The overdensities of galaxy environments as a function of luminosity and color

David W. Hogg1,2, Michael R. Blanton1, Daniel J. Eisenstein3, James E. Gunn4, David J. Schlegel4, Idit Zehavi5,6, Neta A. Bahcall4, Jon Brinkmann7, Istvan Csabai8,9, Donald P. Schneider10, David H. Weinberg11, Donald G. York6

ABSTRACT

We study the mean environments of galaxies in the Sloan Digital Sky Survey as a function of rest-frame luminosity and color. Overdensities in galaxy number are estimated in 8 h^{-1} Mpc and 1 h^{-1} Mpc spheres centered on 125,000 galaxies taken from the SDSS spectroscopic sample. We find that, at constant color, overdensity is independent of luminosity for galaxies with the blue colors of spirals. This suggests that, at fixed star-formation history, spiral-galaxy mass is a very weak function of environment. Overdensity does depend on luminosity for galaxies with the red colors of early types; both low-luminosity and high-luminosity red galaxies are found to be in highly overdense regions.

Subject headings: galaxies: clusters: general — galaxies: fundamental parameters — galaxies: statistics — large-scale structure of universe

1 Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003
2 david.hogg@nyu.edu
3 Steward Observatory, 933 N. Cherry Ave., Tucson, AZ 85721
4 Princeton University Observatory, Princeton, NJ 08544
5 Fermi National Accelerator Laboratory, PO Box 500, Batavia, IL 60510
6 Astronomy and Astrophysics Department, University of Chicago, Chicago, IL 60637
7 Apache Point Observatory, 2001 Apache Point Road, P.O. Box 59, Sunspot, NM 88349-0059
8 Department of Physics, E\'otv\'os University, Budapest, Pf. 32, Hungary, H-1518
9 Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD 21218
10 Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802
11 Department of Astronomy, Ohio State University, Columbus, OH 43210
1. Introduction

Elliptical and lenticular galaxies are over-represented in massive nearby galaxy clusters relative to the field (??). Elliptical galaxies also tend to be redder, more luminous, more metal-rich, more gas-poor, and older in stellar population than spirals and irregulars (??, e.g.,]tammann79a, kormendy89a, roberts94a. Indeed, it has also been found that color, luminosity, surface-brightness, gas content, stellar population age, and star-formation rate are all correlated with the overdensity of the galaxy environment (??, e.g.,]kennicutt83a, balogh01a, martinez02a, lewis02a, blanton02d, gomez02q. Along the same lines, studies of the clustering of galaxies have found different clustering amplitudes for galaxies of different types, colors, and luminosities (??, e.g.,]davis76a, mo94a, park94a, norberg02a, zehavi02a. What is not understood is which of the relationships with environment are causal and which are just a by-product of other, more fundamental correlations.

Conventional cosmological theories posit that galaxies reside inside dark matter concentrations or “halos” that grow from small random fluctuations at early times. The most overdense fluctuations will collapse first; in a gaussian random field, these preferentially reside within overdensities on larger scales, implying a correlation of halo mass with environment is expected (??, e.g.,]mo96a, lemson99a. The relationships between the properties of a halo and the properties of the galaxy or galaxies it contains are not fully understood, so the conventional theories do not currently make strong predictions for the dependence of galaxy number overdensity on observable galaxy properties, although most studies suggest that luminosity and color will be related to overdensity (??, e.g.,]kauffmann97a, kauffmann99a, benson00a. Whether or not this dark-matter halo picture ends up being useful or correct, and whatever turn out to be the important physical processes for making galaxies, the investigations started in this Letter will place important constraints on galaxy formation and evolution.

The Sloan Digital Sky Survey (SDSS) is the best available data set for investigation of these relationships because of its sample size, high signal-to-noise imaging, sky coverage, and complete spectroscopy (??, e.g.,]york00a. Indeed, the SDSS has already made some relevant measurements, including the dependence of clustering on luminosity and color (??), the star-formation as a function of environment (??), and the mean red-galaxy spectrum as a function of environment (??). In this Letter, we investigate the mean galaxy number overdensities around galaxies of different colors and luminosities.

