Radiation drag effects on magnetically dominated outflows around compact objects

V.S. Beskin1

N.L. Zakamska2,3

H. Sol4

\textbf{ABSTRACT}

The effects of radiation drag force on the structure of relativistic electron-positron and electron-proton outflows are considered within the one-fluid approximation. It is shown that for a magnetically-dominated outflow the drag force does not change the particle energy inside the fast magnetosonic surface. In this region the action of the drag results in a diminishing of the Poynting flux, not the particle flux. Outside the fast magnetosonic surface, for intermediate photon density the drag force may result in additional acceleration of the plasma. This acceleration is a result of the disturbance of magnetic surfaces under the action of the drag. At even larger distances particles are not frozen into the magnetic field and the drag force decelerates them efficiently.

In the case of extreme photon densities, the disturbance of magnetic surfaces becomes large and the drag force changes the total energy flux significantly, the particles becoming nonrelativistic.

We find that for Active Galactic Nuclei the photon density is too low to disturb the parameters of an ideal MHD outflow. The drag action may result in additional acceleration of outgoing plasma only for central engines with very high luminosities. On the other hand, for cosmological gamma-ray bursts the density of photons is too high for the Poynting-dominated outflow to form.

\textit{Subject headings:} acceleration of particles – MHD – galaxies: active – gamma-rays: bursts

1P.N. Lebedev Physical Institute, Leninsky prosp., 53, Moscow, 117924, Russia

2Department of Astrophysical Sciences, Princeton University, Princeton, NJ, 08544, USA

3Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia

4LUTH, Observatory Paris-Meudon, Pl. J.Janssen 5, Meudon, 92195, France
Magnetohydrodynamic (MHD) models are now developed intensively in theories of the magnetospheres of rotating supermassive black holes \((M \sim 10^8 - 10^9 M_\odot, B_0 \sim 10^4 \text{ G})\), which are believed to reside in central engines of Active Galactic Nuclei (AGNs) and quasars (Begelman, Blandford & Rees 1984; Thorne, Price & Macdonald 1986). In particular, it is the MHD model that is the most promising in the problem of the origin and stability of jets. Indeed, the MHD approach explains both the energy source (the rotational energy of the compact object) and the mechanism of the energy and angular momentum loss (for an overview, see e.g. Blandford 1990). Observational evidence in favor of MHD models was recently found in the possible presence of toroidal magnetic fields in jets (Gabuzda et al 1992; Gabuzda et al 1999). Magnetically-dominated outflows are also believed to be responsible for the energy transport in cosmological gamma-ray bursts (e.g., Mészáros & Rees 1997), when energy is released in the merging of black holes or neutron stars \((M \sim M_\odot, B_0 \sim 10^{15} \text{ G})\).

It has been suggested that the density of photons in the vicinity of the central engine is so high that they may drastically change the characteristics of the ideal MHD outflow. For example, they may result in extensive \(e^+e^-\) pair creation (Svensson 1984), acceleration of low-energy pairs by the radiation drag force (Phinney 1982; Turolla, Nobili & Calvani 1986; Beloborodov 1999) and deceleration of high-energy particles (Melia & Königl 1989; Sikora et al 1996). In other words, a self-consistent consideration should take the drag force into account.

So far the two processes – the ideal MHD acceleration and the action of external photons – have been considered independently. The first step to combine them was made by Li, Begelman & Chiuheh (1992). In particular, it was shown how the equations can be integrated in a conical geometry (which is impossible in the general case). On the other hand, the consideration was performed within the approximation of a fixed poloidal magnetic field. Under this assumption the fast magnetosonic surface of a cold flow is shifted to infinity (Michel 1969; Kennel, Fujimura & Okamoto 1976; Lery et al 1998). As a result, it was impossible to analyze the effects of radiation drag on the position of the fast magnetosonic surface and the properties of the outflow outside this surface.

The main goal of this paper is to determine more carefully the radiation drag effects on a magnetically-dominated outflow. To describe analytically the effects of radiation drag, including simultaneously the disturbance of the magnetic surfaces we consider here a quasi-monopole outflow. For AGNs, such geometry in the immediate vicinity of the central engine was recently confirmed by direct observations (Junior, Biretta & Livio 1999). In other words, in the zeroth approximation (i.e., without drag) we use the analytical solution for a
magnetically-dominated MHD outflow (Beskin, Kuznetsova & Rafikov 1998, hereafter Paper I), in which the fast magnetosonic surface is located at a finite distance from the origin.

For simplicity we consider the following model of the radiation field in the vicinity of the central engine. First, we notice that for ultra-relativistic particles the energy of a photon propagating nearly along the particle trajectory remains almost the same after a collision. This means that the drag force from these photons is small. Thus, only the isotropic component of the photon field contributes substantially to the drag force. Hence, in our geometry with a strong central source of photons and a monopole outflow of particles, only a small fraction of photons (the isotropic component of the photon field) interacts efficiently with the particles, producing inverse Compton photons with energies $E_{IC} \sim \gamma^2 E_{ph}$.

The isotropic component can be produced, firstly, by the outer part of the accretion disk and, secondly, by external sources. It can be modeled as

$$U = U_{iso} = U_A \left(\frac{r}{R_L} \right)^{-n} + U_{ext},$$

(1)

where $R_L = c/\Omega$ is the radius of the light cylinder, $U_A = U(R_L) = L_{tot}/(4\pi R_L^2 c)$, and $n \approx 3$ (for more details see, e.g., Sikora et al 1996). Here the first term describes the radiation from the outer parts of the disk, $r_{rad} > r$, while the second one corresponds to the homogeneous external radiation. For AGNs this can be due to clouds located at a distance $r_{cloud} \sim 1pc$ from the central engine and reradiating kL_{tot} of the total luminosity ($k \sim 10\%$). In this case

$$U_{ext} = k \frac{L_{tot}}{4\pi r_{cloud}^2 c}.$$

(2)

However, this model only makes physical sense at distances less than r_{cloud}, and the term vanishes at larger distances.

Finally, as some arguments exist both in favor of (Reynolds et al 1996; Hirotani et al 1999) and against (Sikora & Madejski 2000) the leading role of e^+e^- plasma in relativistic jets, in what follows we consider both electron-positron and electron-proton outflows.

In Section 2 we formulate the basic equations describing a quasi-monopole outflow of relativistic plasma in two-fluid and one-fluid approximations. Then in Section 3 we analyze the main properties of an electron-positron outflow. A similar analysis for electron-proton plasma is produced in Section 4. Finally in Section 5 we consider the effects of radiation drag for real astrophysical objects.
2. Basic Equations

2.1. The Two-Fluid Description

We consider an axisymmetric, stationary outflow of two-component cold plasma from the magnetosphere of a rotating body with a split monopole poloidal magnetic field. This geometry can be realized in the presence of an accretion disk separating the ingoing and outgoing magnetic fluxes (Blandford & Znajek 1977). In the hydrodynamic approximation, the structure of the flow is described by Maxwell’s equations and the separate equations of motion for positively and negatively charged particles:

\[
\begin{align*}
\nabla E &= 4\pi \rho_e, \quad \nabla \times E = 0, \\
\nabla B &= 0, \quad \nabla \times B = \frac{4\pi}{c} j,
\end{align*}
\]

\[
(v^\pm \nabla)p^\pm = \pm e \left(E + \frac{v^\pm}{c} \times B \right) + F^\pm_{\text{drag}}.
\]

Here \(E\) and \(B\) are the electric and magnetic fields, \(\rho_e = e(n^+ - n^-)\) and \(j = e(n^+ v^+ - n^- v^-)\) are the charge and current densities, and \(v^\pm\) and \(p^\pm\) are the velocities and momenta of the charged particles. Finally, \(F^\pm_{\text{drag}}\) are the radiation drag forces which, for an isotropic photon field, have the form

\[
F_{\text{drag}}^\pm = -\frac{4}{3} \frac{v^\pm}{|v^\pm|} \left(\frac{m_e}{m_p} \right)^2 \sigma_T U_{\text{iso}} (\gamma^\pm)^2.
\]

Here \(\gamma^\pm\) are the Lorentz factors, \(m_p\) is the mass of a positively charged particle, and \(\sigma_T = (8\pi/3)(e^2/m_e c^2)^2\) is the Thompson cross section.

