\textbf{\textit{WEATHER}} \textit{VARIABILITY OF CLOSE-IN EXTRASOLAR GIANT PLANETS}

\textsc{Kristen Menou}a,1,2, \textsc{James Y-K. Cho}b,c, \textsc{Sara Seager}c \& \textsc{Bradley M.S. Hansen}d

aPrinceton University, Department of Astrophysical Sciences, Princeton, NJ 08544, USA
bSpectral Sciences Inc., 99 South Bedford St., # 7, Burlington, MA 01803, USA
cCarnegie Institution of Washington, Dept. of Terrestrial Magnetism, 5241 Broad Branch Rd. NW, Washington, DC 20015, USA
dDivision of Astronomy, 8971 Math Sciences, UCLA, Los Angeles, CA 90095, USA

\textit{Draft version March 13, 2003}

\textbf{ABSTRACT}

Shallow-water numerical simulations show that the atmospheric circulation of the close-in extrasolar giant planet (EGP) HD 209458 b is characterized by moving circumpolar vortices and few bands/jets (in contrast with \sim 10 bands/jets and absence of polar vortices on cloud-top Jupiter and Saturn). The large spatial scales of moving circulation structures on HD 209458 b may generate detectable variability of the planet’s atmospheric signatures. In this \textit{Letter}, we generalize these results to other close-in EGPs, by noting that shallow-water dynamics is essentially specified by the values of the Rossby (R_o) and Burger (B_u) dimensionless numbers. The range of likely values of R_o (\sim 10-2–10) and B_u (\sim 1–200) for the atmospheric flow of known close-in EGPs indicates that their circulation should be qualitatively similar to that of HD 209458 b. This results mostly from the slow rotation of these tidally-synchronized planets.

\textit{Subject headings:} planetary systems – planets and satellites: general – stars: atmospheres – turbulence

1. \textbf{INTRODUCTION}

The focus of extrasolar planet research has broadened to now include the characterization of their physical properties, as shown by the recent sodium detection in the atmosphere of HD 209458 b (Charbonneau et al. 2002). Atmospheric circulation is expected to play a key role in determining a number of observational characteristics of EGPs, including their albedo and transmission spectrum (see, e.g., Seager \& Sasselov 1998, 2000; Sudarsky et al. 2000; Brown 2001). This is especially true for close-in EGPs, which are thought to be tidally-locked to their parent star and irradiated on one side only: circulation will be essential in redistributing heat from the day to the night side on these planets, thus determining to a large extent how they will appear to the distant observer (Cho et al. 2002a,b; Showman \& Guillot 2002).

Recently, we have presented a set of detailed shallow-water numerical simulations of the atmospheric flow on HD 209458 b (Cho et al. 2002a,b), currently the only EGP with known mass and radius from the transit light curves and radial velocity measurements (Charbonneau et al. 2000; Henry et al. 2000; Mazeh et al. 2000; Jha et al. 2000; Brown et al. 2001). These simulations suggest that, contrary to the simple day/night (hot/cold) picture, the circulation on this planet is characterized by two moving circumpolar vortices and a small number of latitudinal bands/jets. The vortices act as dynamically distinct thermal spots whose motion around the poles generates variability as seen by an observer interested in quantities integrated over the planetary disk (or circumference).

It is possible to determine the general features of the circulation pattern expected within the framework of shallow-water dynamics by specifying the two dimensionless numbers – Rossby (R_o) and Burger (B_u) – for the atmospheric flow. In this \textit{Letter}, we estimate a range of likely R_o and B_u values for known close-in EGPs and conclude that their atmospheric circulation pattern should be qualitatively similar to that of HD 209458 b. In §2, we recall how the atmospheric flow pattern can be characterized by the knowledge of R_o and B_u. In §3, we describe the sample of close-in EGPs selected for our study and how we estimate likely values for various global planetary parameters entering into the definition of R_o and B_u. Finally, our results and conclusions are presented in §4.

