The canonical approach to quantum gravity (see [1] for a recent review) yields two remarkable facts about the area spectrum of black hole entropy. It is a function of a black hole parameter l and it is given by the black hole entropy per unit area A_{BH}. The parameter l is the Planck length and A is the area of the horizon.

\[S = \frac{\pi l^2}{\sqrt{\hbar c^3}} \left(\frac{A_{BH}}{\hbar c^2} \right)^{1/4}, \]

where \hbar is Planck's constant and c is the speed of light. This gives the area spectrum of black hole entropy.

The canonical quantum gravity (see [1]) for a particular class of black hole solutions is given by the black hole entropy per unit area A_{BH}. The parameter l is the Planck length and A is the area of the horizon.

\[S = \frac{\pi l^2}{\sqrt{\hbar c^3}} \left(\frac{A_{BH}}{\hbar c^2} \right)^{1/4}, \]

where \hbar is Planck's constant and c is the speed of light. This gives the area spectrum of black hole entropy.

The canonical quantum gravity (see [1]) for a particular class of black hole solutions is given by the black hole entropy per unit area A_{BH}. The parameter l is the Planck length and A is the area of the horizon.

\[S = \frac{\pi l^2}{\sqrt{\hbar c^3}} \left(\frac{A_{BH}}{\hbar c^2} \right)^{1/4}, \]

where \hbar is Planck's constant and c is the speed of light. This gives the area spectrum of black hole entropy.

The canonical quantum gravity (see [1]) for a particular class of black hole solutions is given by the black hole entropy per unit area A_{BH}. The parameter l is the Planck length and A is the area of the horizon.

\[S = \frac{\pi l^2}{\sqrt{\hbar c^3}} \left(\frac{A_{BH}}{\hbar c^2} \right)^{1/4}, \]

where \hbar is Planck's constant and c is the speed of light. This gives the area spectrum of black hole entropy.

The canonical quantum gravity (see [1]) for a particular class of black hole solutions is given by the black hole entropy per unit area A_{BH}. The parameter l is the Planck length and A is the area of the horizon.

\[S = \frac{\pi l^2}{\sqrt{\hbar c^3}} \left(\frac{A_{BH}}{\hbar c^2} \right)^{1/4}, \]

where \hbar is Planck's constant and c is the speed of light. This gives the area spectrum of black hole entropy.

The canonical quantum gravity (see [1]) for a particular class of black hole solutions is given by the black hole entropy per unit area A_{BH}. The parameter l is the Planck length and A is the area of the horizon.

\[S = \frac{\pi l^2}{\sqrt{\hbar c^3}} \left(\frac{A_{BH}}{\hbar c^2} \right)^{1/4}, \]

where \hbar is Planck's constant and c is the speed of light. This gives the area spectrum of black hole entropy.
Equating the result of equation (3) with the known Bekenstein - Hawking result then gives a value for the Immirzi parameter. The lowest non-trivial representation of SU(2) has spin $j_{\text{min}} = 1/2$ and one obtains the value $\ln 2/\pi \sqrt{3}$ for the Immirzi parameter.

In this note we want to fix the Immirzi parameter in a way that is independent from the black hole considerations outlined above. For this we will make use of an observation by Hod [14] on the quasinormal ringing modes of a black hole. Aside from arriving at a new value for the Immirzi parameter we will argue that the lowest admissible spin should be $j_{\text{min}} = 1$ and not $j_{\text{min}} = 1/2$.

\section*{B. Quasinormal Modes}

The reaction of a black hole to a perturbation will be dominated by a set of damped oscillations called quasinormal modes. They appear as solutions to the perturbation equation of the Schwarzschild geometry found by Regge and Wheeler, and Zerilli. Figure 2 shows the first quasinormal mode frequencies in the complex ω plane. (See the review articles by Nollert [10], and Kokkotas and Schmidt [11] for more information about quasinormal modes.)