In the limit of infinite particle energy,

\[
\gamma = \infty, \quad v_r^{(0)} = c, \quad v_\varphi^{(0)} = 0, \quad v_\theta^{(0)} = 0,
\]

so that

\[
\rho_e = \rho_s \frac{R^2}{r^2} \cos \theta, \quad j_r = \rho_s c \frac{R^2}{r^2} \cos \theta, \quad j_\theta = j_\varphi = 0,
\]

the monopole poloidal magnetic field

\[
B_r^{(0)} = B_0 \frac{R^2}{r^2}, \quad B_\theta^{(0)} = 0,
\]

is an exact solution of Maxwell’s equations. In this case,

\[
\begin{align*}
B_\varphi^{(0)} &= E_\theta^{(0)} = -B_0 \frac{\Omega R}{c} \frac{R}{r} \sin \theta, \\
E_r^{(0)} &= E_\varphi^{(0)} = 0,
\end{align*}
\]
which is just the well-known Michel (1973) solution. Here B_0 and ρ_s are the magnetic field and charge density on the surface $r = R \ll R_L$, and the angular velocity is $\Omega = 2\pi c[\rho_s]/B_0$. The limit $\gamma \to \infty$ corresponds to zero particle mass in the force-free approximation.

It is also convenient to introduce the electric field potential $\Phi(r, \theta)$, so that $E = -\nabla \Phi$ and
\begin{equation}
\Phi^{(0)} = -\frac{\Omega R^2 B_0}{c} \cos \theta, \quad (10)
\end{equation}
and the flux function $\Psi(r, \theta)$, so that the poloidal magnetic field
\begin{equation}
B_p = \frac{\nabla \Psi \times e_\phi}{2\pi r \sin \theta}, \quad (11)
\end{equation}
and $\Psi^{(0)} = 2\pi B_0 R^2 (1 - \cos \theta)$.

Then the dimensionless corrections $\eta^\pm(r, \theta)$, $\xi^\pm(r, \theta)$, $\delta(r, \theta)$, $\varepsilon f(r, \theta)$ and $\zeta(r, \theta)$ for the case $v \neq c$ can be introduced in the following form:
\begin{align}
n^+ &= \frac{\Omega B_0 R^2}{2\pi c e} \left[\lambda - \frac{1}{2} \cos \theta + \eta^+(r, \theta) \right], \quad (12) \\
n^- &= \frac{\Omega B_0 R^2}{2\pi c e} \left[\lambda + \frac{1}{2} \cos \theta + \eta^-(r, \theta) \right], \quad (13) \\
v^+_r &= c \left[1 - \xi^+_r(r, \theta) \right], \quad v^+_\theta = c \xi^+_\theta(r, \theta), \quad v^+_\phi = c \xi^+_\phi(r, \theta), \quad (14) \\
\Phi(r, \theta) &= \frac{\Omega R^2 B_0}{c} \left[-\cos \theta + \delta(r, \theta) \right], \quad (15) \\
\Psi(r, \theta) &= 2\pi B_0 R^2 \left[1 - \cos \theta + \varepsilon f(r, \theta) \right], \quad (16) \\
B_r &= B_0 \left(1 + \frac{\varepsilon}{\sin \theta} \frac{\partial f}{\partial \theta} \right), \quad (17) \\
B_\theta &= -\frac{\varepsilon}{\sin \theta} \frac{\partial f}{\partial \theta}, \quad (18) \\
B_\phi &= B_0 \left(-\sin \theta - \frac{\partial \phi}{\partial \theta} \right), \quad (19) \\
E_r &= -\frac{\Omega B_0 R^2}{c} \frac{\partial \delta}{\partial r}, \quad (20) \\
E_\theta &= -\frac{\Omega R^2 B_0}{c r} \left(-\sin \theta - \frac{\partial \phi}{\partial \theta} \right). \quad (21)
\end{align}

Here $\lambda \gg 1$ is the multiplication parameter ($\lambda = \frac{e n_s}{|\rho_s|}$, where n_s is the number density of particles on the surface $r = R$). For $\lambda < 1$ the approach under consideration is not valid. In what follows we consider for simplicity the case $\lambda = \text{const}$. Such a choice corresponds to a constant particle-to-magnetic flux ratio $\kappa = \text{const}$.
Hereafter Paper II) only by the additional drag terms in the r.h.s. of (27)–(32).

\[F_d^\pm = \frac{4 \sigma T U_{iso}}{3 \Omega m_e c} (\gamma^\pm)^2. \]

(22)

Now, substituting (12)–(21) into (3) we obtain, to first order in all the correcting functions, the following system of equations:

\[
\begin{align*}
- \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} (\zeta \sin \theta) &= 2(\eta^+ - \eta^-) - 2 \left[\left(\lambda - \frac{1}{2} \cos \theta \right) \xi_r^+ - \left(\lambda + \frac{1}{2} \cos \theta \right) \xi_r^- \right], \quad (23) \\
2(\eta^+ - \eta^-) + \frac{\partial}{\partial x} \left(x^2 \frac{\partial \delta}{\partial x} \right) + \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \delta}{\partial \theta} \right) &= 0, \quad (24) \\
\frac{\partial \zeta}{\partial x} &= \frac{2}{x} \left[\left(\lambda - \frac{1}{2} \cos \theta \right) \xi_\theta^+ - \left(\lambda + \frac{1}{2} \cos \theta \right) \xi_\theta^- \right], \quad (25) \\
- \frac{\varepsilon}{\sin \theta} \frac{\partial^2 f}{\partial x^2} - \frac{\varepsilon}{x^2} \frac{\partial}{\partial \theta} \left(\frac{1}{\sin \theta} \frac{\partial f}{\partial \theta} \right) &= \frac{2}{x} \left[\left(\lambda - \frac{1}{2} \cos \theta \right) \xi_\phi^+ - \left(\lambda + \frac{1}{2} \cos \theta \right) \xi_\phi^- \right], \quad (26) \\
\frac{\partial}{\partial x} \left(\xi_\theta^+ \gamma^+ \right) + \frac{\xi_\theta^+ \gamma^+}{x} &= -\xi_\theta^+ F_d^+ \left(\frac{m_e}{m_p} \right)^3 + 4 \lambda \sigma \left(\frac{m_e}{m_p} \right) \left(\frac{1}{x} \frac{\partial \delta}{\partial x} + \frac{\zeta}{x} - \sin \theta \frac{\xi_r^+}{x} + \frac{1}{x^2} \xi_\phi^+ \right), \quad (27) \\
\frac{\partial}{\partial x} \left(\xi_\theta^- \gamma^- \right) + \frac{\xi_\theta^- \gamma^-}{x} &= -\xi_\theta^- F_d^- - 4 \lambda \sigma \left(\frac{1}{x} \frac{\partial \delta}{\partial x} + \frac{\zeta}{x} - \sin \theta \frac{\xi_r^-}{x} + \frac{1}{x^2} \xi_\phi^- \right), \quad (28) \\
\frac{\partial}{\partial x} \left(\gamma^+ \right) &= -F_d^+ \left(\frac{m_e}{m_p} \right)^3 + 4 \lambda \sigma \left(\frac{m_e}{m_p} \right) \left(\frac{\partial \delta}{\partial x} - \sin \theta \frac{\xi_\theta^+}{x} \right), \quad (29) \\
\frac{\partial}{\partial x} \left(\gamma^- \right) &= -F_d^- - 4 \lambda \sigma \left(\frac{\partial \delta}{\partial x} - \sin \theta \frac{\xi_\theta^-}{x} \right), \quad (30) \\
\frac{\partial}{\partial x} \left(\xi_\phi^+ \gamma^+ \right) + \frac{\xi_\phi^+ \gamma^+}{x} &= -\xi_\phi^+ F_d^+ \left(\frac{m_e}{m_p} \right)^3 + 4 \lambda \sigma \left(\frac{m_e}{m_p} \right) \left(-\varepsilon \frac{1}{x^2} \frac{\partial f}{\partial x} - \frac{1}{x^2} \xi_\phi^+ \right), \quad (31) \\
\frac{\partial}{\partial x} \left(\xi_\phi^- \gamma^- \right) + \frac{\xi_\phi^- \gamma^-}{x} &= -\xi_\phi^- F_d^- - 4 \lambda \sigma \left(-\varepsilon \frac{1}{x^2} \frac{\partial f}{\partial x} - \frac{1}{x^2} \xi_\phi^- \right). \quad (32)
\end{align*}
\]

