Charmed Hadron Production in Polarized pp Collisions†

TOSHIYUKI MORII
Division of Sciences for Natural Environment,
Faculty of Human Development,
Kobe University, Nada, Kobe 657-8501, JAPAN
Electronic address: morii@kobe-u.ac.jp

KAZUMASA OHKUMA
Department of Physics,
Faculty of Engineering,
Yokohama National University,
Hodogaya, Yokohama 240-8501, JAPAN
Electronic address: ohkuma@phys.ynu.ac.jp

ABSTRACT

To extract information about polarized gluons in the proton, production of charmed hadrons, in particular, Λ_c^+ baryon in pp collisions was studied. We calculated the transverse momentum distribution and the pseudo-rapidity distribution of the spin correlation asymmetry A_{LL} between the initial proton and the produced Λ_c^+. Those statistical sensitivities were also calculated under the condition of RHIC experiment. We found that the pseudo-rapidity distribution of A_{LL} is promising for testing the model of polarized gluons in the proton and also the spin-dependent fragmentation model of a charm quark decaying into Λ_c^+ baryon.

†Talk presented by K. Ohkuma at the 15th International Spin Physics Symposium, BNL, Sep. 9-14, 2002
1 Introduction

The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory has just started to explore the internal structure of proton. One of the important purposes of those RHIC experiments is to study the behavior of polarized gluons in the proton. As is well known, the proton spin is given by the sum of the spin carried by quarks $\Delta \Sigma$ and gluons ΔG, and their orbital angular momenta $\langle L_z \rangle$. In these years, a great deal of efforts have been made for extracting those components from polarized structure functions of nucleons\cite{1}. Based on the next-to-leading order QCD analyses on the polarized structure functions $g_1(x)$, the contribution of quarks to the proton spin is well known. However, knowledge on polarized gluons in the proton is still poor. To understand the origin of the nucleon spin, it is very important to know how gluons polarize in the nucleon. So far, several interesting processes have been proposed for extracting ΔG. Here we also propose a different process to obtain more detailed information on polarized gluons, expecting the forthcoming RHIC experiment. The processes which we propose here are the polarized charmed hadron production, i.e. $p\bar{p} \rightarrow \Lambda_c^+ X$ and $p\bar{p} \rightarrow D^* X$, in the polarized proton–unpolarized proton collision\cite{21}, which will be observed at the RHIC experiment. We study which observables are useful for extracting information about polarized gluons in the proton and also discuss its sensitivity.

2 Λ_c^+ Baryon Production in Proton–Proton Collision

In the process on which we focus here, the Λ_c^+ baryon is expected to have some advantageous properties for probing behavior of polarized gluons in the proton. Those properties are as follows;

1. A charm quark which is one of constituents of the Λ_c^+ baryon is dominantly produced via gluon-gluon fusion in pp reaction, because charm quarks are tiny contents in the proton. Thus, the cross section of this process is directly proportional to the gluon distribution in the proton.

\footnote{Though we have calculated even for D^* production, we focus only on the Λ_c^+ production in this report, because the main point of the result remain unchanged.}
2. Since the Λ_c^+ baryon is composed of a charm quark and antisymmetrically combined light up and down quarks, the spin of Λ_c^+ baryon is expected to be almost equal to the spin of its constituent charm quark.

3. Since a charm quark is heavy, it must be very rare for the charm quark to change its spin arrangement during its fragmentation into a Λ_c^+ baryon. In other words, the spin direction of the charm quark produced in the subprocess is expected to be kept in the Λ_c^+ baryon produced in the final state.

After all, the spin of the Λ_c^+ is in strong correlation to the polarization of gluons in the proton. Therefore, by observing the spin correlation between the polarized proton in the initial state and the polarized Λ_c^+ in the final state, we can get, rather clearly, information on the polarized gluon in the proton.