2. \textbf{TURBULENT SHALLOW-WATER DYNAMICS}

Shallow-Water equations describe the motion of a thin, homogeneous layer of hydrostatically-balanced, inviscid fluid with a free surface, in motion around a rotating planet (Pedlosky 1987, Holton 1992). The fluid is subject to gravitational and Coriolis forces and obeys the following equations

$$\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} = -g \nabla h - f \mathbf{k} \times \mathbf{v},$$

(1)

$$\frac{\partial h}{\partial t} + \mathbf{v} \cdot \nabla h = -h \nabla \cdot \mathbf{v},$$

(2)

where \mathbf{v} is the horizontal velocity, \(h\) is the thickness of the modeled layer, \(f = 2\Omega \sin \varphi\) is the Coriolis parameter, \(\Omega\) is the rotation rate of the planet, \(\varphi\) is the latitude, \(g\) is the gravitational acceleration and \(\mathbf{k}\) is the unit vector normal to the surface of the planet. In dimensionless form, shallow-water equations become functions only of

\footnotesize{1Chandra Fellow
2Present address: Department of Astronomy, P.O. Box 3818, University of Virginia, Charlottesville, VA 22903, USA

1
the Rossby (R_o) and Burger (B_u) numbers:

$$R_o \equiv \frac{U}{\sqrt{|f| L}},$$

$$B_u \equiv \left(\frac{L_D}{L}\right)^2, \quad L_D \equiv \sqrt{gH/|f|},$$

where U, L and H are characteristic velocity, length and layer thickness scales, respectively; L_D is the Rossby deformation radius. Note that $|f| \sim \Omega$ at mid-latitudes and that the planetary radius, R_p, is the relevant length scale when discussing the large-scale atmospheric circulation. The Rossby number measures the importance of rotation on the flow, while the Burger number measures the stratification of the atmosphere via the Brunt-Väisälä frequency (Holton 1992).

The atmospheric structure in bands of gaseous giant planets in our Solar System is well described as emerging from freely-evolving shallow-water turbulence on the sphere (Cho & Polvani 1996b). Turbulence in a thin atmospheric layer is quasi-2D in nature. Contrary to the forward turbulent energy cascade observed in 3D geometry, 2D turbulence is characterized by an inverse energy cascade (transfer from small to large scales) and a forward cascade of enstrophy\(^3\) down to small scales, where it is dissipated by viscous processes. Qualitatively, the inverse cascade is associated with the growth of vortices through continuous mergers.

Turbulence in a thin atmospheric layer is also strongly constrained by the combined effect of spherical geometry and rotation (the “β-effect”). While the force balance is everywhere the same along a latitude circle, it changes with latitude because of the dependence of the Coriolis term with φ. This anisotropy, as measured by the parameter $\beta = 2\Omega \cos \varphi / R_p$ (the latitudinal gradient of f), is strongest at the equator, where β is maximum. While fluid motions are free to grow to the largest available scale in the longitudinal direction, their growth is limited in the latitudinal direction by the characteristic Rhines scale, $L_\beta = \pi \sqrt{2U/\beta}$ (Rhines 1975). This anisotropic growth is a likely origin of the banded structure on gaseous giant planets in our Solar System; the number of bands expected for a given planet is roughly $N_{\text{band}} \sim \pi R_p / L_\beta$.

Cho & Polvani (1996a) presented an extensive numerical study of freely-evolving shallow-water turbulence. They explored the entire parameter space of the equations, as determined by the two dimensionless numbers R_o and B_u. They showed that the anisotropy due to the β-effect on a rotating sphere is necessary but not sufficient to produce a long-lasting banded structure. The Rossby deformation radius, L_D, must also be $\lesssim R_p / \beta$ for the banded structure to be stable. This small value of L_D, which acts as a limiting scale for vortex interactions, prevents the formation (via successive mergers) of large-scale structures such as circumpolar vortices.

\(^3\)The flow enstrophy is defined as ξ^2, where $\xi = \nabla \times \mathbf{v}$ is the flow vorticity.

\(^4\)We limit the eccentricity of planets in our sample to $e \lesssim 0.1$, by analogy with the small eccentricities of Solar System giants to which “zero-eccentricity” shallow-water models have been applied with success (Cho & Polvani 1996b; Cho et al. 2002b).

\(^5\)http://exoplanets.org/almanacframe.html

\(^6\)http://ww.obspm.fr/encycl/encycl.html

\(^7\)The periastron distance, where tidal forces are the strongest, is also roughly the circular radius expected for the orbit after complete circularization.