For large damping, i.e. for a large imaginary part of ω, the real part of the frequency approaches a nonzero value and the imaginary part becomes equally spaced. Nollert [12] found the following limiting behavior of the quasinormal mode frequencies:

$$M \omega = 0.04371235 + \frac{i}{4} \left(n + \frac{1}{2} \right),$$

where M is the mass of the black hole. This relation was later confirmed by Andersson [13]. Crucial for our argument is an observation made by Hod [14]. He remarked that the constant real part of the quasinormal frequencies is equal to

$$\frac{\ln 3}{8\pi}. \quad (6)$$

So far the evidence for this relation is purely numerical. What is remarkable here is the appearance of the $\ln 3$ term. Since we will use this frequency later on, we denote it by ω_{QNM}:

$$\omega_{\text{QNM}} = \frac{\ln 3}{8\pi M} \quad (7)$$

\section{C. The Area Spectrum}

Using ω_{QNM} we will now fix the ambiguity of the area spectrum. According to Bohr’s correspondence principle an oscillatory frequency of a classical system should be equal to a transition frequency of the corresponding quantum system. The most natural candidate for a transition of the quantum black hole as described above is the appearance or disappearance of a puncture with spin j_{min}. The area of the black hole would then change by an amount given by equation (1) where $j = j_{\text{min}}$:

$$\Delta A = A(j_{\text{min}}) = 8\pi l_P^2 \gamma \sqrt{j_{\text{min}}(j_{\text{min}} + 1)} \quad (8)$$

We can now fix the Immirzi parameter γ appearing in this equation by requiring that the change ΔM in the mass corresponding to this change in area equals the energy of a quantum with frequency ω_{QNM}, i.e. we will fix γ by setting

$$\Delta M = \hbar \omega_{\text{QNM}} = \frac{\hbar \ln 3}{8\pi M} \quad (9)$$

Since the area A and the mass M of a Schwarzschild black hole are related by

$$A = 4\pi M^2 \quad (10)$$

the mass change of equation (9) translates into the area change

$$\Delta A = 4\ln 3 l_P^2. \quad (11)$$

Comparing this with equation (8) gives the desired expression for the Immirzi parameter γ:

$$\gamma = \frac{\ln 3}{2\pi \sqrt{j_{\text{min}}(j_{\text{min}} + 1)}} \quad (12)$$

In the next section we will go further and also fix j_{min}.

\section{D. The Entropy}

The entropy is given by the logarithm of the dimension of the Hilbert space of the boundary theory. As before we have

$$S = N \ln(2j_{\text{min}} + 1), \quad (13)$$
where N is the number of punctures given by
\begin{equation}
N = \frac{A}{A(j_{\text{min}})}.
\end{equation}
In the previous section we argued that $\Delta A = A(j_{\text{min}}) = 4 \ln 3 \ell_p^2$ and thus
\begin{equation}
S = A \frac{\ln((2j_{\text{min}} + 1)}{4 \ell_p^2} \frac{1}{\ln 3}.
\end{equation}
A complete agreement with the Bekenstein - Hawking result is obtained if we set
\begin{equation}
j_{\text{min}} = 1.
\end{equation}
This then also fixes the value for the Immirzi parameter:
\begin{equation}
\gamma = \frac{\ln 3}{2 \pi \sqrt{2}}.
\end{equation}

E. Discussion

The quasinormal mode spectrum of a black hole singles out the frequency ω_{QNM} of equation (7). For large damping ω_{QNM} is the real part of a quasinormal mode frequency. This uniqueness of ω_{QNM} strongly suggests that this frequency should also play a role in the quantum theory of a black hole. Invoking Bohr’s correspondence principle we argued that ω_{QNM} should appear as a transition frequency in the quantum theory.

In canonical quantum gravity the area of a macroscopically large black hole arises through a large number of intersection of the black horizon surface with spin network edges with the same low spin j_{min}. The natural candidate for a quantum transition is thus the appearance or disappearance of a puncture of spin j_{min}. By equating the mass change corresponding to this area change with the energy $\hbar \omega_{\text{QNM}}$ of a quantum with frequency ω_{QNM} we can fix the Immirzi parameter as a function of the lowest spin j_{min}.