In what follows, a cosmological world model with \((\Omega_M, \Omega_A) = (0.3, 0.7)\) is adopted, and the Hubble constant is parameterized \(H_0 = 100h\) \(\text{km s}^{-1}\) \(\text{Mpc}^{-1}\), for the purposes of calculating distances and volumes (??, e.g.,]hogg99cosm.
2. Data sample

The SDSS is taking *ugriz* CCD imaging of 10^4 deg2 of the Northern Galactic sky, and, from that imaging, selecting 10^6 targets for spectroscopy, most of them galaxies with $r < 17.77$ mag (e.g.,)\(^g\)unn98a,york00a,\(^s\)toughton02a.

All the data processing: astrometry (?); source identification, deblending and photometry (?); calibration (?); spectroscopic target selection (?); spectroscopic fiber placement (?); and spectroscopic data reduction are performed with automated SDSS software.

Redshifts are measured on the reduced spectra by an automated system, which models each galaxy spectrum as a linear combination of stellar populations (Schlegel, in preparation).

The sample is statistically complete, with small incompletenesses coming primarily from (1) galaxies missed because of mechanical spectrograph constraints (6 percent;\(^b\)lanton02a, which does lead to a slight under-representation of high-density regions, and (2) spectra in which the redshift is either incorrect or impossible to determine (< 1 percent). In addition, there are some galaxies (~ 1 percent) blotted out by bright Galactic stars, but this incompleteness should be uncorrelated with galaxy properties.

For the purposes of computing large-scale structure statistics, we have assembled a subsample of SDSS galaxies known as the NYU LSS *sample10*. This subsample includes not only properties of the galaxies but also of survey selection function variations and angular coverage. For each galaxy in *sample10*, the sample includes a computed volume V_{max} representing the total volume of the Universe (in h^{-3} Mpc3) in which the galaxy could have resided and still made it into the sample. The calculation of these volumes is described elsewhere (?).

Galaxy luminosities and colors (measured by the standard SDSS petrosian technique;\(^c\)petrosian76a are computed in fixed bandpasses, using Galactic extinction corrections (?) and K corrections (computed with \(^d\)kcorrect v1.11;\(^e\)b\)lanton02b. They are K corrected not to the redshift $z = 0$ observed bandpasses but to bluer bandpasses $0.1g$, $0.1r$ and $0.1i$ “made” by shifting the SDSS g, r, and i bandpasses to shorter wavelengths by a factor of 1.1 (c.f.,)\(^b\)lanton02b, \(^d\)lanton02d. This means that galaxies at redshift $z = 0.1$ (typical of the SDSS sample used here) have trivial K corrections.

The sample of galaxies used here was selected to have apparent magnitude in the range $14.5 < r < 17.77$ mag, redshift in the range $0.05 < z < 0.22$, and fixed-frame absolute magnitude in the range $M_{0,1} > -24.0$ mag. These cuts left 124884 galaxies.

Overdensity estimators on two different length scales are used. On the $8 h^{-1}$ Mpc scale, the estimate of environment overdensity δ_8 is based on the SDSS spectroscopic sam-
ple. It is a measure of the three-dimensional redshift-angle space number density excess around each galaxy. The comoving transverse distances and comoving line-of-sight distances (\textit{e.g.,}) \textsc{hogg99cosm} are computed between each spectroscopic galaxy and its neighboring spectroscopic galaxies (not attempting to correct for peculiar velocities). Neighbors within an $8\ Mpc$ comoving sphere in this space are counted; the result is divided by the prediction made from the galaxy luminosity function (\textit{?}), and unity is subtracted to produce the overdensity estimate δ_8. A galaxy in an environment with the cosmic mean density has $\delta_8 = 0$. Although the sample used to infer δ_8 is flux-limited and not volume-limited, the resulting overdensity estimates have been shown to be redshift-independent in the median (\textit{?}). If the spatial correlation function $\xi(r)$ has the form $r^{-\gamma}$, then the mean overdensity around galaxies $\langle \delta_8 \rangle$ will be $(3 / [3 - \gamma]) \xi(8\ Mpc)$. Direct comparison of the $\langle \delta_8 \rangle$ and $\xi(r)$ requires a correction for the presence of redshift distortions due to infall and “fingers of God”.

