The Design of the Coincidence Matrix ASIC of the ATLAS Barrel Level-1 Muon Trigger

LECC 2002 Colmar

R. Vari
INFN Roma
Level 1 Barrel Muon Trigger Algorithm

- System based on three Resistive Plate Chamber detector layers
- Each RPC detector is composed by a doublet of η and ϕ strips
- A coincidence of two (low p_T) or three (high p_T) hits in different detector layers is required for a valid trigger
The Coincidence Matrix ASIC performs most of the functions needed for the low-p_T and high-p_T triggers and for the read-out of the ATLAS Barrel Level1 Muon Trigger.

- Trigger and readout of 192 RPC FE signals
- Timing and digital shaping of the signals coming from the RPC doublets
- Execution of the trigger algorithm, local muon track candidates identification and p_T classification
- ROI overlap flagging
- Data storage during Level1 latency
- Storage of readout data in derandomizing memory
- RPC hit time measurement with 3.125 LSB (1/8 BC)
- Readout data serializer
Level 1 Barrel Muon Trigger Scheme
PAD Board
Radiation Environment

<table>
<thead>
<tr>
<th></th>
<th>SIMULATED RADIATION LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SRL_{tid} [Gy·10y$^{-1}$]</td>
</tr>
<tr>
<td>BMF</td>
<td>3.02</td>
</tr>
<tr>
<td>BML</td>
<td>3.04</td>
</tr>
<tr>
<td>BMS</td>
<td>3.03</td>
</tr>
<tr>
<td>BOF</td>
<td>1.19</td>
</tr>
<tr>
<td>BOL</td>
<td>1.33</td>
</tr>
<tr>
<td>BOS</td>
<td>1.26</td>
</tr>
</tbody>
</table>

- $\text{RTC}_{\text{tid}} = \text{SRL}_{\text{tid}} \cdot \text{SF}_{\text{sim}} \cdot \text{SF}_{\text{ldr}} \cdot \text{SF}_{\text{lot}} \cdot 10y \sim 1$ kRad (SF=3.5x1x1)
- $\text{SEU}_{f} = (\text{soft SEU}_{m} / \text{ARL}) \cdot (\text{SRL}_{\text{see}} / 10y) \cdot \text{SF}_{\text{sim}}$ (SF=5)
 - SEU$_{m}$ = the number of measured soft SEU during test.
 - ARL = integrated hadrons flux received by the tested component.
CMA Layout

- UMC 0.18 μm, 6 metal layers, 1.8 V core power supply, 3.3 V I/O pads
- 430 kgates
- Chip area: 4.5×4.5 mm²
- Virtual Silicon standard cell library
- 320 MHz PLL (x8) macro
- 24 double-port RAMs
- 352 pins BGA package
I/O signals

<table>
<thead>
<tr>
<th>I/O[31:0]</th>
<th>positive pivot plane 0 / low pt k-pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>I1[31:0]</td>
<td>pivot plane 1</td>
</tr>
<tr>
<td>J0[63:0]</td>
<td>non-pivot plane 0</td>
</tr>
<tr>
<td>J1[63:0]</td>
<td>non-pivot plane 1</td>
</tr>
<tr>
<td>L1ACCEPT</td>
<td>L1 Accept signal</td>
</tr>
<tr>
<td>L1CNTRES</td>
<td>L1 counter reset</td>
</tr>
<tr>
<td>BCNTRES</td>
<td>BCID counter reset</td>
</tr>
<tr>
<td>CLK</td>
<td>40 Mhz</td>
</tr>
<tr>
<td>TCLK</td>
<td>10 MHz</td>
</tr>
<tr>
<td>K[31:0]</td>
<td>k-pattern output</td>
</tr>
<tr>
<td>BCID[11:0]</td>
<td>Bunch crossing ID counter</td>
</tr>
<tr>
<td>THR[1:0]</td>
<td>Threshold value</td>
</tr>
<tr>
<td>OVL[1:0]</td>
<td>Overlap value</td>
</tr>
<tr>
<td>SER_D</td>
<td>DS-link Data line</td>
</tr>
<tr>
<td>SER_S</td>
<td>DS-link Strobe line</td>
</tr>
<tr>
<td>XOFF</td>
<td>Transmit off input</td>
</tr>
<tr>
<td>BUSY</td>
<td>ASIC busy signal</td>
</tr>
<tr>
<td>SCL</td>
<td>I2C clock line</td>
</tr>
<tr>
<td>SDA</td>
<td>I2C data line</td>
</tr>
<tr>
<td>DEVID[7:0]</td>
<td>Device identification input</td>
</tr>
<tr>
<td>TCK</td>
<td>TAP SCAN clock</td>
</tr>
<tr>
<td>TMS</td>
<td>TAP SCAN MODE</td>
</tr>
<tr>
<td>TRST</td>
<td>TAP SCAN RESET</td>
</tr>
<tr>
<td>TDI</td>
<td>TAP SCAN IN</td>
</tr>
<tr>
<td>TDO</td>
<td>Tristate TAP SCAN OUT</td>
</tr>
<tr>
<td>SE</td>
<td>Scan enable signal</td>
</tr>
<tr>
<td>TST</td>
<td>Test enable signal</td>
</tr>
<tr>
<td>CLKOUT</td>
<td>pll_clk tree output</td>
</tr>
<tr>
<td>CLK160OUT</td>
<td>clk_160 tree output</td>
</tr>
<tr>
<td>CLR_N</td>
<td>Asynchronous clear</td>
</tr>
</tbody>
</table>
Timing Block

- CMA has 3 clock domains, 2 working modes
- Initialization mode:
 - all blocks are driven by the external 40 MHz clock
 - the PLL is bypassed and the 160 MHz clock divider is excluded
 - all registers are accessible as shift registers, driven by the I2C interface.
- Run mode:
 - the PLL is in lock mode, provides the 320 MHz clock, and drives the 160 MHz clock generator.
Front-end signal digital shaping is programmable in the range $1/8 \div 1$ BC.

