II. THE GENERIC CIRCUIT

Let \mathcal{A} be a matrix with complex elements that allows to express the unitary transformation f. The matrix f is defined by the equation

$$f |\psi\rangle = \sum_{i} f_i |i\rangle,$$

where f is a matrix and $|\psi\rangle$ is the input state. The matrix f is characterized by the eigenvalues λ_i of the matrix f. The eigenvalues are defined as

$$\lambda_i = \sum_{j} f_{ij} \langle j | i \rangle,$$

where $|i\rangle$ and $|j\rangle$ are the eigenvectors of the matrix f. The eigenvalues are the characteristic of the matrix f and they determine the behavior of the circuit.

The generic circuit is defined by the equation

$$f |\psi\rangle = \sum_{i} f_i |i\rangle,$$

where f is a matrix and $|\psi\rangle$ is the input state. The matrix f is characterized by the eigenvalues λ_i of the matrix f. The eigenvalues are defined as

$$\lambda_i = \sum_{j} f_{ij} \langle j | i \rangle,$$

where $|i\rangle$ and $|j\rangle$ are the eigenvectors of the matrix f. The eigenvalues are the characteristic of the matrix f and they determine the behavior of the circuit.
FIG. 1: A quantum circuit realizing the block diagonal matrix $A = \text{diag}(1, U, U^2, \ldots, U^{2^\mu-1})$.

We first bring the ancillary system into a superposition of the first m computational base states, such that an input state $|0\rangle \otimes |\psi\rangle \in \mathbb{C}^{2^\mu} \otimes \mathbb{C}^{2^n}$ is mapped to the state

$$\frac{1}{\sqrt{m}} \sum_{i=0}^{m-1} |i\rangle \otimes |\psi\rangle.$$ \hfill (3)

This can be done by acting with a $2^\mu \times 2^\mu$ unitary matrix B on the ancillary system, where the first column of B is of the form $1/\sqrt{m}(1, \ldots, 1, 0, \ldots, 0)^T$. Efficient implementations of B exist.

Notice that there exists an efficient implementation of the block diagonal matrix $A = \text{diag}(1, U, U^2, \ldots, U^{2^\mu-1})$. Indeed, A can be composed of the matrices U^k, $0 \leq k < \mu$, conditioned on the ancilla bits. The resulting implementation is shown in Fig. 1. The state (3) is transformed by this circuit into the state

$$\frac{1}{\sqrt{m}} \sum_{i=0}^{m-1} |i\rangle \otimes U^i |\psi\rangle.$$ \hfill (4)

In the next step, we let a $2^\mu \times 2^\mu$ matrix M act on the ancillae bits. We choose M such that the state (4) is mapped to

$$\frac{1}{\sqrt{m}} \sum_{k=0}^{m-1} |k\rangle \otimes U^k V |\psi\rangle.$$ \hfill (5)

It turns out that M can be realized by a unitary matrix, assuming that the minimal polynomial of U is of the form $x^{m-\tau} - \tau \in \mathbb{C}$. This will be explained in some detail in the next section.

We apply the inverse A^\dagger of the block diagonal matrix A. This transforms the state (5) to

$$\frac{1}{\sqrt{m}} \sum_{k=0}^{m-1} |k\rangle \otimes \overline{V} |\psi\rangle.$$ \hfill (6)

We can clean up the ancillae bits by applying the $2^n \times 2^n$ matrix B^\dagger. This yields the output state

$$|0\rangle \otimes \overline{V} |\psi\rangle = |0\rangle \otimes f(U) |\psi\rangle.$$ \hfill (7)

The steps from the input state $|0\rangle \otimes |\psi\rangle$ to the final output state $|0\rangle \otimes \overline{V} |\psi\rangle$ are illustrated in Fig. 2 for the case $\mu = 2$.

FIG. 2: Generic circuit realizing a linear combination V. The case $\mu = 2$ is shown.

The following theorem gives an upper bound on the complexity of the method. We use the number of elementary gates (that is, the number of single qubit gates and controlled-not gates) as a measure of complexity.