Here

\[\sigma = \frac{\Omega e B_0 R^2}{4 \lambda m_e c^3} \gg 1 \]

(33)

is the Michel (1969) magnetization parameter describing the particle-to-electromagnetic energy flux ratio \(W_{\text{par}}/W_{\text{em}} = (m_p/m_e) \gamma / \sigma \). Hence, for a Poynting-dominated flow we have \(\gamma \ll \sigma \). The system (23)–(32) differs from the one considered by Beskin \& Rafikov (2000, hereafter Paper II) only by the additional drag terms in the r.h.s. of (27)–(32).
2.2. The One-Fluid Limit

Equations (23)–(32) describe the flow in the two-fluid approximation. We now reduce the complete system of equations (23)–(32) to consider the one-fluid approximation. In the case of an electron-proton outflow there is a small parameter $m_e/m_p \sim 10^{-3}$ which allows us to neglect the electron mass and thus to proceed in a standard way to the one-fluid approximation. But as demonstrated in Paper II, this can be done in the electron-positron case for a magnetically-dominated ($\sigma \gg 1$) dense ($\lambda \gg 1$) plasma as well. Because the nonhydrodynamic components of the velocity are small in this case, i.e.

$$\frac{\Delta \zeta^\pm}{\zeta_r} \sim \lambda^{-1} \sigma^{-2/3}, \quad \frac{\Delta \zeta^\pm}{\zeta_\theta} \sim \lambda^{-1}, \quad \frac{\Delta \zeta^\pm}{\zeta_\phi} \sim \lambda^{-1} \sigma^{-2/3},$$

(34)

we can set $\zeta^+ = \zeta^- = \xi_i$ ($i = r, \theta, \phi$), where ξ_i is the hydrodynamic velocity. In this limit we also have

$$\frac{\delta - \varepsilon f}{\varepsilon f} \sim \lambda^{-2} \sigma^{-2/3}.$$ (35)

As a result, for a magnetically-dominated outflow with $\sigma \gg 1$ and $\lambda \gg 1$ in the one-fluid approximation,

$$\delta = \varepsilon f.$$ (36)

Finally, equations (27) and (28) together with (36) in the limit $\lambda \sigma \gg 1$ under consideration give another useful one-fluid relation:

$$-\varepsilon \frac{1}{x} \frac{\partial f}{\partial \theta} + \frac{\xi}{x} - \frac{\sin \theta}{x} \xi_r + \frac{1}{x^2} \xi_\phi = 0,$$

(37)

this equation being the same as in the drag-free case. On the other hand, as demonstrated in Paper II,

$$\frac{\xi_\theta}{\xi_\phi} \approx \sigma^{-1/3}.$$ (38)

Hence, in the one-fluid approximation one can set $\xi_\theta = 0$ so that

$$\gamma^2 = \frac{1}{2 \xi_r - \xi_\phi^2}.$$ (39)

It is necessary to stress that in some cases the monopole geometry allows one to consider separately the set of equations describing the particle energy and the set of equations resulting in the Grad-Shafranov (GS) equation, which determines the disturbance of magnetic surfaces. Thus we can consider particle energy without formulating here the general form of the GS equation. Some asymptotics of the GS equation are discussed below.
3. The Electron-Positron Outflow

3.1. Integrals of motion

In this section we consider the properties of the electron-positron outflow when \(m_p = m_e = m \). In our simple geometry with a (split) monopole poloidal magnetic field in the zeroth approximation the particle motion can be considered as radial. It allows us to integrate some equations along the \(r \) coordinate axis. This feature was first demonstrated by Li et al (1992).

Indeed, combining (29) and (30) with (25) one can obtain in the one-fluid approximation

\[
\zeta = \frac{l(\theta)}{\sin \theta} + \frac{2\varepsilon}{\tan \theta} f - \frac{1}{\sigma \sin \theta} (\gamma - \gamma_{\text{in}}) - \frac{1}{\sigma \sin \theta} l_A \int_{x_0}^{x} u(x') \gamma^2(x') \text{d}x'.
\]

(40)

Here \(\gamma_{\text{in}} \) is the Lorentz factor near the origin, \(x_0 = \Omega R/c \), and the integration constant \(l(\theta) \) describes the disturbance of the electric current \(I(R, \theta) = I_A [\sin^2 \theta + l(\theta)] \) on the surface \(r = R \). The integration constant must be determined from the critical conditions on singular surfaces. The compactness parameter \(l_A \) is defined by the relation

\[
l_A = \frac{4 \sigma T U_A}{3 m_e c \Omega},
\]

(41)

where \(U_A = U(R_L) \) is again the first term in (1) on the light cylinder \(r = R_L \). Finally, we also denote

\[
l_{\text{ext}} = \frac{4 \sigma T U_{\text{ext}}}{3 m_e c \Omega},
\]

(42)

so that (1) can be rewritten as

\[
u(x) = x^{-n} + l_{\text{ext}}/l_A.
\]

(43)

Expression (40) is just another way of writing the diminishing of the Bernoulli integral \(E_B \) along a magnetic field line as a result of the drag force. Within the Grad-Shafranov approach the full energy loss is determined by \(W = \int E_B \text{d}\Psi \). Thus relation (40) can be rewritten as

\[
E_B(r) = E_B(R) - \frac{\lambda \Omega}{2 \pi e} \int_{R}^{r} F_{\text{drag}} \text{d}r,
\]

(44)

where the energy flux per unit magnetic flux \(E_B \) has the standard form \(E_B = \Omega I/2 \pi c + \gamma mc^2 \kappa \). Here \(I \) is the total electric current inside the magnetic tube and \(\kappa \) is the particle-to-magnetic flux ratio (see e.g. Beskin 1997 for details).

In what follows we consider the case

\[
\gamma_{\text{in}}^3 \ll \sigma,
\]

(45)
when additional acceleration of particles inside the fast magnetosonic surface takes place (see e.g. Paper I). In the case $\gamma_{\text{in}}^3 \gg \sigma$ corresponding to ordinary pulsars, the particle energy remains constant ($\gamma = \gamma_{\text{in}}$) on any way up to the fast magnetosonic surface (Bogovalov 1997).

The other two integrals of motion, namely the conservation of angular momentum separately for electrons and positrons, can be obtained from equations (29)–(32):

$$
\gamma^+(1 - x \sin \theta \xi^+_{\varphi}) = \gamma_{\text{in}}^+ - l_A \int_{x_0}^x u(x')(1 - x' \sin \theta \xi^+_{\varphi}) (\gamma^+)^2 \, dx' - 4\lambda \sigma (\delta - \varepsilon f), \tag{46}
$$

$$
\gamma^- (1 - x \sin \theta \xi^-_{\varphi}) = \gamma_{\text{in}}^- - l_A \int_{x_0}^x u(x')(1 - x' \sin \theta \xi^-_{\varphi}) (\gamma^-)^2 \, dx' + 4\lambda \sigma (\delta - \varepsilon f). \tag{47}
$$

In the one-fluid approximation this gives

$$
\gamma(1 - x \sin \theta \xi_{\varphi}) = \gamma_{\text{in}} - l_A \int_{x_0}^x u(x')(1 - x' \sin \theta \xi_{\varphi}) \gamma^2(x') \, dx'. \tag{48}
$$

At large distances, where $\gamma \gg \gamma_{\text{in}}$, we have

$$
\xi_{\varphi} \approx \frac{1}{x \sin \theta}. \tag{49}
$$

It can be seen from (48) that the presence of the drag force (the term proportional to l_A) makes this approximation more accurate.