3 Spin Correlation Asymmetry and its Statistical Sensitivity

To study the polarized gluon distribution in the proton, we introduced the spin correlation asymmetry of the target polarized-proton and produced Λ_c^+ baryon [2];

$$A_{L \ell} = \frac{d\sigma_{++} - d\sigma_{+\ell} + d\sigma_{-\ell} - d\sigma_{--}}{d\sigma_{++} + d\sigma_{+\ell} + d\sigma_{-\ell} + d\sigma_{--}}$$

$$\equiv \frac{d\Delta\sigma/dX}{d\sigma/dX}, \quad (X = p_T \text{ or } \eta),$$

(1)

where $d\sigma_{\pm\ell}$, for example, denotes the spin-dependent differential cross section with the positive helicity of the target proton and the negative helicity of the produced Λ_c^+ baryon. p_T and η, which are represented by X in Eq.(1), are transverse momentum and pseudo-rapidity of produced Λ_c^+, respectively.

According to the quark-parton model, $d\Delta\sigma/dX$ can be expressed as

$$\frac{d\Delta\sigma}{dX} = \int_{Y_{\text{min}}}^{Y_{\text{max}}} \int_{x_{\text{min}}^a}^{1} \int_{x_{\text{min}}^b}^{1} G_{p,a} \rightarrow g_{a}(x_a, Q^2) \Delta G_{p,B} \rightarrow g_{b}(x_b, Q^2) \Delta D_{c \rightarrow \Lambda_c^+}(z)$$

$$\times \frac{d\Delta\hat{\sigma}}{dt} J dx_a dx_b dY, \quad (X, Y = \eta \text{ or } p_T \quad (X \neq Y)),$$

(2)

with

$$J = \frac{2s\beta p_T^2 \cosh \eta}{z \sqrt{m_c^2 + p_T^2 \cosh^2 \eta}}, \quad \beta = \sqrt{1 - \frac{4m_c^2}{s}}$$
where $G_{p_A \to g_a}(x_a, Q^2)$, $\Delta G_{\bar{p}_B \to \bar{g}_b}(x_b, Q^2)$ and $\Delta D_{\bar{c} \to \bar{\Lambda}_c^+}(z)$ represent the unpolarized gluon distribution function, the polarized gluon distribution function and the spin-dependent fragmentation function of the outgoing charm quark decaying into a polarized $\bar{\Lambda}_c^+$, respectively. $d\Delta\hat{s}/d\hat{t}$ is the spin-dependent differential cross section of the subprocess and J is the Jacobian which transforms the variables z and \hat{t} into p_T and η. In the expression of Eq.(2), p_T and η are described as X or Y.

Statistical sensitivities of A_{LL} for the p_T and η distribution are estimated by using the following formula:

$$\delta A_{LL} \simeq \frac{1}{P} \frac{1}{\sqrt{b_{\Lambda_c^+}} \epsilon L T} \sigma.$$ (3)

To numerically estimate the value of δA_{LL}, here we use following parameters: operating time; $T = 100$-day, the beam polarization; $P = 70\%$, a luminosity; $L = 8 \times 10^{31} (2 \times 10^{32})$ cm$^{-2}$ sec$^{-1}$ for $\sqrt{s} = 200 (500)$ GeV, the trigger efficiency; $\epsilon = 10\%$ for detecting produced Λ_c^+ events and a branching ratio; $b_{\Lambda_c^+} \equiv \text{Br}(\Lambda_c^+ \to pK^-\pi^+) \simeq 5\%$ [3]. The purely charged decay mode is needed to measure the polarization of produced Λ_c^+. σ denotes the unpolarized cross section integrated over suitable p_T or η region.

4 Numerical Calculations

To carry out the numerical calculation of A_{LL}, we used, as input parameters, $m_c = 1.20$ GeV, $m_p = 0.938$ GeV and $m_{\Lambda_c^+} = 2.28$ GeV[3]. We limited the integration region of η and p_T of produced Λ_c^+ as $-1.3 \leq \eta \leq 1.3$ and 3 GeV $\leq p_T \leq 15(40)$ GeV, respectively, for $\sqrt{s} = 200(500)$ GeV. The range of η and the lower limit of p_T were selected in order to get rid of the contribution from the diffractive Λ_c^+ production. As for the upper limit of p_T, we took it as described above, for simplicity, though the kinematical maximum of p_T of produced Λ_c^+ is slightly larger than 15 GeV and 40 GeV for $\sqrt{s} = 200$ GeV and 500 GeV, respectively. In addition, we took the AAC[4] and GRSV01 [5] parameterization models for the polarized gluon distribution function and the GRV98 [6] model for the unpolarized one. Though both of AAC and GRSV01 models excellently reproduce the experimental data on the polarized structure function of nucleons $g_1(x)$, the polarized gluon distributions for those models are quite different. In other words, the data on polarized structure function of nucleons $g_1(x)$ alone are not enough to distinguish the model of gluon distributions. Since the process is semi-inclusive, the
fragmentation function of a charm quark to Λ_c^+ is necessary to carry out numerical calculations. For the unpolarized fragmentation function, we used Peterson fragmentation function, $D_{c \rightarrow \Lambda_c^+}(z)$ [3, 7]. However, since we have no data, at present, about polarized fragmentation functions for the polarized Λ_c^+ production, we took the following ansatz for the polarized fragmentation function $\Delta D_{\vec{c} \rightarrow \vec{\Lambda}_c^+}(x)$,