Cho et al. (2002b) presented a generalization of the results of Cho & Polvani in the case when the planet is subject to day-side hemispheric heating, as expected for close-in EGPs. Day-side heating was prescribed in the adiabatic limit by forcing the fluid to be permanently thicker on that side, while keeping the average thickness constant. Extensive exploration of the parameter space of the forced model showed that previous shallow-water dynamics results were recovered even in the presence of this extra forcing (i.e. L_β and L_D remain the relevant scales determining the number of bands and the formation of polar vortices).

These results can be recast in terms of the values of R_o and B_u for the atmospheric flow. By setting $L \sim R_p$, $|f| \sim \Omega$ and $\beta \sim \Omega / R_p$ (mid-latitudes), we see that the number of bands/jets expected is $N_{\text{band}} \sim 1 / \sqrt{2R_o}$ and that the presence of circumpolar vortices is expected for $B_u \gtrsim 1/9$. Thus, if the values of R_o and B_u for other close-in EGPs can be estimated, one can get an idea of the type of large-scale atmospheric circulation expected on these planets in the stable, radiative region. In our estimates of R_o and B_u, we will set $U = \dot{U}$, which is the global velocity scale of the atmospheric flow and is only known for the Solar System giants (Table 1).

An important parameter entering the definition of both R_o and B_u is the planetary rotation rate, Ω. While the value of Ω is generally unknown for EGPs, a number of close-in EGPs have the advantage of being probably tidally-synchronized to their parent star, so that their rotation rate has effectively been measured via the orbital period ($\Omega = \Omega_{\text{orb}}$ for circular orbits). As we show below, the knowledge of Ω for this sample of close-in EGPs restricts the range of possible values for R_o and B_u to a small enough region of the parameter space that their atmospheric circulation pattern can be inferred.

3. SAMPLE OF CLOSE-IN EXTRASOLAR GIANT PLANETS

Since tidal synchronization occurs faster than orbital circularization, it is possible that some close-in EGPs with substantial eccentricities are nonetheless (pseudo-)synchronized (i.e. synchronized at the periastron orbital frequency). The shallow-water results described in §2 were established only in the limit of negligible eccentricity, however. Hence, we must restrict our sample to planets with small eccentricities.\(^4\) Table 1 lists all the EGPs selected for our study, plus the four Solar System giants. Parameters for the EGPs were collected from the extrasolar planet almanac\(^5\) and encyclopedia.\(^6\)

Low-eccentricity EGPs were divided into two groups, based on their orbital distance to the parent star. In the first group, EGPs with semi-major axes $a \leq 0.066$ AU are most likely tidally-synchronized since all known EGPs with such small values of a are also circularized. The tidal synchronization status of the more distant planets (in the second group) is less clear because several eccentric EGPs with distances of closest approach\(^7\) as small as 0.05 AU are
also known. It is thus not clear why some EGPs with peri-
asteron distances larger than this value would be tidally-
circularized while others would not. We note, however,
that for values of the tidal parameter Q not too different
from that of Jupiter ($\sim 10^8$), EGPs in this second group
are also expected to be synchronized. We will assume it is
indeed the case in our calculations.

Radial velocity surveys only measure $M_p \sin i$, which is a lower limit to the planet’s mass, M_p, given the unknown
orbital inclination, i. For randomly oriented systems, the
distribution of $\cos i$ is uniform. We adopt the value of M_p
corresponding to $\sin i = 0.5$ for our fiducial estimate of R_o
and B_u, and we allow $\sin i \approx 0.1$ to 1 when estimating
the range of likely values for R_o and B_u.

For a given mass, M_p, the radius of an isolated planet
is estimated from the mass–radius relation for sub-stellar
objects of Chabrier & Baraffe (2000), supplemented at the
low mass end by a constant density law that empirically
fits values for the Solar System giants. To account for the
slower cooling under strong stellar irradiation, we also al-
low the radius to be up to 50% larger than the value for
an isolated planet, in agreement with published cooling
EGP models (Burrows et al. 2000; Guillot & Showman 2002).
Our results depend only weakly on the planetary
radius, as long as $R_p \sim R_{Jup}$ (as expected for all masses
of interest). The gravitational acceleration is derived as
$g = G M_p/R_p^2$, where G is the gravitational constant.