On the $1\ Mpc$ scale, the estimate of environment overdensity δ_1 is a deprojected angular correlation function. Around each spectroscopic target galaxy, galaxies are counted in the SDSS imaging in the magnitude range corresponding to $M^* \pm 1$ mag (passively-evolved and K-corrected as for an early-type galaxy) and within $5\ Mpc$ (\textit{?}, transverse, proper; \textit{e.g.,}) \textsc{hogg99cosm} at the spectroscopic galaxy redshift. The count is weighted so as to recover the estimated overdensity averaged over a spherical three-dimensional Gaussian window $e^{-r^2/2a^2}$ with a radius of $a = 1\ Mpc$ (proper). Details of the weighting and the method for correcting for the survey mask are given elsewhere (\textit{?}). The results do not depend on an assumed model of the correlation function but do depend inversely on the normalization of the luminosity function at the redshift in question. One advantage of this method is that the density can be estimated with a volume-limited and yet reasonably dense set of galaxies, even at the furthest reaches of the spectroscopic catalog. Another advantage is that the estimator is not affected by redshift distortions. If the spatial correlation function $\xi(r)$ has the form $r^{-\gamma}$, then the mean overdensity around galaxies $\langle \delta_1 \rangle$ is $(2 / \sqrt{\pi}) \Gamma([3 - \gamma] / 2) \xi(1\ Mpc)$.

The two overdensity estimators δ_1 and δ_8 are very different; the deprojection technique is not possible on the large scale because of survey geometry constraints, and the redshift-angle sphere technique is not possible on the small scale because of peculiar velocities. Of course, that different estimators with different systematics are used on the two different scales makes their inter-comparison informative.
3. Results

Fig 1 shows the mean dependencies of overdensity on luminosity and color separately. Both show monotonic trends, with redder and more luminous galaxies, on average, in higher density regions. In each panel the mean is weighted by the inverse selection volumes $1/V_{\text{max}}$.

Panel (a) of Fig 2 shows the distribution of galaxies in the sample in the luminosity-color plane. The “red sequence” of old stellar populations, i.e., early-type galaxies, is visible. We will refer to galaxies on this sequence as “red” and those bluer as “blue.” The mode of the luminosity distribution is more luminous than L^*. This is due to the classical Malmquist bias: more luminous galaxies are visible over a much larger volume and are therefore over-represented in the sample. Taking means weighted by $1/V_{\text{max}}$ compensates for this bias.

Panels (b) and (c) of Fig 2 show the weighted mean environment overdensities $\langle \delta_8 \rangle$ and $\langle \delta_1 \rangle$ computed in a sliding box of luminosity width $\Delta M_{0.1} = 0.5$ mag and color width $\Delta^{0.1}(g-r) = 0.15$ mag, at all colors and magnitudes at which the sliding box contains at least 200 galaxies. The trends of the two different density estimators are remarkably similar:

1. Galaxies of every color and luminosity are, on average, in overdense regions ($\delta > 0$). There are no unclustered or void populations that can be isolated by color and luminosity, in the color and luminosity ranges considered here.
2. Very luminous ($L > 3L^*$) red galaxies are, on average, in more overdense regions than the average galaxy. This is not surprising, given that many clusters contain extremely luminous galaxies (e.g., beers83a).
3. Faint ($L < (1/3)L^*$) red galaxies are also, on average, in more overdense regions than the average galaxy. This may be related to the observation that the luminosity function appears more dwarf-rich in clusters than in the field (e.g., driver94b, bernstein95a, depropris95a, trentham02a).
4. The mean overdensity of blue galaxies is independent of luminosity and increases with color, at least at luminosities $L < 3L^*$. That overdensity is related to color reflects the color–morphology and density–morphology relations (???).