Pipeline delay is programmable in the range $3/8 \div 3$ BCs.

FE signal dead time is programmable in the range $0 \div 4$ BCs, in steps of $1/8$ BC.
Trigger Block

- Coincidence logic works at 320 MHz
- Number of matrices/thresholds is 3, logic is repeated three times in parallel, one per threshold setting
- Majority logic is 1/4, 2/4 (one hit per doublet), 3/4, 4/4
- The highest threshold k-pattern which has a non-zero trigger information is shaped in time and then sent to the chip output pads
De-clustering + preprocessing

- RPC average cluster size is ~1.4.
- De-clustering logic type can be selected at CMA initialization.
- Max processed cluster size is programmable (up to ±3).

- Correlates hits from two detector layers
- 2/2 hits favoured over 1/2.
- Programmable $\eta<0$, $\eta=0$, $\eta>0$ modes can be selected at CMA initialization.
Readout Block

Colmar, 10/9/2002
R. Vari - INFN Roma
Readout block

- The latency buffer stores hit patterns coming from the input FIFO until they get old.
- The input FIFO buffer is written at 320 MHz and contains the hit pattern, BCID and time interpolator value. The readout part of this buffer, together with the rest of the readout logic works at 160 MHz.
- In the derandomizer buffer, hits belonging to the same L1ID are assembled in data frame.
- All buffer memories are implemented with FIFOs.
- FIFO1 and FIFO2 contain a list of L1IDs and relative BCIDs respectively to be processed by the derandomizer and ready to be sent via the serializer.
- The serializer block attaches CRC codes to event fragments and ships the data out, following the DS-link protocol, at a programmable frequency of 10-80 MHz.
SEU detection

- One parity bit is stored when register is initialized
- Register parity is checked against stored parity every clock cycle
- SEU output signal active when parity check fails
- Single Event Upset detection has been implemented for almost all CMA registers
- For the fundamental chip control registers (Main Control Register, Latency Registers, DSlink Register), triple redundancy, 2/3 majority, has been implemented for error correction.
Testability

- 32+5 serial scan chains, JTAG boundary scan, I2C register access
- Scan chains (including RAM chains) used during ASIC acceptance tests:
 - All core registers and all RAMs are accessible via scan chains
 - Dedicated scan chains have been designed for RAM data, addresses and control signals, in order to be able to test the RAM cores
- JTAG for tests during board assembly test
- I2C is used for register accessibility and test pattern generation during trigger operation
- Input pipelines can be preloaded with hit patterns and chip can be run for a fixed programmed number of cycles
Design flow

- VHDL RTL code
- VHDL testbenches for all blocks and full chip
- Design exploration synthesis
- Top-down compile core and timing blocks
- Scan chains, JTAG and IO pads insertion
- Place & routing
- Clock tree
- Parasitic capacitance extraction
- Final layout
CMA LAB Test

- Loadboard developed for industry Teradyne tester
- The board has been designed with additional connectors for PLL test and lab tests in Rome
Test Patterns

- Scan and functional tests were performed on Teradyne machine at 1 Mhz, 40 MHz, at room and at 125°C temperatures. PLL lock was also tested.
 - SCAN test: 32 scan chains, maximum of 900 cells (generated with Synopsys Test Compiler)
 - RAM test: using single dedicated scan chain (23,743,440 cycles), generated from RTL model
 - Functional test: 105576 vectors, to test I2C interface and start PLL, generated from full netlist+timing simulation

- 86 packages tested by industry:
 - 7 GND fails
 - 5 RAM fails
 - 4 SCAN fails
 - 70 good (~81%)
 - No logic fail on functional test!
LAB setup

36x64K T=6.125ns
Pattern generator

Clock jitter
Waveform Analyser T=10ns

Generator
PODs

GPIB
LAN
loadboard

I2C on RJ45

Colmar, 10/9/2002
R. Vari - INFN Roma
PLL Test

- 160 MHz derived clock output has been used to check PLL stability (320 MHz)
- PLL has been characterized vs V and vs input frequency
- Measured jitter: 25 ps rms, 150 ps pk-pk
- PLL works according to specifications
Trigger test

- Trigger test on a limited number of input channels, due to limitations on the laboratory setup
- Minimum pulse width measurement:
 - $T_{w_{min}} > 6.126$ ns (12 ns in specs)
 - Dead timer, pulse shaping and pipeline delay working according to specs.

Trigger output latency:

- Input to K-pattern delay
 - $T_{latkpat} = (59 \pm 1)$ ns
- Input to THR/OVL delay
 - $T_{latthr} = (63\div88 \pm 1)$ ns
- Skew between THR and OVL signals
 - $T_{outskew} = (2 \pm 0.5)$ ns
Readout test

- Readout tests done at 40 Mbit/s using:
 - 10ns period sampling with waveform analyser
 - GPIB LAN box connected to waveform analyser
- VISA-GPIB library (linux) in deserializer program has been used to convert waveform vectors to readout data fragments
Readout latency

1% RPC occupancy
1-BC window
Power consumption

- Nominal power consumption during normal run mode operation is \(~1.2\) W

![Graph 1: Power consumption vs. voltage](image1)

- ![Graph 2: Power consumption vs. clock frequency](image2)
Plans & Conclusions

- Radiation Test:
 - 60 MeV proton SEE test
 - Gamma TID test

- Slice Test:
 - All slice components are now available

- Test Beam with RPC detector:
 - Muon beam with background photon source

- No problems or bugs founded up to now

- No second ASIC version previewed!