Shock propagation and neutrino oscillation in supernova

*Department of Physics, University of Tokyo,
7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
**Research Center for the Early Universe, University of Tokyo,
7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
***Lawrence Livermore National Laboratory,
7000 East Avenue, L-015, Livermore, CA 94550

December 10, 2002

Abstract

The effect of the shock propagation on neutrino oscillation in supernova is studied paying attention to evolution of average energy of ν_e and $\bar{\nu}_e$. We show that the effect appears as a decrease in average ν_e (in case of inverted mass hierarchy, $\bar{\nu}_e$) energy at stellar surface as the shock propagates. It is found that the effect is significant 2 seconds after bounce if $3 \times 10^{-5} < \sin^2 \theta_{13} < 10^{-2}$.

1 Introduction

Recently effects of shock propagation on neutrino oscillation in supernova was studied [1] and it was shown that some characteristic signatures emerge as the shock propagates through the regions where matter-enhanced neutrino flavor conversion occurs.

There have been many studies on neutrino oscillation in supernova: extracting information of neutrino parameters from the observation of SN1987A neutrinos [2, 3, 4, 5] or a future supernova neutrinos [6, 7, 8, 9, 10], and probing supernova physics from observed neutrinos of a future supernova [11]. But all of them are done without the effect of the shock propagation.

In this paper the effect of the shock propagation is studied paying attention to evolution of average energies of ν_e and $\bar{\nu}_e$. We show when and with which parameter ($\sin^2 \theta_{13}$) the effect is significant or can be neglected safely.

2 Neutrino oscillation and shock propagation

If mixing angle is small, dynamics of flavor conversions is well described by resonant oscillation, which occurs at density,

$$\rho_{\text{res}} \simeq 1.4 \times 10^6 \text{g/cc} \left(\frac{\Delta m^2}{1\text{eV}^2} \right) \left(\frac{10\text{MeV}}{E_{\nu}} \right) \left(\frac{0.5}{Y_e} \right) \cos 2\theta,$$

(1)
where Δm^2 is the mass squared difference, θ is the mixing angle, E_{ν} is the neutrino energy, and Y_e is the mean number of electrons per baryon. Flavor conversion probabilities are determined by adiabaticity parameter γ:

$$\gamma \equiv \frac{\Delta m^2 \sin^2 2\theta}{2E_{\nu} \cos 2\theta |dn_e/dr|}. \tag{2}$$

Here Δm^2 and θ are

$$\begin{align*}
\theta_{13} & \quad \text{and} \quad \Delta m^2_{13} \quad \text{at H - resonance}, \\
\theta_{12} & \quad \text{and} \quad \Delta m^2_{12} \quad \text{at L - resonance},
\end{align*}$$

where mixing matrix is taken as:

$$U = \begin{pmatrix}
c_{12}c_{13} & s_{12}c_{13} & s_{13} \\
-s_{12}c_{23} - c_{12}s_{23}s_{13} & c_{12}c_{23} - s_{12}s_{23}s_{13} & s_{23}c_{13} \\
s_{12}s_{23} - c_{12}c_{23}s_{13} & -c_{12}s_{23} - s_{12}c_{23}s_{13} & c_{23}c_{13}
\end{pmatrix}, \tag{3}$$

where $s_{ij} = \sin \theta_{ij}, c_{ij} = \cos \theta_{ij}$ for $i, j = 1, 2, 3 (i < j)$. When $\gamma \gg 1$, the resonance is adiabatic and the fluxes of the two involved mass eigenstates are completely exchanged. On the contrary, when $\gamma \ll 1$, the resonance is nonadiabatic and the conversion between mass eigenstates does not occur.