Theorem 1. Let U be a $2^n \times 2^n$ unitary matrix with minimal polynomial $x^m - \tau \in \mathbb{C}$. Suppose that there exists a quantum algorithm for U using K elementary gates.

Then a unitary matrix $V = f(U)$ can be realized with at most $O(mK + m^2 \log m)$ elementary operations.

Proof. A matrix acting on $\mu \in O(\log m)$ qubits can be realized with at most $O(m^2 \log m)$ elementary operations, cf. [1]. Therefore, the matrices B, B^\dagger, and M can be realized with a total of at most $O(3m^2 \log m)$ operations.

If K operations are needed to implement U, then at most $14K$ operations are needed to implement $\Lambda_1(U)$, the operation U controlled by a single qubit. The reason is that a doubly controlled NOT gate can be implemented with 14 elementary gates [6], and a controlled single qubit gate can be implemented with six or fewer elementary gates [1].

We observe that $2^\mu - 1$ copies of $\Lambda_1(U)$ suffice to implement A. Indeed, we certainly can implement $\Lambda_1(U^{2^\mu})$ by a sequence of 2^{μ} circuits $\Lambda_1(U)$. This bold implementation yields the estimate for A. Typically, we will be able to find much more efficient implementations. Anyway, we can conclude that A and A^\dagger can both be implemented by at most $14(2^\mu - 1)K = O(14mK)$ operations. Combining our counts yields the result. \hfill \Box

III. UNITARITY OF THE MATRIX M

It remains to show that the state (4) can be transformed into the state (5) by acting with a unitary matrix M on the system of μ ancillae qubits. This is the crucial step in the previously described method.

Let U be a unitary matrix with a minimal polynomial of degree m. A unitary matrix $V = f(U)$ can then be represented by a linear combination

$$V = \sum_{i=0}^{m-1} a_i U^i.$$ \hfill (8)

The matrix M is then given by

$$M = \sum_{i=0}^{m-1} a_i B^i.$$
We will motivate the construction of the matrix \(M \) by examining in some detail the resulting linear combinations of the matrices \(U^k V \). From (8), we obtain
\[
U^k V = \sum_{i=0}^{m-1} \alpha_i U^{i+k}.
\] (9)
Suppose that the minimal polynomial of \(U \) is of the form
\[m(x) = x^m - g(x), \]
with \(g(x) = \sum_{i=0}^{m-1} g_i x^i \). The right hand side of (9) reduces to a polynomial in \(U \) of degree less than \(m \) using the relation \(U^m = g(U) \):
\[
U^k V = \sum_{i=0}^{m-1} \beta_k i U^i.
\]
The coefficients \(\beta_k i \) are explicitly given by
\[
(\beta_k 0, \beta_k 1, \ldots, \beta_k (m-1)) = (\alpha_0, \alpha_1, \ldots, \alpha_{m-1}) P^k
\]
where \(P \) denotes the companion matrix of \(m(x) \), that is,
\[
P = \begin{pmatrix}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
g_0 & g_1 & g_2 & \cdots & \beta_{m-1}
\end{pmatrix}.
\]
The \(2^m \times 2^m \) matrix \(M \) is defined by
\[
M = \begin{pmatrix} C & 0 \\ 0 & 1 \end{pmatrix}
\]
where \(C = (\beta_k i)_{k,i=0,\ldots,m-1} \), and \(1 \) is a \((2^m-m) \times (2^m-m)\) identity matrix. Under the assumptions of Theorem 1, it turns out that the matrix \(M \) is unitary. Before proving this claim, let us formally check that the matrix \(M \) transforms the state (4) into the state (5). If we apply the matrix \(M \) to the ancillary system, then we obtain from (4) the state
\[
\frac{1}{\sqrt{m}} \sum_{i=0}^{m-1} M |i\rangle \otimes U^i |\psi\rangle = \frac{1}{\sqrt{m}} \sum_{i=0}^{m-1} \beta_k i |k\rangle \otimes U^i |\psi\rangle
\]
\[
= \frac{1}{\sqrt{m}} \sum_{k=0}^{m-1} |k\rangle \otimes \sum_{i=0}^{m-1} \beta_k i U^i |\psi\rangle
\]
\[
= \frac{1}{\sqrt{m}} \sum_{k=0}^{m-1} |k\rangle \otimes U^k V |\psi\rangle
\]
which coincides with (5), as claimed.