$$\Delta D_{\vec{c} \rightarrow \vec{\Lambda}_c^+}(z) = C_{c \rightarrow \Lambda_c^+} D_{c \rightarrow \Lambda_c^+}, \quad (4)$$

where $C_{c \rightarrow \Lambda_c^+}$ is a scale-independent spin transfer coefficient. In this analysis, we studied two cases: (A) $C_{c \rightarrow \Lambda_c^+} = 1$ (non-relativistic quark model) and (B) $C_{c \rightarrow \Lambda_c^+} = z$ (Jet fragmentation model [8]). As we discussed before, if the spin of Λ_c^+ is same as the spin of charm quark produced in subprocess, the model (A) might be a reasonable scenario.

Numerical results of A_{LL} are shown in Fig. 1 and Fig. 2. In those figures, statistical sensitivities, δA_{LL}, are also attached to the solid line of A_{LL} which is calculated for the case of the GRSV01 parametrization model of polarized gluon and the non-relativistic fragmentation model.\(^2\) From these results, we see that the η distributions of A_{LL} are more effective observables than the p_T distributions at $\sqrt{s} = 200$ GeV and 500 GeV. As shown in the right panel of Fig. 2 given at $\sqrt{s} = 500$ GeV, we could distinguish the parametrization models of polarized gluon as well as the models of the spin-dependent fragmentation function though the magnitude of A_{LL} is rather small. At $\sqrt{s} = 200$ GeV, the magnitude of A_{LL} for η distribution becomes larger, though statistical sensitivities are not so small. If the integrated luminosity at $\sqrt{s} = 200$ GeV could be large and the detection efficiency, ϵ, is improved, this observable could be promising to distinguish not only the models of $\Delta G(x)$ but also the models of $\Delta D(z)$. For the p_T distribution of A_{LL}, δA_{LL} become rapidly larger with increasing p_T and we cannot say anything from those region. However, if we confine the kinematical region in rather small p_T range like $p_T = 3 \sim 5(10)$ GeV at $\sqrt{s} = 200(500)$ GeV, it might be still effective.

5 Concluding Remark

To extract information on the polarized gluon distribution in the proton, the charmed hadron production processes at RHIC experiments have been proposed.\(^2\)

\(^2\)Note that as shown from Eq.(4), δA_{LL} does not depend on both of the model of polarized gluons and the model of fragmentation functions.
Figure 1: A_{LL} as a function of p_T (left panel) and η (right panel) at $\sqrt{s} = 200$ GeV.

Figure 2: The same as in Fig. 1, but for $\sqrt{s} = 500$ GeV.

(Actually, only Λ_c^+ process was discussed in this report.) The spin correlation asymmetry A_{LL} between the initial proton and the produced Λ_c^+ was calculated for p_T and η distributions with statistical sensitivities which were estimated using RHIC parameters. We found that A_{LL} is rather sensitive to the model of $\Delta G(x)$ and $\Delta D(z)$. The η distribution of A_{LL} could be promising for distinguishing the parametrization model of polarized gluons as well as the model of spin-dependent fragmentation of a charm quark into Λ_c^+.

- 5 -
Acknowledgments

One of the authors, (K.O), would like to thank the organizers and fellowship committee of SPIN2002 for giving a chance to present this contribution at the symposium.

REFERENCES

[1] For a review see:
B. Lampe and E. Reya, Phys. Rep. 332, 1,(2000);

ibid. B543, 323, (2002)];

(1983).