For the mean layer thickness, H, we adopt the atmo-
spheric pressure scale-height, $H_{atm} \equiv R T_{atm}/g$, where R

is the perfect gas constant. The global radiative equilibrium
temperature of the planet is $T_{atm} = T_o (R_p/2\alpha)^{3/2} (1-A_o)^{1/4}$, which is a function of the parent star luminosity $(L_* \propto T_o^4 R_p^2)$, the planet’s semi-major axis a, and Bond albedo A_o. We adopt $A_o = 0.5$ for all our numerical esti-
mates; our results only weakly depend on the value of A_o
unless it approaches unity. The stellar luminosity is de-

erived from the mass through the simple mass-luminosity
relation $L_* = (M_*/M_\odot)^{3.6} L_\odot$.

The last two parameters needed to determine R_o and B_u
are the planetary rotation rate Ω and the global kinetic
energy scale \bar{U}. We assume that $\Omega = \Omega_{orb}$ (as determined
by radial velocity surveys) in all cases. We allow \bar{U} to
vary from 50 m s$^{-1}$, the smallest observed value for giant
planets in the Solar System (Jupiter), to 1000 m s$^{-1}$, a
rather large value for which the typical wind speeds in the
atmosphere of hot, close-in EGPs approaches the sound
speed. A value $\bar{U} = 400$ m s$^{-1}$ is adopted for our fiducial
estimate of R_o and B_u.

4. RESULTS

Estimated values for R_o and B_u are given in Table 1 for
Solar System giants and close-in EGPs. The values listed
for close-in EGPs correspond to the range of min./max.
values found given the various assumptions detailed in §3.
Fiducial estimates are also reported in figure 1, where solid
dots correspond to group 1 EGPs (safe tidal synchroniza-
tion assumption) and open circles to group 2 EGPs (tidal
synchronization assumption less safe). HD 209458 b is
indicated as a star.

It is clear from figure 1 that close-in EGPs, as a group,
occupy a different region of the R_o–B_u parameter space
than Solar System giants. In particular, they systemat-
ically have a Burger number $B_u > 1/9$ (even when ac-
counting for the large range of allowed values: Table 1),
which indicates that the presence of circumpolar vortices
is expected in the radiative region of close-in EGPs within
the framework of shallow-water dynamics. The larger val-
ues of R_o also indicate that generally few bands/jets are
expected on these planets (the uncertainty on \bar{U} strongly
affects this number; see Table 1), thus allowing the forma-
tion of larger “great spots” (which could also contribute to
the variability; Cho et al. 2002b). The near alignment of all
the points representing close-in EGPs in figure 1 shows
that the dominant parameter determining their position in
this diagram is their rotation rate ($R_o \propto \Omega^{-1}$; $B_u \propto \Omega^{-2}$).

The small values of R_o and B_u for Solar System giants
reflect their relatively fast rotation rates.

Although we argued in favor of variable atmospheric sig-
natures for close-in EGPs, it is important to note that
models do not yet quantitatively predict how much vari-
ability is expected. In Cho et al. (2002a,b), we emphasized
that the combination of \bar{U} (unknown) and the amplitude
of day-night heating (parametrized in adiabatic simu-
lations) determines the contrast of the thermal spots asso-
ciated with circumpolar vortices. In the future, diabatic
shallow-water models will allow a self-consistent determi-
nation of the day-night forcing. More sophisticated mod-
els, combined with detailed radiative transfer and chem-
istry descriptions (Seager & Sasselov 1998; 2000; Seager
et al. 2000), will allow us to make quantitative predic-
tions regarding the level of variability expected for various
atmospheric signatures.

ACKNOWLEDGMENTS

Support for this work was provided by NASA through
Chandra Fellowship grant PF9-10006 awarded by the
Smithsonian Astrophysical Observatory for NASA under
contract NAS8-39073.