Evolution of density profile is shown in Fig. 1. This is calculated by our numerical supernova model with progenitor mass, 18M_{\odot}. (For detail, see [12].) Densities which correspond to H- and L-resonance are also shown (Note that the resonance density depends on neutrino energy). As can be seen, the shock reaches the resonant region about 2 seconds after bounce and the density behind the shock is lower than that forward the shock. In the late phase ($t >$ several seconds) a neutrino experience H-resonance (and/or L-resonance) three times or radius of resonance point (r_{res}) becomes much smaller than the early phase. Since $\gamma \propto r_{res}$ if the density profile is approximated to be power-law, in the former case the three resonances have in general different adiabaticities and in the latter case adiabaticity becomes much smaller than early phase. Therefore the average energy of the
observed neutrinos is expected to depend on time not only due to the evolution of the neutrinosphere and the proto-neutron star but also due to the evolution of the shock.

We can estimate the above effect by calculating adiabaticity. We consider the case where H-resonance occurs only one time and assume that the neutrino mass hierarchy is normal. In this case the adiabaticity is, assuming $\rho \propto r^{-n}$,

$$\gamma \approx 2 \times 10^{2} n^{-1} \left(\frac{\sin^{2} \theta_{13}}{10^{-2}} \right) \left(\frac{r_{\text{res}}}{3 \times 10^{-2} R_{\odot}} \right) \left(\frac{\Delta m^2}{3 \times 10^{-3}} \right) \left(\frac{10 \text{MeV}}{E_{\nu}} \right).$$

(4)

Note that the index n is almost independent of time as can be seen in Fig. 1. From this H-resonance is expected to be adiabatic if $\sin^{2} \theta_{13} > 10^{-4}$. Adiabaticity, however, becomes smaller as the shock propagates and two order smaller at 15 sec than the early phase. Thus the H-resonance becomes less adiabatic unless $\sin^{2} \theta_{13} > 10^{-2}$ as is in the model LMA-L ($\sin^{2} \theta_{13} = 0.043$) of [7]. This will cause decreasing of ν_{e} average energy at the stellar surface as the shock propagates. On the other hand, if H-resonance is non-adiabatic even in early phase as is in the model LMA-S ($\sin^{2} \theta_{13} = 10^{-6}$) of [7], average energy will not change. Here it should be noted that almost half the neutrinos are emitted after 2 seconds after bounce [13].

With inverted mass hierarchy, H-resonance occurs at anti-neutrino sector. In this case evolution of average energy at stellar surface is seen in $\bar{\nu}_{e}$. Its qualitative feature is expected to be the same as that of ν_{e} with normal mass hierarchy because it is determined by the behavior of the shock.

As to L-resonance, significant shock propagation effect will not be seen. This is because the mixing angle is enough large if LMA is the solution of the solar neutrino problem [14, 15, 16] and because the shock reaches L-resonance region later than H-resonance, when neutrino luminosity is rather small.

In the next section we study the above effect quantitatively by numerical calculation and obtain time evolution of the average energies of observed neutrinos (ν_{e} and $\bar{\nu}_{e}$).

3 Numerical calculation

We solve numerically evolution equations of neutrino wave functions along the density profiles shown in Fig. 1. From the wave functions, we obtain flavor conversion probabilities, from which neutrino spectra can be obtained by multiplying by the original neutrino fluxes. To make the shock propagation effect distinctive, the original energy spectra at each time are set to be the same as the time-integrated spectra. Neutrino parameters are taken as:

$$\sin^{2} \theta_{12} = 0.87, \quad \sin^{2} \theta_{23} = 1, \quad \Delta m^2_{12} = 7.0 \times 10^{-5} \text{eV}^2, \quad \Delta m^2_{13} = 3.2 \times 10^{-3} \text{eV}^2.$$

(5)

As for $\sin^{2} \theta_{13}$, we take various values including values corresponding to model LMA-L and LMA-S in [7, 8]. For detail of the calculational method and the original neutrino fluxes, see [7, 8].

