Stellar rotation: Evidence for a large horizontal turbulence and its effects on evolution

André Maeder

Geneva Observatory CH–1290 Sauverny, Switzerland
e-mail: Andre.Maeder@obs.unige.ch

Received / Accepted

Abstract. We derive a new expression for the coefficient D_h of diffusion by horizontal turbulence in rotating stars. This new estimate can be up to two orders of magnitude larger than given by a previous expression. As a consequence the differential rotation on an equipotential is found to be very small, which reinforces Zahn’s hypothesis of shellular rotation. The role of the so-called μ-currents, as well as the driving of circulation, are reduced by the large horizontal turbulence. Stellar evolutionary models for a 20 M\odot star are calculated with the new coefficient. The new and large D_h tends to limit the size of the convective core and at the same time it largely favours the diffusion of helium and nitrogen to the surface of rotating OB stars, a feature supported by recent observations.

Key words. Physical data and processes: turbulence – Stars: evolution – Stars: rotation

1. Introduction

Differential rotation usually creates turbulent motions due to shear in rotating stars. In a normally stable radiative layer, the turbulence is usually much stronger in the horizontal direction perpendicular to gravity than in the vertical direction (Zahn 1992). The reason is that in the vertical direction the stable temperature gradient needs stronger forces to be overcome than in the horizontal direction where, in principle, no forces are opposed to the motions. An argument in favour of these intense horizontal meteorological-like turbulent motions is given by the study of the solar tachocline by Spiegel & Zahn (1992). The tachocline is the transition zone between the rigid rotation in the radiative interior and the external convective zone, where rotation varies with latitude. Spiegel & Zahn show that if the horizontal turbulence is intense, then the tachocline is very thin as supported by helioseismological observations.

The global result of the transport of the fluid elements by the horizontal turbulence is represented by a coefficient of viscosity ν_h. This coefficient is a very important parameter in the physics of rotating stars in several respects:

1. If strong enough, the horizontal coupling expressed by the coefficient ν_h makes the angular velocity Ω nearly constant on isobaric surfaces (cf. Zahn 1992). In this case, the angular velocity Ω is constant on shells and the rotation law is said “shellular” by Zahn. If this is the case, the equations of stellar structure are greatly simplified, because they depend on one coordinate only (which is not just the lagrangian coordinate M_r, but which has to be defined in an appropriate way). This enables us to keep a 1–D equations scheme for stellar structure (cf. Kippenhahn & Thomas 1970; Endal & Sofia 1976). In the case of differential shellular rotation, Meynet & Maeder (2000) have shown that the scheme usually employed is incorrect, but that a consistent 1–D scheme may still be defined.

2. The various mixing processes of chemical elements play a major role in massive star evolution (cf. Heger et al. 2000; Heger & Langer 2000; Meynet & Maeder 2000). The horizontal turbulence reduces very much the efficiency of vertical transport of elements by meridional circulation (Chaboyer & Zahn 1992). This enables us to understand in a consistent way why the vertical transport of chemical elements by the circulation is much smaller than the vertical transport of angular momentum by circulation. This is a clear constraint which results from solar observations (Chaboyer et al. 1995a, 1995b), as well as from the observations of massive stars (Maeder & Meynet 2000).

3. The horizontal turbulence was generally ignored in the treatment of meridional circulation or of shear mixing. However, recent developments (Chaboyer & Zahn 1992; Maeder & Zahn 1998; Maeder & Meynet 2001; Brüggen & Hillebrandt 2001) show that the horizontal diffusion by turbulence may also intervene in the expressions of the transport of chemical elements by meridional circulation, of the circulation velocity, of the diffusion coefficient by shear mixing, of the heat transport, etc... Interestingly enough, the numerical convergence of the 4th order scheme...
of differential equations expressing the transport of angular momentum and meridional circulation appears to be sensitive to the value of diffusion coefficient of horizontal turbulence.

We do not consider here the effect of the magnetic field (cf. Spruit 2002), which may also play a role in the transport of angular momentum. In Sect. 2, we examine the reasons which demand a new estimate of \(\nu_h \). In Sect. 3, we derive a new expression for \(\nu_h \) and some numerical estimates. Sect. 4 provides a discussion of the results.

2. Reasons for a new estimate of the horizontal turbulence

The usual expression for the coefficient \(\nu_h \) of viscosity due to horizontal diffusion and for the coefficient \(D_h \) of horizontal diffusion, which is of the same order, is, according to Zahn (1992; Eq.(2.29)),

\[
D_h \simeq \nu_h = \frac{1}{c_h} r \left| 2V(r) - \alpha U(r) \right|,
\]

where \(r \) is the appropriately defined eulerian coordinate of the isobar (Meynet & Maeder 2000). Apart from the case of extreme rotational velocities, the parameter \(r \) is close to the average radius of an isobar, which is the radius at \(P_2(\cos \vartheta) = 0 \), namely for \(\vartheta = 54.7 \) degrees. \(U(r) \) is the vertical component of the velocity of meridional circulation, \(V(r) \) the horizontal component, \(\alpha = \frac{1}{2} \frac{d \ln r}{d \ln r} \) and \(c_h \) is a constant of order of unity or smaller. This equation was derived assuming that the differential rotation (as defined by the ratio \(\frac{\Omega(r)}{\Omega(r)} \)) in Eq.(4) below) on an isobaric surface be small compared to unity. Indeed, there are several difficulties suggesting us to reconsider the expression for \(\nu_h \):