4. Discussion

We have shown that blue galaxies, i.e., galaxies bluer than the red sequence of old stellar populations, exhibit no correlation between their luminosities and the overdensity of their environments, at fixed color. The class of blue galaxies includes most spirals and irregulars.
On Fig 2 a line of (roughly) constant stellar mass is shown, derived by converting relations derived in the B and R bands (γ); the conversion is straightforward because B and R are very similar to g and i. The line of constant mass is close to a line of constant luminosity. Similarly, a line of constant star-formation history is close to a line of constant color, with a small slope arising from the luminosity–metallicity relation (γ, e.g.,) vila-costas92a, zaritsky94a, ryder95a. Fig 2 shows that, for spiral galaxies, mean overdensity is monotonically related to star-formation history. That there is a strong relationship between star-formation history and environment has been suggested before, both theoretically (γ, e.g.,) kauffmann99a, benson00a and observationally (γ). What is more remarkable is that, for galaxies with the colors of spirals, at fixed star-formation history, overdensity does not appear to depend on stellar mass at all.

The reddest galaxies show strong trends in overdensity at both the luminous and faint extremes. The former trend indicates that the very most luminous galaxies lie in the very largest overdensities; probably this is related to the fact that giant galaxies lie near the centers of clusters. The latter trend suggests that though high-density regions are expected to be rich in dwarf galaxies, those dwarfs will, by and large, be much redder than typical galaxies of their luminosity (γ, Zehavi et al, in preparation). That red galaxies have a minimum in their mean overdensity at luminosities near L^* could be partly due to the specific mixture of galaxy types at those luminosities; there is a large overlap with the distribution of spirals, and the red population contains a large number of Sa galaxies at those luminosities (γ, e.g.,) strateva01q.

At one point it was thought that dwarf galaxies might “fill the voids,” making them an underdense population in the mean. Our results rule this out, at least for dwarf galaxies selected by color and luminosity in the ranges considered here.

We thank Andreas Berlind, Douglas Finkbeiner, Jill Knapp, Ravi Sheth, Roman Scoccimarro, Iskra Strateva, and Simon White for useful discussions and software. This research made use of the NASA Astrophysics Data System. MRB and DWH are partially supported by NASA (grant NAG5-11669) and NSF (grant PHY-0101738). DJE is supported by NSF (grant AST-0098577) and by an Alfred P. Sloan Research Fellowship.

Funding for the creation and distribution of the SDSS has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Aeronautics and Space Administration, the National Science Foundation, the U.S. Department of Energy, the Japanese Monbukagakusho, and the Max Planck Society. The SDSS Web site is http://www.sdss.org/.

The SDSS is managed by the Astrophysical Research Consortium (ARC) for the Participating Institutions. The Participating Institutions are The University of Chicago, Fermilab,
the Institute for Advanced Study, the Japan Participation Group, The Johns Hopkins Uni-
versity, Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA),
the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, University
of Pittsburgh, Princeton University, the United States Naval Observatory, and the University
of Washington.
Fig. 1.— The $1/V_{\text{max}}$-weighted mean galaxy environment overdensities $\langle \delta_8 \rangle$ and $\langle \delta_1 \rangle$ in $8 \, h^{-1} \text{ Mpc}$ and $1 \, h^{-1} \text{ Mpc}$ spheres (see text) computed in a sliding box of luminosity width $\Delta M_{0.1} = 0.5 \, \text{mag}$ (absolute magnitude plots) or in a sliding box of color width $\Delta^{0.1}(g-r) = 0.15 \, \text{mag}$ (color plots). A vertical line shows the characteristic luminosity $L^*(?)$.
Fig. 2.— Panel (a) shows the luminosity and color of each galaxy in the sample. A vertical grey line shows the characteristic luminosity L^* (?). Panel (b) shows the $1/V_{\text{max}}$-weighted mean galaxy environment overdensity $\langle \delta_8 \rangle$ in $8\, h^{-1}$ Mpc spheres (see text) computed in a sliding, rectangular box of luminosity width $\Delta M_{0.1} = 0.5$ mag and color height $\Delta^{0.1}(g-r) = 0.15$ mag. The box size and shape is shown on the lower right corner of panel (a). The grey line indicates, roughly, a locus of constant total stellar mass (?). Panel (c) shows the weighted mean overdensity $\langle \delta_1 \rangle$ in $1\, h^{-1}$ Mpc spheres (see text). Note that different kinds of overdensity estimators are used for the two different length scales. The mean environment overdensity is not shown shown at colors and luminosities at which there are <200 galaxies inside the box; this region is indicated with a border on panel (a).