{f} < 3$) implies $f_{\text{dis}} / \Delta t_{\text{GC}} \gtrsim 1$. The IGM is reionized when $N_{\text{ph}} = C$, where $C = (n_{HII}) / (n_{HII})^2$ is the ionized IGM clumping factor. According to the adopted definition of f_{esc}, $C = 1$ for a homogeneous IGM, or $1 \lesssim C \lesssim 10$ taking into account IGM density fluctuations producing the Lyo forest (??). The estimate from eq. (3) is rather rough because I have implicitly assumed that the SFR is constant.

<table>
<thead>
<tr>
<th>Type</th>
<th>$\omega_{b,6}$ (%)</th>
<th>S_{N}</th>
<th>$(M/L)_{V}$</th>
<th>ϵ_{GC} (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sph</td>
<td>6.5^{+3}_{-3}</td>
<td>2.4 ± 0.4</td>
<td>5.4 ± 0.3</td>
<td>0.26 ± 0.06</td>
</tr>
<tr>
<td>Disk</td>
<td>$2^{+1}_{-0.5}$</td>
<td>1 ± 0.1</td>
<td>1.82 ± 0.4</td>
<td>0.32 ± 0.1</td>
</tr>
<tr>
<td>Irr</td>
<td>$0.15^{+0.05}_{-0.05}$</td>
<td>0.5</td>
<td>1.33 ± 0.25</td>
<td>0.22 ± 0.04</td>
</tr>
<tr>
<td>Total</td>
<td>$9^{+3}_{-3.5}$</td>
<td>-</td>
<td>-</td>
<td>0.3 ± 0.07</td>
</tr>
</tbody>
</table>

Table 1. Star census at z=0.
during the period of GC formation Δt_{gc}. A more realistic SFR as a function of redshift requires assuming a specific model for the formation of GCs. I try to address this question in the next section.

3.2 A bit of modeling

I assume that the formation rate of stars or GCs in galaxies is proportional to the merger rate of galaxy halos (each galaxy undergoes a major star burst episode when it virializes). Using the Press-Schechter formalism I calculate,

\[
d\omega^f_{gc}(z)dt = A \int_{M_1}^{M_2} d\Omega(M_{DM}, z) dt \ln M_{DM}, \tag{4}
\]

\[
d\omega^f_{gc}(z)dt = B \int_{M_m}^{\infty} d\Omega(M_{DM}, z) dt \ln M_{DM}, \tag{5}
\]

where $\Omega(M_{DM}, z) d\ln(M_{DM})$ is the mass fraction in virialized DM halos of mass M_{DM} at redshift z. I determine the constants A and B by integrating eqs. (4)-(5) with respect to time, and assuming $\omega^f_{gc} = 0.1\%$ (i.e., $f_{di} = 2$) and $\omega^f_{i} = 1.4\omega_s = 13\%$ at $z = 0$ (the factor 1.4 takes into account the mass loss due to stellar winds and SN explosions adopting a continuous star formation law). I assume that GCs form in halos with masses $M_1 < M_{DM} < M_2$. The choice of M_1 and M_2 determine the mean redshift, z_f, and time period, Δt_{gc}, for the formation of old GCs. In order to be consistent with observations I consider three cases: case (i) halos with virial temperature $2 \times 10^4 < T_{vir} < 5 \times 10^4$ K; case (ii) $5 \times 10^4 < T_{vir} < 10^5$ K; and case (iii) $10^5 < T_{vir} < 5 \times 10^5$ K. In case (i), (ii) and (iii) $\Delta t_{gc} = 2.2, 3.7$ and 5.2 Gyr, respectively, and the GC formation rate has a peak at $z = 7.5, 6$ and 4.6, respectively. Disk and spheroid stars form in halos with $M_{DM} > M_m$. At $z > 10$ I assume that the first objects form in halos with M_m corresponding to a halo virial temperature $T_{vir} = 5 \times 10^5$ K. At $z < 10$ only objects with $T_{vir} > 2 \times 10^4$ K can form (see RicottiGSb:02). The comoving star formation rate, given by $\dot{\rho}_s = \mathcal{P} \omega^f_{s}$, where $\mathcal{P} = 5.51 \times 10^9 M_\odot$ Mpc$^{-3}$ is the mean baryon density at $z = 0$, is shown in Fig. 1. The points show the observed SFR from T9. In Fig. 2 I show N_{ph} for GCs (thick lines) and for galaxies (thin lines) defined as,

\[
N_{ph}^{gc} = \eta f_{di} \omega^f_{gc} dttH(z), \tag{6}
\]

\[
N_{ph}^{gc} = \eta(f_{esc}) \omega^f_{i} dttH(z). \tag{7}
\]