Proof. It suffices to show that the matrix \(C \) is unitary. Notice that the assumption on the minimal polynomial \(m(x) \) implies that \(C \) is of the form
\[
C = \begin{pmatrix} \alpha_0 & \alpha_1 & \cdots & \alpha_{m-1} \\ \tau \alpha_0 & \alpha_0 & \cdots & \alpha_{m-2} \\ \cdots & \cdots & \cdots & \cdots \\ \tau \alpha_0 & \tau \alpha_1 & \cdots & \alpha_0 \end{pmatrix}
\]
that is, \(C \) is obtained from a circulant matrix by multiplying every entry below the diagonal by \(\tau \). In other words, we have
\[
C = \left[\begin{array}{cccc}
\tau_{[i,j]} & \alpha_j \mod m \\
\vdots & \ddots & \vdots \\
\alpha_0 & \cdots & \cdots & \alpha_0 \\
\end{array} \right]_{i,j=0,\ldots,m-1}
\]
where \(\tau_{[i,j]} = \tau \) if \(i > j \), and \(\tau_{[i,j]} = 1 \) otherwise. Note that the inner product of row \(a \) with row \(b \) of matrix \(C \) is the same as the inner product of row \(a+1 \) with row \(b+1 \). Thus, to prove the unitarity of \(C \), it suffices to show that
\[
d_{a,b} = \langle \text{row } a | \text{row } 0 \rangle = \sum_{j=0}^{m-1} \tau \alpha_j a_j + \sum_{j=0}^{m-1} \alpha_j a_j
\]
holds, where \(d_{a,b} \) denotes the Kronecker delta and the indices of \(a \) are understood modulo \(m \).

Considering the equation
\[
1 = V^\dagger V = \left(\sum_{i=0}^{m-1} \tau^i U^i \right) \left(\sum_{i=0}^{m-1} \alpha_i U^i \right)
\]
the right hand side can be simplified to a polynomial in \(U \) of degree less than \(m \) using the identity \(\tau U^m = 1 \). The coefficient of \(U^k \) in (11) is exactly the right hand side of equation (10). Since the minimal polynomial of \(U \) is of degree \(m \), it follows that the matrices \(U^0, U^1, \ldots, U^{m-1} \) are linearly independent. Thus, comparing coefficients on both sides of equation (11) shows (10). Hence the rows of \(C \) are pairwise orthogonal and of unit norm.

A Simple Example. Let \(F_n \) be the discrete Fourier transform matrix
\[
F_n = 2^{-n/2} \exp(-2\pi i k l / 2^n) |k,l = 0,\ldots,2^n-1,\]
with \(\tau^2 = -1 \). Recall that the Cooley-Tukey decomposition yields a fast quantum algorithm, which implements \(F_n \) with \(O(n^2) \) elementary operations. The minimal polynomial of \(F_n \) is \(x^n - 1 \) if \(n \geq 3 \). Thus, any unitary matrix \(V \), which is a function of \(F_n \), can be realized with \(O(n^2) \) operations.

For instance, if \(n \geq 3 \), then the fractional power \(F_n^{\frac{1}{2}} \), \(x \in \mathbb{R} \), can be expressed by
\[
F_n^{\frac{1}{2}} = \alpha_0(x) I + \alpha_1(x) F_n + \alpha_2(x) F_n^2 + \alpha_3(x) F_n^3,
\]
where the coefficients \(\alpha_i(x) \) are given by (cf. [7]):
\[
\begin{align*}
\alpha_0(x) &= \frac{1}{2} (1 + e^{i\pi} c x), \quad \alpha_1(x) = \frac{1}{2} (1 - i e^{i\pi} \sin x) \\
\alpha_2(x) &= \frac{1}{2} (-1 + e^{i\pi} \cos x), \quad \alpha_3(x) = \frac{1}{2} (1 - i e^{i\pi} \cos x).
\end{align*}
\]
In this case, F_2^n is realized by the circuit in Fig. 2 with $U = F_n$ and $M = (a_{j-1}(x))_{i,j=0,1}$. The circuit can be implemented with $O(n^3)$ operations.