3.2. Fast Magnetosonic Surface

Substituting ζ from (40), ξ_r from (39), and ξ_{φ} from (48) into (37) we get the following equation to determine the position of the fast magnetosonic surface $r = r_F$:

$$
-\varepsilon \frac{\partial f}{\partial \theta} + \frac{2\varepsilon}{\tan \theta} f + \frac{l(\theta)}{\sin \theta} - \frac{1}{\sigma \sin \theta} (\gamma - \gamma_{\text{in}} + J) - \sin \theta \left[\frac{1}{2\gamma^2} + \frac{(\gamma - \gamma_{\text{in}} + J_1)^2}{2x^2 \gamma^2 \sin^2 \theta} \right] + \frac{\gamma - \gamma_{\text{in}} + J_1}{x^2 \gamma \sin \theta} = 0. \tag{50}
$$

Here

$$
J = l_A \int_{x_0}^x u(x') \gamma^2(x') \, dx', \tag{51}
$$

$$
J_1 = l_A \int_{x_0}^x u(x') \gamma^2(x')(1 - x' \sin \theta \xi_{\varphi}) \, dx'. \tag{52}
$$

But, in accordance with (48) and thereafter, the terms J_1 and γ_{in} can be neglected far from the origin of the flow $r \gg R_L$. Also, since $l(\theta) \sim \sigma^{-4/3}$ (see Paper I), the term with $l(\theta)$
can be omitted as well. Hence, one can write down the following algebraic equation for the Lorentz factor γ
\[
\gamma^3 - \sigma \left[P + \frac{1}{2x^2} \right] \gamma^2 + \frac{1}{2} \sigma \sin^2 \theta = 0, \tag{53}
\]
where
\[
P = -\frac{J}{\sigma} + 2\varepsilon f \cos \theta - \varepsilon \sin \theta \frac{\partial f}{\partial \theta}. \tag{54}
\]
This differs from the drag-free case by the additional term J/σ.

Equation (53) allows us to determine the position of the fast magnetosonic surface $r = r_F$ and the energy of particles on this surface $\gamma_F = \gamma(r_F)$. Indeed, as the fast magnetosonic surface is the X–point, both the numerator and the denominator of the derivative $d\gamma/dx$ must be equal to zero on the surface $r = r_F$:
\[
x \frac{d\gamma}{dx} = \frac{\gamma \sigma (x dP/dx - x^{-2})}{3\gamma - \sigma (2P + x^{-2})}. \tag{55}
\]
As a result, we obtain exactly
\[
\gamma_F = \sigma^{1/3} \sin^{2/3} \theta, \tag{56}
\]
which does not depend at all on P, or thus on the drag force. On the other hand, assuming that $x \partial P/\partial x \approx P$, we have
\[
x_F \approx \sigma^{1/3} \sin^{-1/3} \theta, \quad P_F \approx \sigma^{-2/3}, \tag{57, 58}
\]
again for arbitrary l_A. Now using (54), one can see that the conditions for weak and strong drag are, respectively, $l_A \ll l_{cr}$ and $l_A \gg l_{cr}$, where
\[
l_{cr} = \sigma^{1/3}. \tag{59}
\]
In other words, for $l_A \ll l_{cr}$ the flow remains the same as in the drag-free case. In particular, the disturbance of monopole magnetic surfaces εf in (16) is
\[
(\varepsilon f)_F \sim \sigma^{-2/3}, \tag{60}
\]
while for a high enough photon density $l_A \gg l_{cr}$ one can obtain, for $n = 3$,
\[
(\varepsilon f)_F \sim \frac{l_A}{\sigma}. \tag{61}
\]
Thus, as we can see, the position of the fast magnetosonic surface x_F and the energy $\gamma_F mc^2$ do not depend on the drag. On the other hand, the disturbance of the magnetic surfaces increases with increasing l_A, but remains small for $l_A \ll \sigma$.

For a very dense photon field, according to (40) and (61), the disturbance of the magnetic surfaces becomes of order unity for $l_A \sim l_{\text{max}}$ where

$$l_{\text{max}} = \sigma;$$

(62)
i.e., when the disturbance of the Bernoulli integral $\Delta E_B = E_B(r) - E_B(R_L)$ (44) is on the order of the total energy flux E_B, or in other words when the drag force substantially diminishes the total energy flux of the flow. But this means that the disturbance of the magnetic surfaces becomes large when the energies of particles in the vicinity of the fast magnetosonic surface become nonrelativistic. This feature is well known for a drag-free flow both within numerical (Sakurai 1985; Bogovalov 1997) and analytical (Bogovalov 1992; Tomimatsu 1994; Paper I) considerations. Of course, our analysis within the small disturbance approach can only demonstrate the tendency. For this reason, within our approach $\sigma = \text{const.}$ In reality, since $\sigma = E_B/(mc^2 \kappa)$, a decrease of the energy flux results in a decrease of σ as well. We also note that for $l_A \sim l_{\text{max}}$ the drag drastically changes the position of the fast magnetosonic surface:

$$r_F \approx R_L \sigma^{1/3} \left(\frac{m_e}{m_p} \right)^{1/3} \left[\frac{E_B(r_F)}{E_B(R)} \right]^{1/3} \sin^{-1/3} \theta.$$

(63)

This expression is valid for both the electron-positron and electron-proton cases.

Finally, it is necessary to stress that the results depend significantly on the assumed model of the isotropic photon density. In particular, for the general power-law dependence of the photon density for $n < 3$ in (43), one can obtain

$$\langle \varepsilon f \rangle_F \sim l_A \sigma^{-n/3}$$

(64)

for the disturbance of the magnetic surfaces instead of (61). This takes place for $l_A > l_{\text{cr}}$, where l_{cr} is the photon density capable of disturbing the magnetically-dominated outflow:

$$l_{\text{cr}} = \sigma^{(n-2)/3}.$$

(65)

A large disturbance $\langle \varepsilon f \rangle_F \sim 1$ can only be realized for a very high photon density $l_A > l_{\text{max}}$, where

$$l_{\text{max}} = \sigma^{n/3}.$$

(66)

For $n > 3$ we have $\langle \varepsilon f \rangle_F \approx l_A/\sigma$, $l_{\text{cr}} = \sigma^{1/3}$, and $l_{\text{max}} = \sigma$. According to (40), $\langle \varepsilon f \rangle_F \sim 1$ occurs when $\Delta E_B/E_B \sim 1$ for all values of n.
3.3. The Structure of the Flow at Small and Large Distances

3.3.1. Inner region

We first consider the structure of the flow well within the fast magnetosonic surface $r \ll r_F$. As demonstrated in Paper II, for $r \ll r_F$ it is possible to neglect the first two terms in (37). Thus, in the internal region $r \ll r_F$ we have

$$\xi_r = \frac{\xi_{\varphi}}{x \sin \theta}. \quad (67)$$

Now using relations (49) and (67), one can obtain

$$\gamma^2 = \frac{\gamma_{in}^2 + x^2 \sin^2 \theta}{x \sin \theta} \approx x^2 \sin^2 \theta, \quad (68)$$

$$\xi_{\varphi} = \frac{\sqrt{\gamma_{in}^2 + x^2 \sin^2 \theta} - \gamma_{in}}{x \sin \theta \sqrt{\gamma_{in}^2 + x^2 \sin^2 \theta}} \approx \frac{1}{x \sin \theta}, \quad (69)$$

$$\xi_r = \frac{\sqrt{\gamma_{in}^2 + x^2 \sin^2 \theta} - \gamma_{in}}{x^2 \sin^2 \theta \sqrt{\gamma_{in}^2 + x^2 \sin^2 \theta}} \approx \frac{1}{x^2 \sin^2 \theta}, \quad (70)$$

in full agreement with the ideal MHD approximation. Hence, one can conclude that in the internal region $r < r_F$ the radiation drag does not affect the particle motion. Here the universal value of the Lorentz factor (68) corresponds to the drift velocity, and it depends on no external disturbances. Indeed, using the frozen-in condition $E + v \times B / c = 0$, we obtain for the drift velocity

$$U_{dr}^2 = \frac{c^2 E^2}{B^2} = c^2 \left(\frac{B_{\varphi}^2}{E^2} + \frac{B_r^2}{E^2} \right)^{-1}. \quad (71)$$

In our case, however, according to (15)–(21), we have

$$B_{\varphi}^2 \approx E^2, \quad B_r^2 \approx E^2 / (x^2 \sin^2 \theta). \quad (72)$$

These relations immediately lead to the previously-stated asymptotic behavior (68). In particular, this means that disturbance of the magnetic surfaces plays no role in the determination of the particle energy. For this reason, it is possible not to consider the radiation drag corrections to the field structure for $r \ll r_F$.