The thick solid, dashed and short-dashed lines show N_{ph}^{gc} for case (i), (ii) and (iii), respectively. For comparison, I show (thin solid line) N_{ph}^{gc} assuming $\langle f_{esc} \rangle = 0.1 \times \exp[-z/2]$, chosen to fit the observed values (squares) of N_{ph}^{gc} at $z = 2, 3, 4$ (T9). The thin dashed line shows N_{ph}^{gc} assuming constant $\langle f_{esc} \rangle = 5\%$.

4 CONCLUSIONS

Observed Lyman break galaxies at $z \sim 3$ are probably the most luminous starburst galaxies of a population that pro-

1 By definition $\int_{0}^{\infty} \Omega(M_{DM}, z) d\ln(M_{DM}) = 1$. I find the following values of the constants $A = 1.3\%, 1.6\%, 0.6\%$ for cases (i), (ii) and (iii) respectively (see text) and $B = 12\%$.

© 2002 RAS, MNRAS 000, 1–5
duced the bulk of the stars in our universe. Their formation epoch corresponds to the assembly of the bulges of spirals and ellipticals. Nevertheless the observed upper limit on (f_{esc}) from Lyman break galaxies is $(f_{esc}) \lesssim 10\%$, insufficient to reionize the IGM according to numerical simulations. Recently (?), using different arguments, have claimed that the radiation emitted from Lyman break galaxies is insufficient to reionize the IGM assuming a continuous star formation mode.

I propose that GCs could produce enough ionizing photons to reionize the IGM. Assuming $f_{di} = 2$ (i.e., during their evolution GCs have lost half of their original mass), I find $\omega_{f_{gc}} \approx 0.1\%$, small compared to the total $\omega_f \sim 10\%$ at $z = 0$. But GCs are around 12-13 Gyr old and, if they formed between $7 < z < 5$ (in about 0.5 Gyr), the expected total ω_f formed during this time period is about $\omega_f \sim 1\%$, only 10 times larger than $\omega_{f_{gc}}$. Assuming $f_{di} = 20$, expected from the results of N-body simulations, I find $\omega_{f_{gc}} \approx 1\%$, suggesting that GC formation is an important mode of star formation at high-redshift. The special star formation mode required to explain the formation of GCs suggests an $(f_{esc}) \sim 1$ from these objects. This is because (f_{esc}) is dominated by the most luminous OB associations and GCs are extremely luminous, emitting $S \sim 3 \times 10^{53}$ s$^{-1}$ ionizing photons in bursts lasting 4 Myrs. Moreover, according to many models, GCs form in the hot, collisionally-ionized galaxy halo, from which all the ionizing radiation emitted can escape into the IGM. Therefore it is not too surprising, if GCs started forming before $z = 6$, that their contribution to reionization is large. I find that the number of ionizing photons per baryon emitted in a Hubble time at $z = 6$ by GCs is $\mathcal{N}_{ph}^f = (5.1^{+4.2}_{-3.3}) f_{di}/\Delta t_{gc} > 1$, therefore sufficient to reionize the IGM even if we assume $f_{di} = 1$. Here, $\Delta t_{gc} \sim 0.5 - 2$ is the period of formation of the bulk of old GCs in Gyrs. Using simple calculations based on Press-Schechter formalism (see Fig. 2) I find that, if normal star formation in galaxies have $(f_{esc}) \lesssim 5\%$, GC contribution to reionization should be important. If GCs formed by thermal instability in the halo of $T_{vir} \sim 10^5$ K galaxies (case (iii)), the ionizing sources are located in rare peaks of the initial density field. Therefore, the mean size of intergalactic H II regions before overlap is large and reionization is inhomogeneous on large scales.

In this letter I have considered the possibility that an increasing (f_{esc}) at $z \sim 6$ due to GCs formation could explain IGM reionization and still be consistent with the observed values of the ionizing background at $z < 3$. Alternatively an increasing production of ionizing photons per baryon converted into stars, due to a varying IMF, would have similar effects on the IGM. Chemical evolution studies should be able to distinguish between these two scenarios.