REFERENCES

Brown, T.M., Charbonneau, D., Gilliland, R.L., Noyes, R.W. &
Charbonneau, D., Brown, T.M., Latham, D.W. & Mayor, M. 2000,
Charbonneau, D., Brown, T.M., Noyes, R.W. & Gilliland, R.L. 2002,
Lett., submitted

Note that for low values of $\sin i$, some EGPs in Table 1 have $M_p > 13 M_{Jup}$ and are thus brown dwarfs. We expect shallow-water results to be applicable even in that limit.
Rhines, P.B. 1975, J. Fluid Mech., 69, 417

<table>
<thead>
<tr>
<th>Planet</th>
<th>M_\star (M_\odot)</th>
<th>P_{orb} (days)</th>
<th>a (AU)</th>
<th>e</th>
<th>M_p (M_{Jup})</th>
<th>R_p (m)</th>
<th>g (m s$^{-2}$)</th>
<th>Ω (s^{-1})</th>
<th>H (m)</th>
<th>U (m s$^{-1}$)</th>
<th>R_o</th>
<th>R_u</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neptune</td>
<td>1.0</td>
<td>60.189.0</td>
<td>30.05</td>
<td>0.0113</td>
<td>0.054</td>
<td>2.5 x 107</td>
<td>11</td>
<td>9.75 x 10$^{-5}$</td>
<td>3 x 104</td>
<td>300</td>
<td>1.2 x 10$^{-1}$</td>
<td>5.6 x 10$^{-2}$</td>
</tr>
<tr>
<td>Uranus</td>
<td>1.0</td>
<td>30.685.4</td>
<td>19.20</td>
<td>0.0457</td>
<td>0.046</td>
<td>2.6 x 107</td>
<td>9</td>
<td>(-) x 10$^{-4}$</td>
<td>3.5 x 104</td>
<td>300</td>
<td>1.2 x 10$^{-1}$</td>
<td>4.8 x 10$^{-2}$</td>
</tr>
<tr>
<td>Saturn</td>
<td>1.0</td>
<td>10.759.2</td>
<td>9.58</td>
<td>0.0565</td>
<td>0.30</td>
<td>6.0 x 107</td>
<td>9</td>
<td>1.6 x 10$^{-4}$</td>
<td>4 x 104</td>
<td>300</td>
<td>3.2 x 10$^{-2}$</td>
<td>3.9 x 10$^{-3}$</td>
</tr>
<tr>
<td>Jupiter</td>
<td>1.0</td>
<td>4.332.6</td>
<td>5.20</td>
<td>0.0489</td>
<td>1.00</td>
<td>7.1 x 107</td>
<td>23</td>
<td>1.8 x 10$^{-4}$</td>
<td>2 x 104</td>
<td>50</td>
<td>4.0 x 10$^{-3}$</td>
<td>2.8 x 10$^{-3}$</td>
</tr>
<tr>
<td>rho CrB b</td>
<td>0.95</td>
<td>39.6450</td>
<td>0.2300</td>
<td>0.0280</td>
<td>>1.100</td>
<td>–</td>
<td>–</td>
<td>1.8 x 10$^{-5}$</td>
<td>–</td>
<td>–</td>
<td>0.24-7.4</td>
<td>68-180</td>
</tr>
<tr>
<td>HD 168746 b</td>
<td>0.92</td>
<td>6.4090</td>
<td>0.0860</td>
<td>0.0000</td>
<td>>0.240</td>
<td>–</td>
<td>–</td>
<td>1.1 x 10$^{-5}$</td>
<td>–</td>
<td>–</td>
<td>0.035-1.92</td>
<td>3.2-22.4</td>
</tr>
<tr>
<td>HD 49674 b</td>
<td>1.00</td>
<td>4.9400</td>
<td>0.0690</td>
<td>0.0000</td>
<td>>0.120</td>
<td>–</td>
<td>–</td>
<td>1.5 x 10$^{-5}$</td>
<td>–</td>
<td>–</td>
<td>0.035-1.92</td>
<td>2.4-23.6</td>
</tr>
<tr>
<td>Ups And b</td>
<td>1.30</td>
<td>4.6170</td>
<td>0.0590</td>
<td>0.0340</td>
<td>>0.710</td>
<td>–</td>
<td>–</td>
<td>1.6 x 10$^{-5}$</td>
<td>–</td>
<td>–</td>
<td>0.026-0.96</td>
<td>2.44-8.0</td>
</tr>
<tr>
<td>51 Peg b</td>
<td>0.95</td>
<td>4.2300</td>
<td>0.0512</td>