3.3.2. Outer region

In the other limit, well outside the fast magnetosonic surface ($r \gg r_F$) equations (40), (37), (23), and (39) can be rewritten in the form

$$\zeta = \varepsilon \frac{2}{\frac{1}{\tan \theta} + \frac{1}{\sigma \sin \theta} - \frac{1}{\sigma \sin \theta} A \int_{x_0}^x u(x') \gamma^2(x') dx', \quad (73)$$
\[\zeta = \varepsilon \frac{\partial f}{\partial \theta} + \sin \theta \xi_r, \]
\[\varepsilon \frac{\partial}{\partial x} \left(x^2 \frac{\partial f}{\partial x} \right) - \frac{1}{\sin^3 \theta \frac{\partial}{\partial \theta} \left(\sin^4 \theta \xi_r \right)} = 0, \]
\[\gamma^2 = \frac{1}{2 \xi_r^r}. \]

Here we neglect the small values \(l(\theta), \gamma_{\text{in}} / \gamma \) and \(\xi_{\varphi} \), and set \(\delta = \varepsilon f \). As we can see, the only correction compared to the drag-free case is the last additional term in (73). Without the drag force the system (73)–(76) results in a very slow increase of the particle energy \((\gamma \propto \ln^{1/3} r) \) and actually in the absence of collimation, \(\varepsilon f \sim \sigma^{-2/3} \ln^{1/3} r \) (Tomimatsu 1994; Paper I). Unfortunately, because of the nonlinearity of the system (73)–(76), in the general case it is impossible to reduce it to the GS equation for the magnetic disturbance \(\varepsilon f \) only. For this reason, in what follows we present only an asymptotic representation of the GS equation.

a) Low photon density \(l_{A} \ll l_{cr} \).

In this case the action of drag results in a small correction to the particle energy. Only at very large distances, where the first term in (43) can be neglected, does the drag significantly change the energy of particles. Indeed, for the decreasing component of the isotropic photon density \((u(x) \sim x^{-n} \text{ in (43)}) \) and for an almost constant particle energy the drag term in (73) does not increase with the distance \(r \). Here the increase of the drag term is due to the homogeneous part of the photon density \((l_{\text{ext}} / l_{A} \text{ in (43)}) \). Clearly, this can be realized at large enough distances \((r > R_L (l_{A} / l_{\text{ext}}) \sigma^{(3-n)/3}) \), where the contribution from external photons is the leading one. Thus, we see that the action of the drag force can be significant for a high enough density of external isotropic photons in the vicinity of the compact object.

Now we consider this asymptotic region in more detail. Neglecting the term containing \(\gamma \) in (73), one can obtain for the generalized GS equation

\[\varepsilon \frac{\partial}{\partial x} \left(x^2 \frac{\partial f}{\partial x} \right) - \frac{1}{\sin^3 \theta \frac{\partial}{\partial \theta} \left(\sin^4 \theta \xi_r \right)} \left[2\varepsilon \sin^2 \theta \cos \theta f - \varepsilon \sin^3 \theta \frac{\partial f}{\partial \theta} \right] \frac{\sin^2 \theta}{\sigma} l_{\text{ext}} \int_{x_0}^{x} u(x') \gamma^2(x') dx' = 0. \]

(77)

One can seek the solution of this equation in the form

\[\varepsilon f(x, \theta) \propto x^{\alpha_\delta}, \quad \gamma(x, \theta) \propto x^{\alpha_\gamma}, \]

(78)

with \(u(x) = l_{\text{ext}} / l_{A} = \text{const.} \) Substituting these expressions into (77) we obtain

\[\varepsilon f(x, \theta) = k_1(\theta) l_{\text{ext}}^{1/2} \sigma^{-1/2} x^{1/2}, \]

\[\gamma(x, \theta) = k_2(\theta) l_{\text{ext}}^{-1/4} \sigma^{1/4} x^{-1/4}, \]

(79)

(80)
where $k_1(\theta) \sim k_2(\theta) \sim 1$ describe the θ dependence. This takes place for $r > r_h$, where

$$r_h = R_L l_{\text{ext}}^{-1} \sigma^{-1/3}.$$ \hspace{1cm} (81)

For $r_F < r < r_h$ the action of drag is negligible.

As we see, for $r > r_h$ the drag force results in a decrease of the particle energy and an additional collimation of the magnetic surfaces outside the fast magnetosonic surface. These asymptotic solutions, however, do not seem to be realized in reality. Indeed, as one can check, $r_h \sim (10^6 - 10^8) R_L > r_{\text{cloud}}$. But for $r > r_{\text{cloud}}$ the model that we adopted for the homogeneous component of the photon density is no longer valid and thus the asymptotic solutions (79)–(80) do not apply. This conclusion is made under the assumption that the homogeneous component is produced by the reradiating clouds surrounding the central engine. One could imagine producing a homogeneous component of the photon density in the host galaxy. However, in this case the photon density U_{ext} is too low and thus the collimation distance r_h is too large for our approach to be valid in the region $r \sim r_h$.

The characteristic radial dependence of the particle energy in the presence of the drag is demonstrated in Fig. 1a.

It is necessary to stress here an important property of the fast magnetosonic surface for $l_A < l_{\text{cr}}$. Introducing a small disturbance of the particle energy resulting from the drag

$$\gamma = \gamma_0 + \Delta \gamma,$$ \hspace{1cm} (82)

where γ_0 is the Lorentz factor of particles without the drag force, one can obtain from (73)–(76)

$$-\sin^2 \theta \frac{\Delta \gamma}{\gamma_0^3} + \varepsilon \frac{\partial \Delta f}{\partial \theta} - 2\varepsilon \cos \theta \Delta f + \frac{1}{\sigma} \Delta \gamma = \frac{J}{\sigma}.$$ \hspace{1cm} (83)

As equation (75) results in $\varepsilon \Delta f \sim \Delta \gamma / \gamma_0^3$, we see that outside the fast magnetosonic surface (where $\gamma_0 > \sigma^{1/3}$)

$$mc^2 \Delta \gamma \approx - \int F_{\text{drag}} \, dr.$$ \hspace{1cm} (84)

On the other hand, within the fast magnetosonic surface we have

$$mc^2 |\Delta \gamma| \ll \int F_{\text{drag}} \, dr,$$ \hspace{1cm} (85)

in full agreement with (68). Thus, one can conclude that for a low photon density the action of the drag force remains weak within the fast magnetosonic surface, while outside the fast surface the drag force efficiently diminishes the particle energy. This means that inside the fast magnetosonic surface the decrease of the total energy flux E_B results from the decrease
of the electromagnetic energy flux rather than the particle flux. Outside the fast surface the
photons act upon the particle directly. In other words, for \(l_A < l_{cr} \) the fast magnetosonic
surface separates the regions in space where particles are strongly or weakly frozen into the
electromagnetic field.

b) High photon density \(l_A > l_{cr} \).

For a high photon density \(l_A > l_{cr} \) the drag force significantly changes the energy of
the outgoing particles. As is shown in Fig. 1b, the increase of the particle energy continues
outside the fast magnetosonic surface up to the maximum value

\[
\gamma_{max} \approx \left(\frac{n-2}{2} \right)^{2/n} \left(\frac{l_A}{l_{cr}} \right)^{(n-2)/n} \sigma^{1/3}.
\]

(86)

For \(n < 2 \) there is no additional acceleration. Only at larger distances \(r > r_{cr} \) does the
radial dependence of the energy of the outgoing plasma become similar to the previous case.

