Benchmark Parameters for CMB Polarization Experiments
Wayne Hu1, 2, Matthew M. Hedman1, Matias Zaldarriaga31 Center for Cosmological Physics, University of Chicago, Chicago IL 60637

abstract The recently detected polarization of the cosmic microwave background (CMB) holds the potential for revealing the physics of inflation and gravitationally mapping the large-scale structure of the universe, if so called B-mode signals below 10^{-7}, or tenths of a μK, can be reliably detected. We provide a language for describing systematic effects which distort the observed CMB temperature and polarization fields and so contaminate the B-modes. We identify 7 types of effects, described by 11 distortion fields, and show their association with known instrumental systematics such as common mode and differential gain fluctuations, line cross-coupling, pointing errors, and differential polarized beam effects. Because of aliasing from the small-scale structure in the CMB, even uncorrelated fluctuations in these effects can affect the large-scale B modes relevant to gravitational waves. Many of these problems are greatly reduced by having an instrumental beam that resolves the primary anisotropies (FWHM $\ll 10'$). To reach the ultimate goal of an inflationary energy scale of 3×10^{15} GeV, polarization distortion fluctuations must be controlled at the $10^{-2} - 10^{-3}$ level and temperature leakage to the $10^{-4} - 10^{-3}$ level depending on effect. For example pointing errors must be controlled to 1.5'' rms for arcminute scale beams or a percent of the Gaussian beam width for larger beams; low spatial frequency differential gain fluctuations or line cross-coupling must be eliminated at the level of 10^{-4} rms.