IV. LIMITATIONS

The previous sections showed that a unitary matrix $f(U)$ can be realized by a linear combination of the powers U^i, $0 \leq i < m$, if the minimal polynomial $m(x)$ of U is of the form $x^m - \tau$, $\tau \in \mathbb{C}$. One might wonder whether the restriction to minimal polynomials of this form is really necessary. The next lemma explains why we had this limitation:

Lemma 3 Let U be a unitary matrix with minimal polynomial $m(x) = x^m - g(x)$, $\deg g(x) < m$. If $g(x)$ is not a constant, then the matrix M is in general not unitary.

Proof. Suppose that $g(x) = \sum_{i=0}^{m-1} g_i x^i$. We may choose for instance $V = U^m = g(U)$. Then the norm of first row in M is greater than 1. Indeed, we can calculate this norm to be $|g_0|^2 + |g_1|^2 + \cdots + |g_{m-1}|^2$. However, $|g_i|^2 = 1$, because g_i is a product of eigenvalues of U. By assumption, there is another nonzero coefficient g_i, which proves the result. \square

V. EXTENSIONS

We describe in this section one possibility to extend our approach to a larger class of unitary matrices U. We assumed so far that $f(U)$ is realized by a linear combination (2) of *linearly independent* matrices U^i. The exponents were restricted to the range $0 \leq i < m$, where m is degree of the minimal polynomial of U. We can circumvent the problem indicated in the previous section by allowing m to be larger than the degree of the minimal polynomial.

Theorem 4 Let $U \in U(2^n)$ be a unitary matrix such that U^m is a scalar matrix for some positive integer m. Suppose that there exists a quantum circuit which implements U with K elementary gates. Then a unitary matrix $V = f(U)$ can be realized with $O(mK + n \log m)$ elementary operations.

Proof. By assumption, $U^m = \tau I$ for some $\tau \in \mathbb{C}$. This means that the minimal polynomial $m(x)$ of U divides the polynomial $x^m - \tau$, that is, $m(x) = m(x)m_2(x)$ for some $m_2(x) \in \mathbb{C}[x]$

We may assume without loss of generality that the function f is defined at all roots of $x^m - \tau$. Indeed, we can replace f by an interpolation polynomial g satisfying $f(U) = g(U)$ if this is necessary.

Choose any unitary matrix $A \in U(2^n)$ with minimal polynomial $m_2(x)$. The minimal polynomial of the block diagonal matrix $U_A = \text{diag}(U, A)$ is $x^m - \tau$, the least common multiple of the polynomials $m(x)$ and $m_2(x)$. Express $f(U_A)$ by powers of the block diagonal matrix U_A:

$$f(U_A) = \text{diag}(f(U), f(A)) = \sum_{i=0}^{m-1} \alpha_i \text{diag}(U^i, A^i).$$

The approach detailed in Section III yields a unitary matrix M to realize this linear combination. On the other hand, we obtain from (12) the relation

$$f(U) = \sum_{i=0}^{m-1} \alpha_i U^i$$

by ignoring the auxiliary matrices A^i, $0 \leq i < m$. It is clear that a circuit of the type shown in Fig. 2 with μ chosen such that $2^{\mu-1} < m \leq 2^\mu$ implements this linear combination of the matrices U^i, $0 \leq i < m$, provided we use the matrix M constructed above. \square

VI. CONCLUSIONS

Few methods are currently known that facilitate the engineering of quantum algorithms. Linear algebra allowed us to derive efficient quantum circuits for $f(U)$, given an efficient quantum circuit for U, as long as U^m is a scalar matrix for some small integer m. This method can be used in conjunction with the Fourier sampling techniques by Shor [8], the eigenvalue estimation technique by Kitaev [9], and the probability amplitude amplification method by Grover [10], to design more elaborate quantum algorithms.