Indeed, outside the fast magnetosonic surface one can neglect the term \(\sin \theta \xi_r \) in (74).
As a result, the system (73)–(76) can be rewritten in the form

\[
\varepsilon \frac{\partial f}{\partial \theta} - \varepsilon \frac{2}{\tan \theta} f = - \frac{1}{\sigma \sin \theta} \gamma - \frac{1}{\sigma \sin \theta} l_A \int_{x_0}^{x} u(x') \gamma^2(x') dx',
\]

\[
\varepsilon \frac{\partial}{\partial x} \left(x^2 \frac{\partial f}{\partial x} \right) - \frac{1}{2 \sin^3 \theta} \frac{\partial}{\partial \theta} \left(\sin^4 \theta \gamma^2 \right) = 0,
\]

(87)

which results in

\[
\frac{\partial}{\partial x} \left(x^2 \frac{\partial \gamma}{\partial x} \right) + l_A \frac{\partial}{\partial x} \left(x^{2-n} \gamma^2 \right) = \frac{\sigma}{2 \sin^3 \theta} \left[2 \cos \theta \frac{\partial}{\partial \theta} \left(\sin^4 \theta \gamma^2 \right) - \sin \theta \frac{\partial^2}{\partial \theta^2} \left(\sin^4 \theta \gamma^2 \right) \right].
\]

(88)

(89)

For \(l_A > l_{cr} \) the Lorentz factor \(\gamma \) increases with \(x \), and the r.h.s. in (89) can be omitted. This gives

\[
x^2 \frac{\partial \gamma}{\partial x} + l_A x^{2-n} \gamma^2 = C(\theta).
\]

(90)

Here the integration constant \(C(\theta) \approx l_A \sigma^{(4-n)/3} \) for \(l_A \gg l_{cr} \) actually does not depend on the
boundary conditions \(d\gamma/dx \) at \(x = x_F \). In what follows we do not consider the \(\theta \)-dependence.

Now analyzing equation (90), one can find that for \(x_F \ll x \ll x_{cr} \), where

\[
x_{cr} \approx \left(\frac{2}{n-2} \right)^{2/n} \left(\frac{l_A}{l_{cr}} \right)^{2/n} x_F,
\]

(91)

the particle energy increases as

\[
\gamma(x) \approx \sigma^{(4-n)/6} x^{(n-2)/2} = \sigma^{1/3} \left(\frac{x}{x_F} \right)^{(n-2)/2}
\]

(92)
for arbitrary \(n \). As to the disturbance of magnetic surfaces \(\varepsilon f \), it remains approximately constant: \(\varepsilon f \approx l_A \sigma^{-n/3} \).

On the other hand, in the saturation region \(x \gg x_{cr} \), where one can now neglect the term \(l_A x^{2-n} \gamma^2 \) in (90), we have

\[
\gamma(x) = C \left(\frac{1}{x_b} - \frac{1}{x} \right), \tag{93}
\]

where \(x_b \approx x_{cr} \). One can easily check that the maximum energy \(\gamma_{\text{max}} \approx C/x_{cr} \approx \sigma^{1/3}(x_{cr}/x_F)^{(n-2)/2} \) corresponds to (86). As demonstrated in Fig. 2., the analytical estimate (86) is in good agreement with the numerical integration of equation (90).

3.3.3. Physical interpretation of particle acceleration

At first glance, it is quite unexpected that a drag force can result in an acceleration of particles (so even the word ‘drag’ itself is not appropriate any more). As was demonstrated, additional acceleration can be realized for a highly magnetized outflow when the photon density decreases rapidly with radius \((n > 2) \). This acceleration occurs as a result of the action of the drag force onto magnetic surfaces. Thus, acceleration is only obtained when the disturbance of the magnetic surfaces is taken into account self-consistently.

To understand the nature of the additional particle acceleration in the supersonic region \(r > r_F \), it is necessary to return to the system (87)–(88). As one can see, equation (88) actually plays the role of the GS equation, describing the force balance in the direction perpendicular to the magnetic surfaces. It contains no drag term, because the drag force acts along the magnetic surfaces. Indeed, as was shown before (Bogovalov 1998; Okamoto 1999; Beskin & Okamoto 2000), in the asymptotic region \(r \gg r_F \) the transfield GS equation can be written down as \(F_c = F_{em} \), i.e., as a competition between the centrifugal volume force

\[
F_c = \frac{nmc^2 \gamma + S/c}{R_c}, \tag{94}
\]

and the electromagnetic volume force

\[
F_{em} = \rho_e E_\theta + \frac{1}{c} j B_\phi \approx \frac{1}{8\pi r \sin^2 \theta} \frac{\partial}{\partial \theta} \left[(B_\phi^2 - E_\theta^2) \sin^2 \theta \right]. \tag{95}
\]

Here \(S \approx (c/4\pi) E_\theta B_\phi \) is the Poynting flux. Now using the expression for the curvature radius \(R_c \) (Begelman & Li 1994; Beskin & Okamoto 2000),

\[
\frac{1}{R_c} = \frac{\varepsilon}{r \sin \theta \partial \theta} \left(r^2 \frac{\partial f}{\partial r} \right), \tag{96}
\]
and the condition
\[B_\varphi^2 - E_\theta^2 \approx \frac{1}{\gamma^2} B_\varphi^2 \] (97)
resulting from the relativistic Bernoulli equation (see e.g. Bogovalov 1998), for a magnetically-dominated flow \(S \gg nmc^3\gamma \) we recover relation (88).

On the other hand, the Bernoulli equation (87) describes the change of the total energy flux (44) due to the drag force. As was shown above, for \(l_A > l_{cr} \) in the vicinity of the fast magnetosonic surface the leading terms in the energy equation (87) are those containing \(\varepsilon f \) and \(l_A \). This means that here the drag force again acts mainly on the electromagnetic (Poynting) flux \(S \). The drag diminishes the \(\theta \)-component of the electric field \(E_\theta \), i.e. it disturbs the equipotential surfaces \(\delta(r, \theta) = \text{const} \). But since in the one-fluid approximation the magnetic surfaces \(\varepsilon_f(r, \theta) = \text{const} \) must follow the equipotential surfaces, the decrease of the electric field \(E_\theta \) results in a change of the curvature of magnetic field lines as well. As the condition \(F_c = F_{em} \) can now be rewritten in the form
\[\gamma^2 \approx \frac{4\pi j_\parallel}{cE_\theta} R_c \approx \frac{R_c}{r}, \] (98)
we see that the increase of the curvature radius \(R_c \) faster than \(r \) results in an increase of the particle energy. In our case such an acceleration is due to the rapid decrease \((n > 2) \) of the isotropic photon density with the distance \(r \).

Thus, we see that for high enough photon density there is an additional acceleration of outgoing plasma outside the fast magnetosonic surface. On the other hand, as for \(l_A > l_{\text{max}} \) (62) the drag force significantly diminishes the total energy flux \(E \), one can conclude that this acceleration may only take place up to the energy
\[E_{\text{sup}} \sim \sigma^{1/3} \left(\frac{l_{\text{max}}}{l_{cr}} \right)^{(n-2)/n} m_e c^2. \] (99)
In particular, \(E_{\text{sup}} \sim \sigma^{5/9} m_e c^2 \) for \(n = 3 \). This energy is always much lower than \(\sigma m_e c^2 \), corresponding to the total conversion of electromagnetic energy into particle energy.

4. The Electron-Proton Outflow

In this section we briefly consider the results of the analysis of the electron-proton outflow. As the procedure is quite similar to the electron-positron case, we present here the principal relations only.
The main difference from the electron-positron case that occurs due to the large mass ratio is that the drag force acts on the electron component only, but the mass flow is determined entirely by protons. As a result, the energy conservation law has the form

\[
\zeta = \frac{2\varepsilon}{\tan \theta} f - \frac{(\lambda + \cos \theta/2)\gamma^- + (m_p/m_e)(\lambda - \cos \theta/2)\gamma^+}{2\lambda \sigma \sin \theta}
\]

\[\begin{align*}
&- \frac{l_A}{2\lambda \sigma \sin \theta} \int_{x_0}^{x} \left[\left(\lambda + \frac{1}{2} \cos \theta \right) (\gamma^-)^2 + \left(\frac{m_e}{m_p} \right)^2 \left(\lambda + \frac{1}{2} \cos \theta \right) (\gamma^+)^2 \right] u(x')\gamma^2(x')dx' \\
&\approx \frac{2\varepsilon}{\tan \theta} f - \left(\frac{m_p}{m_e} \right) \frac{\gamma}{2\sigma \sin \theta} - \frac{1}{2\sigma \sin \theta} l_A \int_{x_0}^{x} u(x')\gamma^2(x')dx',
\end{align*}
\]

where now \(\gamma = \gamma^+ \). The conservation of angular momentum (46)–(47) looks like

\[
\gamma^+(1 - x \sin \theta \xi^+) = \gamma^+ - l_A \left(\frac{m_e}{m_p} \right)^3 \int_{x_0}^{x} u(x')(1 - x' \sin \theta \xi^+)(\gamma^+)^2dx' - 4\lambda \sigma \frac{m_e}{m_p} (\delta - \varepsilon f l)
\]

\[
\gamma^-(1 - x \sin \theta \xi^-) = \gamma^- - l_A \int_{x_0}^{x} u(x')(1 - x' \sin \theta \xi^-)(\gamma^-)^2dx' + 4\lambda \sigma (\delta - \varepsilon f),
\]

resulting in \(\xi_\phi = 1/x \sin \theta \). Since for \(r \ll r_F \) we again have \(\xi_r = \xi_\phi/(x \sin \theta) \), we return to the universal dependence

\[\gamma \approx x \sin \theta.\]