– The first reason why the above expression is not satisfactory has been given by Zahn (1992) and it is related to the way Eq.(1) has been obtained. If we write the differential rotation at a colatitude \(\vartheta \) as

\[
\Omega(r, \vartheta) = \Omega_2(r, \vartheta) + \Omega_1(r, \vartheta)
\]

with

\[
\Omega_1(r, \vartheta) = \frac{c_h}{5} \Omega(r, \vartheta)
\]

where \(P_2(\cos \vartheta) \) is the Legendre polynomial of second order, we find that the differential rotation is a constant (cf. Sect. 2.6 in Zahn 1992),

\[
\frac{\Omega_2(r)}{\Omega(r)} = \frac{c_h}{5}.
\]

This ratio is obtained when we use a coefficient \(\nu_h \) given by Eq.(1) together with the expressions for the horizontal transport of angular momentum. This ratio is smaller than unity, but, as noted by Zahn (1992), there is no reason for the amount of differential rotation being constant with \(r \). On the contrary, the importance of differential rotation should depend on the value of \(\nu_h \), because the stronger the horizontal turbulence, the stronger is the homogenisation of the angular velocity on an equipotential surface. This suggests that \(\frac{\Omega_2(r)}{\Omega(r)} \) should decrease for larger \(\nu_h \). Likely, we could also expect that the importance of differential rotation varies with the rotation velocity, since the horizontal turbulence is itself generated by rotation.

– Another point is related to the numerical models (Meynet & Maeder, 2000; Maeder & Meynet, 2001). During the course of the evolution, some models indicate that the coefficient \(D_h \) of horizontal turbulence, as given by Eq.(1), is not so much larger than the coefficient of vertical diffusion by shear, especially at low metallicity \(Z \) where \(U(r) \) is small (see Fig. 6 in Meynet & Maeder 2000 and Fig. 2 in Maeder & Meynet 2001). This is not very satisfactory for the validity of the assumption of shellular rotation. We may remark in this context that this assumption would be much better if the diffusion coefficient of horizontal turbulence would be larger.

– We may also note that physically the horizontal turbulence results from the differential rotation, while the meridional circulation with components \(U(r) \) and \(V(r) \) results from the disruption of the thermal equilibrium on an equipotential. These two phenomena are generally, but not necessarily, related. An example is the case of a uniformly rotating star. There we have no differential rotation, but a breakdown of thermal equilibrium occurs unavoidably.

3. The dissipation and feeding of turbulent energy

Let us firstly examine the rate of dissipation of the turbulent energy. As shown by Zahn (1992), we may write the rate of viscous dissipation of the energy present in the differential zonal motions on an isobar as

\[
\delta \dot{\epsilon}_t (r, \vartheta) = \nu_h \left(\sin \vartheta \frac{\partial \Omega_2}{\partial \vartheta} \delta \vartheta \right)^2,
\]

per mass and time and for an interval of latitude \(\delta \vartheta \). Taking into account Eq.(3), we obtain

\[
\delta \dot{\epsilon}_t (r, \vartheta) = \nu_h \sin^2 \vartheta \Omega_2^2(r) \left(\frac{d P_2(\cos \vartheta)}{d \vartheta} \right)^2 \delta \vartheta^2,
\]

\[
\delta \dot{\epsilon}_t (r, \vartheta) = 9 \nu_h \Omega_2^2(r) \sin^4 \vartheta \cos^2 \vartheta \delta \vartheta^2.
\]

The rate of energy dissipation is proportional to the square of the amplitude \(\Omega_2(r) \) on an equipotential. It is zero at the pole and equator and maximum at \(P_2(\cos \vartheta) = 0 \).

There is an excess of energy on an isobar due to the differential rotation described by Eq.(2) compared to an average rotation. The velocity of rotation \(v(r, \vartheta) \) on the equipotential of average distance \(r \) is given by

\[
v(r, \vartheta) = r \sin \vartheta \Omega_2 + r \sin \vartheta \Omega_2 \Omega_2(2, \vartheta) P_2(\cos \vartheta).
\]

For an interval of latitude \(\delta \vartheta \), the difference of rotational velocity \(\delta v(r, \vartheta) \) due to the latitudinal differential rotation on the equipotential is

\[
\delta v(r, \vartheta) = r \sin \vartheta \Omega_2(2, \vartheta) P_2(\cos \vartheta) \delta \vartheta
\]

\[
= -3r \sin^2 \vartheta \cos \vartheta \Omega_2(r) \delta \vartheta.
\]
We express here only in the velocity difference due to the shear on the equipotential. The excess of energy $\delta E_{\text{diff}}(r, \vartheta)$ over an interval $\delta \vartheta$ due to the differential rotation in latitude is

$$\delta E_{\text{diff}}(r, \vartheta) = \frac{1}{4} \delta v^2(r, \vartheta) = \frac{9}{4} r^2 \sin^4 \vartheta \cos^2 \vartheta \Omega_2^2(r) \delta \vartheta^2.$$ \hspace{1cm} (10)

Now, this small excess of energy over an interval $\delta \vartheta$ will be smeared out in a dynamical timescale δt_{diff}.