<td>0.0130</td>
<td>>0.440</td>
<td>–</td>
<td>–</td>
<td>1.6 x 10$^{-5}$</td>
<td>–</td>
<td>–</td>
<td>0.024-0.94</td>
<td>1.64-7.6</td>
</tr>
<tr>
<td>HD 75289 b</td>
<td>1.05</td>
<td>3.5100</td>
<td>0.0460</td>
<td>0.0540</td>
<td>>0.420</td>
<td>–</td>
<td>–</td>
<td>2.1 x 10$^{-5}$</td>
<td>–</td>
<td>–</td>
<td>0.024-0.88</td>
<td>1.32-6.0</td>
</tr>
<tr>
<td>HD 10316 b</td>
<td>1.10</td>
<td>3.4870</td>
<td>0.0600</td>
<td>0.0000</td>
<td>>0.480</td>
<td>–</td>
<td>–</td>
<td>2.1 x 10$^{-5}$</td>
<td>–</td>
<td>–</td>
<td>0.020-0.84</td>
<td>1.36-6.0</td>
</tr>
<tr>
<td>Tau Boo b</td>
<td>1.30</td>
<td>3.3120</td>
<td>0.0500</td>
<td>0.0000</td>
<td>>0.090</td>
<td>–</td>
<td>–</td>
<td>2.2 x 10$^{-5}$</td>
<td>–</td>
<td>–</td>
<td>0.015-0.72</td>
<td>1.36-9.6</td>
</tr>
<tr>
<td>HD 179949 b</td>
<td>1.24</td>
<td>3.0930</td>
<td>0.0450</td>
<td>0.0500</td>
<td>>0.840</td>
<td>–</td>
<td>–</td>
<td>2.4 x 10$^{-5}$</td>
<td>–</td>
<td>–</td>
<td>0.018-0.62</td>
<td>1.20-3.56</td>
</tr>
<tr>
<td>HD 187123 b</td>
<td>1.06</td>
<td>3.0900</td>
<td>0.0420</td>
<td>0.0300</td>
<td>>0.520</td>
<td>–</td>
<td>–</td>
<td>2.4 x 10$^{-5}$</td>
<td>–</td>
<td>–</td>
<td>0.019-0.72</td>
<td>1.08-4.4</td>
</tr>
<tr>
<td>HD 46375 b</td>
<td>1.06</td>
<td>3.0240</td>
<td>0.0410</td>
<td>0.0000</td>
<td>>0.249</td>
<td>–</td>
<td>–</td>
<td>2.4 x 10$^{-5}$</td>
<td>–</td>
<td>–</td>
<td>0.017-0.90</td>
<td>1.0-6.4</td>
</tr>
<tr>
<td>HD 83443 b</td>
<td>0.79</td>
<td>2.9853</td>
<td>0.0380</td>
<td>0.0800</td>
<td>>0.350</td>
<td>–</td>
<td>–</td>
<td>2.4 x 10$^{-5}$</td>
<td>–</td>
<td>–</td>
<td>0.017-0.80</td>
<td>0.80-6.4</td>
</tr>
</tbody>
</table>

NOTES: (1) In order of decreasing orbital period (2) Stellar mass (3) Orbital period (4) Semi-major axis (5) Eccentricity (6) Planet mass (7) Planet radius (8) Surface gravity (9) Rotation rate (10) Atmospheric scale-height (11) Global atmospheric velocity scale (12) Rossby number (13) Burger number
Fig. 1. — Location of Solar System and close-in extrasolar giant planets in the Rossby-Burger space. The assumption of tidal synchronization for extrasolar planets represented by solid circles is the safest (group 1; see Table 1). HD 209458 b is indicated by a star. A representative range of possible values around the fiducial estimates for extrasolar giant planets (each individual solid or open circle) is shown as an errorbar (see Table 1 for details). Formation of circumpolar vortices is expected in the region to the right of the vertical dotted line ($B_u \gtrsim 1/9$). A larger number of bands is expected for smaller values of R_o (see text for details).