Equation (53) determining the energy on the fast magnetosonic surface now has the form

\[
\gamma^3 - 2\sigma \frac{m_e}{m_p} \left[2\varepsilon f \cos \theta - \varepsilon \sin \theta \frac{\partial f}{\partial \theta} - \frac{1}{2} \frac{l_A}{\sigma} \int_{x_0}^{x} u(x')\gamma^2(x')dx' + \frac{1}{2x^2} \right] \gamma^2 + \frac{m_e}{m_p} \sigma \sin^2 \theta = 0.
\]

Hence, for arbitrary \(l_A \) the position of the fast magnetosonic surface and the Lorentz factor of particles can be presented in the form

\[
\begin{align*}
\gamma_F &= \left(\frac{2m_e}{m_p} \right)^{1/3} \sigma^{1/3} \sin^{-1/3} \theta, \\
x_F &= \left(\frac{2m_e}{m_p} \right)^{1/3} \sigma^{1/3} \sin^{-2/3} \theta.
\end{align*}
\]

On the other hand, for a small enough drag force \(l_A < l_{cr}^{(p)} \), for \(n < 3 \) we have

\[
l_{cr}^{(p)} = \left(\frac{m_p}{m_e} \right)^{(5-n)/3} \sigma^{(n-2)/3},
\]

where now \(\gamma = \gamma^+ \). The conservation of angular momentum (46)–(47) looks like

\[
\gamma^+(1 - x \sin \theta \xi^+) = \gamma^+ - l_A \left(\frac{m_e}{m_p} \right)^3 \int_{x_0}^{x} u(x')(1 - x' \sin \theta \xi^+)(\gamma^+)^2dx' - 4\lambda \sigma \frac{m_e}{m_p} (\delta - \varepsilon f l)
\]

\[
\gamma^-(1 - x \sin \theta \xi^-) = \gamma^- - l_A \int_{x_0}^{x} u(x')(1 - x' \sin \theta \xi^-)(\gamma^-)^2dx' + 4\lambda \sigma (\delta - \varepsilon f),
\]

resulting in \(\xi_\phi = 1/x \sin \theta \). Since for \(r \ll r_F \) we again have \(\xi_r = \xi_\phi/(x \sin \theta) \), we return to the universal dependence

\[\gamma \approx x \sin \theta.\]

Equation (53) determining the energy on the fast magnetosonic surface now has the form

\[
\gamma^3 - 2\sigma \frac{m_e}{m_p} \left[2\varepsilon f \cos \theta - \varepsilon \sin \theta \frac{\partial f}{\partial \theta} - \frac{1}{2} \frac{l_A}{\sigma} \int_{x_0}^{x} u(x')\gamma^2(x')dx' + \frac{1}{2x^2} \right] \gamma^2 + \frac{m_e}{m_p} \sigma \sin^2 \theta = 0.
\]

Hence, for arbitrary \(l_A \) the position of the fast magnetosonic surface and the Lorentz factor of particles can be presented in the form

\[
\begin{align*}
\gamma_F &= \left(\frac{2m_e}{m_p} \right)^{1/3} \sigma^{1/3} \sin^{-1/3} \theta, \\
x_F &= \left(\frac{2m_e}{m_p} \right)^{1/3} \sigma^{1/3} \sin^{-2/3} \theta.
\end{align*}
\]

On the other hand, for a small enough drag force \(l_A < l_{cr}^{(p)} \), for \(n < 3 \) we have

\[
l_{cr}^{(p)} = \left(\frac{m_p}{m_e} \right)^{(5-n)/3} \sigma^{(n-2)/3},
\]
and for \(n > 3 \) we have \(l_{cr}^{(p)} = (m_p/m_e)^{2/3} \sigma^{1/3} \). The disturbance of magnetic surfaces on the fast magnetosonic surface is

\[
(\varepsilon f)_F \sim \left(\frac{2m_e}{m_p} \right)^{-2/3} \sigma^{-2/3}.
\] (108)

Finally, for \(l_A > l_{cr}^{(p)} \) we return to the relation \((\varepsilon f)_F = l_A/\sigma \) for \(n > 3 \), but for \(n < 3 \) now

\[
(\varepsilon f)_F \sim l_A \left(\frac{m_e}{m_p} \right)^{(3-n)/3} \sigma^{-n/3},
\] (109)

and other values \((x_F, \gamma_F)\) remain the same as without the drag force. As we see, for \(n > 3 \) the disturbance of magnetic surfaces remains the same as for the electron-positron outflow. In particular, the terminating compactness parameter \(l_{max} = \sigma \) is again determined by electrons.

Thus, one can conclude that inside the fast magnetosonic surface \(r < r_F \) the Lorentz factors of all particles are given by the universal relation (103). Hence, our results demonstrate that the drag force does not affect the structure of the flow inside the fast magnetosonic surface for both the electron-positron and the electron-proton cases. But the position of the fast magnetosonic surface and the critical value of the photon density depend on the mass of the outgoing particles, and for the electron-proton case they are determined by protons.

At large distances \(r > r_F \) for \(l_A < l_{cr}^{(p)} \) the particle energy actually remains the same as on the fast magnetosonic surface \((\gamma(r > r_F) \approx \gamma_F) \), while for \(l_A > l_{cr}^{(p)} \) the Lorentz factor increases up to the maximum value

\[
\gamma_{max} \approx \gamma_F \left(\frac{l_A}{l_{cr}^{(p)}} \right)^{(n-2)/n},
\] (110)

for arbitrary \(n \). This takes place up to the distance \(r \approx r_{cr} \), where

\[
r_{cr} = r_F \left(\frac{l_A}{l_{cr}^{(p)}} \right)^{2/n}.
\] (111)

Clearly, this additional acceleration can be realized only for \(\sigma > m_p/m_e \). Then, we have for \(n = 3 \)

\[
E_{sup} \sim \left(\frac{m_p}{m_e} \right)^{4/9} \sigma^{5/9} m_e c^2.
\] (112)

5. Discussion and Astrophysical Applications

We have demonstrated how for a simple geometry it is possible to determine a small radiation-drag-force correction to the one-fluid ideal MHD outflow. The disturbance of
magnetic surfaces was self-consistently taken into consideration. As a result, it is possible to characterize the general influence of the drag action on the magnetic field structure for an ideal magnetically-dominated outflow and to determine under what circumstances radiation drag is important.

As demonstrated above, the characteristics of the flow are determined by two main parameters, namely the compactness parameter \(l_A \) (41) (which is proportional to the photon density) and the magnetization parameter \(\sigma \) (33). If the photon density is low, so that the compactness parameter is small \(l_A \ll l_{cr}(\sigma) \), the action of the drag force is negligible, while for a high photon density \(l_A \gg l_{cr}(\sigma) \), particles are additionally accelerated outside the fast magnetosonic surface.

In particular, for \(l_{cr} \ll l_A \ll l_{max} \) the increase of the drag force results in an increase of the outgoing plasma energy \(E_{max} \approx \gamma_{max} m_{e,p} c^2 \), but the disturbance of magnetic surfaces is small \(\varepsilon f \ll 1 \). For \(l_A \sim l_{max} \) an increase of the photon density results in the increase of collimation up to values \(\varepsilon f \sim 1 \), but the particle energy remains near the saturation value \(E_{sup} \). Finally, for a very high photon density \(l_A \gg l_{max} \) an effective collimation of magnetic surfaces becomes possible, but in this case the drag force substantially diminishes the flux of electromagnetic energy inside the fast magnetosonic surface. As a result, for \(l_A \gg l_{max} \) almost all the energy of the electromagnetic field is lost via the inverse Compton interaction of particles with external photons. For this reason, the very existence of a magnetically-dominated flow becomes impossible. The dependence of the maximum particle energy \(E_{max} = \gamma_{max} m_{e,p} c^2 \) on the compactness parameter \(l_A \) is shown in Fig. 3.