Using these results we were then able to calculate the entropy of a black hole. This entropy agrees with the Bekenstein - Hawking result provided one chooses
\begin{equation}
j_{\text{min}} = 1.
\end{equation}

We want to point out how remarkable this result is. The purely classical frequency ω_{QNM} contains exactly the factor of $\ln 3$ required to cancel the same factor appearing in the formula for the entropy. The classical theory and the quantum theory of a black hole conspire here to give both the Bekenstein - Hawking entropy and a prediction about the lowest admissible spin j_{min}.

Next we want to discuss the significance of the result $j_{\text{min}} = 1$. There are two possible explanations. The first explanation can be that the gauge group to consider is $\text{SO}(3)$ and not $\text{SU}(2)$. Since the unitary representations of $\text{SO}(3)$ are labelled by integers the lowest allowed spin would be $j_{\text{min}} = 1$. This explanation is perfectly plausible since the use of $\text{SU}(2)$ connections is not motivated by physical consideration but rather by convenience. In most of the calculations the gauge group appears only through its Lie algebra and it is then not surprising that the representations of this algebra are used. In the case of canonical quantum gravity this means that it is not $\text{SO}(3)$ that is used but its simply connected covering group $\text{SU}(2)$.

Another explanation can be that there is a physical reason why spin $1/2$ punctures should not be counted. No such reason is known so far.

We pointed out above that the area of a macroscopically large black hole is mainly due to a large number of punctures with one low spin j_{min}. This means that the possible transitions are dominated by the appearance and disappearance of one puncture with spin j_{min}. We had to invoke this statistical argument here since the area spectrum obtained from (1) is nearly continuous for a large area. This is because the possible values for the area coming from one puncture depend on the spin in an irrational manner through a square root. The possible values for the area obtained by a large number of punctures then become dense for large areas.

One can argue that this means that the quantization of the area operator has to be changed. Recently such quantizations have been proposed [15]. The spectrum obtained is of the form
\begin{equation}
A = \gamma \ell_p^2 (j + 1/2).
\end{equation}
Since this spectrum is equally spaced the possible values for the area of a macroscopically large black hole are also equally spaced with the same spacing. Using the same arguments as above one can then fix the constant γ to be equal to $4 \ln 3$.

The problem with this approach is that it does not give the Bekenstein - Hawking entropy if one follows the same procedure as above. Since the difference ΔA between two adjacent area values does not equal the area $A(j_{\text{min}})$ the entropy is not equal to A/ℓ_p^2. With j_{min} equal to unity one obtains an entropy of $A/6 \ell_p^2$. This problem arises because of the $1/2$ in formula (18). If one would remove this constant one would again have $\Delta A = A(j_{\text{min}})$ and one would again obtain the Bekenstein - Hawking result.

For the argument in this paper to work we need
\begin{equation}
\Delta A = A(j_{\text{min}}),
\end{equation}
where ΔA is equal to $4 \ln 3 \ell_p^2$. This was obtained from the quasinormal mode considerations.

The treatment of black holes in canonical quantum gravity is so far confined to non-rotating black holes. The inclusion of rotation has proven to be a non-trivial task. Maybe the insight gained here by looking at quasinormal modes can shed some light on the problem. The quasinormal mode spectrum of a rotating black hole is considerably more complicated than that of a non-rotating
black hole (see the reviews [10, 11] and also the work by Leaver [17]). If a connection between classical and quantun theory also holds true for rotating black holes, a more complicated set of quantum transitions is required.

When the lowest allowed spin is 1/2 there is a more similarity between the picture coming from canonical quantum gravity and Wheeler’s “it from bit” picture [16]. It seems that we are led to a somewhat more complicated picture in which the degrees of freedom are not just ±1 as in Wheeler but 0, ±1.

Finally we want to point out that the result we use in all our derivations, namely that ω_QN = ln 3/8πM, is so far known only through numerical calculations. The argument would be even stronger with an analytic proof of this result.

The author would like to thank G. Kunstatter, E. R. Livine, D. Oriti, and the members of the Perimeter Institute for fruitful discussions.