Fig. 2 show average energy evolutions of ν_{e} emitted at various times after bounce with normal mass hierarchy. Each figure differs in the value of $\sin^{2} \theta_{13}$. The interesting behavior of the average energy in supernova (for example, 5 sec of the upper-left of Fig. 2) indicate three times of H-resonance. As is discussed in the previous section, the average energy at the stellar surface does not change in
Figure 2: Average energy evolutions of ν_e emitted at various times after bounce with normal mass hierarchy. The values of $\sin^2 \theta_{13}$ are that of the model LMA-L of $[7, 8]$, 10^{-3}, 10^{-4} and that of the model LMA-L of $[7, 8]$, respectively.

time when $\sin^2 \theta_{13}$ is enough large (LMA-L, the upper-left of Fig. 2) or small (LMA-S, the lower-right of Fig. 2). On the other hand, average energy decrease by several MeV in the intermediate cases. By calculating with various values of $\sin^2 \theta_{13}$, we find that the shock propagation effects can be seen when $3 \times 10^{-5} < \sin^2 \theta_{13} < 10^{-2}$ but are absent till ~ 1 second after bounce irrespective of $\sin^2 \theta_{13}$.

Thus average energy of observed ν_e will change in time due to shock propagating effect. In fact neutrino average energies changes also due to evolution of protoneutron star and neutrinosphere. Fig. 3 shows evolutions of average energy of observed neutrinos taking intrinsic changes of neutrino average energies into account. $\sin^2 \theta_{13}$ is set to 10^{-4}. As can also be seen in the lower-left of Fig. 2, ν_e energy with shock effect is lower by several MeV after about 2 sec after bounce than without shock effect.

As stated in the previous section, in case of inverted mass hierarchy it is $\bar{\nu}_e$ that is affected by shock propagation. Features of the evolution of the average energy are almost the same quantitatively: values of $\sin^2 \theta_{13}$ and time after bounce, with which shock propagation effect is significant, difference between average energies of the early phase and late phase.
Figure 3: Evolutions of average energy of observed neutrinos. Average energies of ν_e with and without shock effect are shown. Those of ν_e and $\nu_x = \nu_\mu, \nu_\tau$ without neutrino oscillation are also shown. $\sin^2 \theta_{13}$ is set to 10^{-4}.

4 Discussion

As we saw in the previous section, neutrino average energy decrease in general as the shock propagates. This is because the shock propagation cause decrease in the adiabaticity of H-resonance and suppress the conversion between flavors. But it should be noted that we used the same spectra at all times and in fact the original spectra will change due to the evolution of the protoneutron star and the neutrinosphere. Thus we can not say about the value of $\sin^2 \theta_{13}$ and the mass hierarchy only from the evolution of the average energy of the observed neutrino. To do so, we need a model of supernova and spectrum evolution.

In our previous papers [7, 8, 9, 10] we studied effects of neutrino oscillation on supernova neutrino spectra and proposed methods to extract information about neutrino parameters from observed time-integrated neutrino spectra of a future supernova. There, stellar structure was assumed to be static, that is, the shock propagation effect was neglected. In general this approximation is not good because almost half the neutrino flux are emitted after 2 seconds after bounce, when the effect is significant if $3 \times 10^{-5} < \sin^2 \theta_{13} < 10^{-2}$. But the effect is safely neglected if we use time-integrated spectra till ~ 1 second.

Fig. 4 is the same figure as Fig. 8 in [8] except that data only till 1 second after the first event are used. This is a plot of ratios of number of high- ($E_\nu > 25\text{MeV}$) to low-energy ($E_\nu < 25\text{MeV}$) events at SuperKamiokande and SNO. Although the number of events used in analysis becomes almost half, differences between models are still as clear as Fig. 8 in [8].

Acknowledgements

K.T.'s work is supported by Grant-in-Aid for JSPS Fellows. K.S.'s work is supported by Grant-in-Aid for Scientific Research (S) No. 14102004 and Grant-in-Aid for Scientific Research on Priority Areas No. 14079202. H.E.D. and J.R.W. are supported by LLNL contract W-7405-ENG-48.
Figure 4: Plot of ratios of number of high- ($E_\nu > 25$MeV) to low-energy ($E_\nu < 25$MeV) events at SuperKamiokande and SNO. This is the same figure as Fig. 8 in [8] except that data only till 1 second after the first event are used.

References