We now consider several astrophysical applications.

5.1. Active Galactic Nuclei

For AGNs (the central engine is assumed to be a rotating black hole with mass \(M \sim 10^9 M_\odot \), \(R \sim 10^{14} \) cm, the total luminosity \(L \sim 10^{45} \) erg s\(^{-1} \), \(B_0 \sim 10^4 \) G) the compactness parameter \(l_A \) (41) can be evaluated as

\[
l_A \approx 30 M_9^{-1} \left(\frac{\Omega R}{c} \right) L_{45}. \tag{113}
\]

In the Michel magnetization parameter \(\sigma \) (33)

\[
\sigma \approx 10^{14} \lambda^{-1} M_9 B_4 \left(\frac{\Omega R}{c} \right), \tag{114}
\]

the main uncertainty comes from the multiplication parameter \(\lambda \), i.e., in the particle number density \(n \). Indeed, for an electron-positron outflow this value depends on the efficiency of
pair creation in the magnetosphere of a black hole, which is still undetermined. In particular, this process depends on the density and energies of the photons in the immediate vicinity of the black hole. As a result, if the hard-photon density is not high, then the multiplication parameter is small ($\lambda \sim 10^{-10}$; Beskin, Istomin & Pariev 1992; Hirotani & Okamoto 1998). In this case for $(\Omega R/c) \sim 0.1–0.01$ we have $\sigma \sim 10^9–10^{12}$, so that $l_{cr} \sim 10^5–10^4$. On the other hand, if the density of photons with energies $E_\gamma > 1\text{MeV}$ is high enough, direct particle creation $\gamma + \gamma \rightarrow e^+ + e^-$ results in an increase of the particle density (Svensson 1984). This gives $\sigma \sim 10 – 10^3$, and hence $l_{cr} \sim 10$ for an electron-positron outflow.

From a theoretical point of view, the most interesting result here is the possibility of an additional acceleration of particles outside the fast magnetosonic surface. Indeed, for a high enough photon density ($l_A \sim 10 – 100$, i.e., for $L \sim 10^{46} – 10^{48} \text{erg s}^{-1}$) and a small magnetization parameter $\sigma \sim 10 – 100$, the compactness parameter l_A can exceed the critical value l_{cr} for an electron-positron outflow. Hence, for AGNs with a high density of γ-ray photons in the vicinity of the central engine, it is possible to suppose that the kinetic luminosity of the relativistic jet is proportional to the photon density, i.e., to the total luminosity L_{tot} of the central engine.

For an electron-proton outflow the magnetization parameter (33) can be rewritten in the form (Camenzind 1990)

$$\sigma = \frac{m_p}{m_e} \left(\frac{\Omega R}{c}\right)^2 \frac{B_0^2 R^2}{c M} \approx 3 \times 10^4 \left(\frac{\Omega R}{c}\right)^2 \frac{B_0^2 M_0^2}{\left(\frac{\dot{M}}{0.1 M_\odot/\text{yr}}\right)}^{-1}. \quad (115)$$

Here $\dot{M} = 4\pi n m_p R^2 c$ is the mass ejection rate. Hence, for a high ejection rate ($\dot{M} > 0.1 M_\odot \text{yr}^{-1}$) the magnetization parameter $\sigma < m_p/m_e$. In this case there is no acceleration of plasma. On the other hand, for low ejection rate $\dot{M} < 0.1 M_\odot/\text{yr}$ the magnetization parameter becomes too large for the drag force to be efficient.

Thus, the drag force can substantially disturb the MHD parameters of a Poynting-dominated outflow only for a very high luminosity of the central engine ($L_{tot} \gg 10^{45} \text{erg s}^{-1}$) and only for an electron-positron outflow. In all other cases the action of the drag force remains negligible. In particular, the additional acceleration of particles outside the fast magnetosonic surface is not efficient.

5.2. Cosmological Gamma-Ray Bursts

For cosmological gamma-ray bursts (the central engine is represented by the merger of very rapidly orbiting neutron stars or black holes with $M \sim M_\odot$, $R \sim 10^6 \text{cm}$, total
luminosity $L \sim 10^{52}$ erg s$^{-1}$, $B_0 \sim 10^{15}$ G; see, e.g., Lee, Wijers & Brown 2000 for details) the compactness parameter l_A is extremely large:

$$l_A \sim 10^{17} \left(\frac{\Omega R}{c} \right) L_{52}. \quad (116)$$

On the other hand, even for a superstrong magnetic field of $B_0 \sim 10^{15}$ G (which is necessary to explain the total energy release) the magnetization parameter σ is small ($\sigma < 1 - 10$), because within this model the magnetic field itself is secondary and its energy density cannot exceed the plasma energy density. Thus, one can conclude that for cosmological gamma-ray bursts the density of photons is too high for a Poynting-dominated outflow to appear. In our opinion, this conclusion may substantially restrict some recent models of cosmological gamma-ray bursts.

5.3. Radio Pulsars

For radio pulsars the central engine is a rotating neutron star with $M \sim M_\odot$, $R \sim 10^6$ cm, total luminosity of the surface $L_X \sim 10^{33} - 10^{37}$ erg s$^{-1}$, and $B_0 \sim 10^{12}$ G. In this case the magnetization parameter $\sigma \sim 10^4 - 10^6$, corresponding to relativistic electron-positron plasma, is known with rather high accuracy (see, e.g., Bogovalov 1997). This gives $l_{cr} \sim 10^2 - 10^3$, and the compactness parameter

$$l_A \sim \left(\frac{\Omega R}{c} \right) L_{35} \quad (117)$$

remains small (< 1) even for the most energetic ($L_X \sim 10^{37}$ erg s$^{-1}$) fast ($\Omega R/c \sim 10^{-2}$) pulsars like Crab and Vela. Thus, one can conclude that the drag force does not substantially disturb the magnetically-dominated outflow from radio pulsars.

Thus, the drag force does not affect the wind characteristics (particle energy, magnetic field structure, etc.) of pulsars. However, interaction of outflowing relativistic particles with thermal photons can be important in other ways. In the wind region ($r \gg R_L$) even a weak interaction with photons can result in a detectable flux of inverse Compton gamma-ray photons (Bogovalov & Aharonian 2000). On the other hand, near the surface of the star ($r \ll R_L$), inverse Compton photons are important in the pair creation process (Kardashev, Mitrofanov & Novikov 1984; Zhang & Harding 2000).
Acknowledgments

The authors are grateful to K.A. Postnov for fruitful discussions. VSB thanks Observatory Paris-Meudon for hospitality. This work was partially supported by Russian Foundation for Fundamental Research (Grant 02-02-16762).

REFERENCES

[38] Tomimatsu A., 1994, PASJ, 46, 123

AAS L\TeX\ macros v5.0.
Fig. 1.— The radial dependence of the Lorentz factor $\gamma(r)$ for low (a) and high (b) photon densities. The dashed lines correspond to the drag-free case.

Fig. 2.— Saturation energy $\gamma_{\text{max}}mc^2$ determined by a numerical integration of (90) for $n = 3$ and $n = 4$ (points). The lines correspond to the analytical estimate (86).
Fig. 3.— Dependence of the maximum particle energy E_{max} on the compactness parameter l_A both for electron-proton (a) and electron-positron (b) outflows. Here m_p is a proton mass. The decrease of the particle energy for a very large compactness parameter l_A is due to the decrease of the total energy flux E_R.

\[
\frac{E_{\text{max}}}{m_e c^2} \quad \text{a) positrons+electrons, } n = 3
\]

\[
\frac{E_{\text{max}}}{m_e c^2} \quad \text{b) protons+electrons, } n = 3
\]

\[
\frac{m_p}{m_e} \left(\frac{m_p}{m_e} \right)^{1/3} \quad \text{a) positrons+electrons, } n = 3
\]

\[
\left(\frac{m_p}{m_e} \right)^{1/3} \quad \text{b) protons+electrons, } n = 3
\]