Let us estimate this characteristic timescale. On the isobar, the differential rotation due to Ω_2 produces a shift $\delta \varphi$ in longitude for two fluid elements located at a difference $\delta \theta$ in colatitude at a time interval δt

$$\delta \varphi = \hat{\Omega} \delta t = \Omega_2 \frac{dP_2}{d\theta} \delta \theta \delta t.$$ \hspace{1cm} (11)

The meridional circulation has an horizontal velocity component V, which is pointing toward the pole in the external layers where $U(r) < 0$. This is due to the Gratton–"Opik term, which is the term $-\frac{V}{r} \frac{\pi G}{\Omega}$ ("Opik 1951) which appears in the equation for $U(r)$ given for example in Eq.(4.29) by Maeder & Zahn (1998). Due to the average density $\overline{\rho}$ at the denominator, the Gratton–"Opik term is largely negative near the surface, thus it acts so as to change the sign of the circulation $U(r)$, making it rising in the equatorial plane and descending along the polar axis. In the deeper layers, one has generally $U(r) > 0$, which means that the circulation rises along the polar axis and descends in the equatorial plane. Thus, in this case V is pointing toward the equator. The shift in latitude is given by

$$r \delta \theta = V \frac{dP_2}{d\theta} \delta t,$$ \hspace{1cm} (12)

and this leads to

$$\delta \varphi = \frac{\Omega_2 V}{r} \left(\frac{dP_2}{d\theta} \right)^2 (\delta t)^2.$$ \hspace{1cm} (13)

The complex motion in ϑ and φ due to the differential rotation Ω_2 on the isobar will tend to smear out the latitudinal energy differences as discussed above. As a typical dynamical timescale, we take the time necessary for this differential motion in φ to perform n axial rotations. We may consider an average of $\delta \varphi(\vartheta)$ over the star

$$\overline{\delta \varphi} = \frac{\Omega_2 V}{r} (t_{\text{diff}})^2 \int_0^{2\pi} \left(\frac{dP_2}{d\theta} \right)^2 \sin \theta d\theta = 2n\pi.$$ \hspace{1cm} (14)

Thus, we get for the characteristic timescale

$$t_{\text{diff}} = \left(\frac{5n\pi}{3} \frac{r}{\Omega_2 V} \right)^{1/2}.$$ \hspace{1cm} (15)

The numerical factor is of course rather arbitrary. The ratio of the energy excess (Eq.(10)) and of the rate of viscous dissipation (Eq.(7)) is of the order of this timescale and we write

$$\frac{\delta E_{\text{diff}}(r, \vartheta)}{\delta E(r, \vartheta)} = t_{\text{diff}}.$$ \hspace{1cm} (16)

Using Eqs.(7) and (10), we obtain for the coefficient of horizontal turbulence ν_h

$$\nu_h = \left(\frac{3}{80n\pi} r^3 \Omega_2 V \right)^{\frac{1}{4}}.$$ \hspace{1cm} (17)

We may also estimate ν_h by dividing the square of a typical lengthscale (of the order of r) by the diffusion timescale given by Eq.(15). We obtain exactly the same functional dependence in $(r^3 \Omega_2 V)^{\frac{1}{4}}$, with a numerical coefficient depending on the chosen lengthscale. Studying conservation of the angular momentum by taking into account the horizontal variations Ω_2 of rotation leads to the following relation (Zahn 1992; Eq.(2.27)), that relates Ω_2 and ν_h

$$\nu_h \Omega_2(r) = \frac{1}{5} \overline{\Omega}(r) r [2V - \alpha U],$$ \hspace{1cm} (18)

where α is the same as in Eq.(1). This is the expression discussed in Sect. 2, which implies that, if ν_h is given by an equation like Eq.(1), the ratio $\frac{\Omega_2}{\Omega_2}$ is a constant.

Now, we eliminate Ω_2 between the two equations (17) and (18). This gives for the coefficient of viscosity due to the horizontal turbulence

$$\nu_h = A r \left(r \overline{\Omega}(r) V [2V - \alpha U] \right)^{\frac{1}{4}},$$ \hspace{1cm} (19)

with

$$A = \left(\frac{3}{40n\pi} \right)^{\frac{1}{4}}.$$ \hspace{1cm} (19)

For $n=1, 3$ or $5 A \approx 0.134, 0.0927, 0.0782$ respectively. This expression can be written in the usual form $\nu_h = \frac{1}{\tau} I \cdot v$ for a viscosity, where the appropriate velocity v is a geometric mean of 3 relevant velocities:

- A velocity $(2V - \alpha U)$ as in Eq.(1) by Zahn (1992),
- The horizontal component V of the meridional circulation.
- The average local rotational velocity $r \overline{\Omega}(r)$. This rotational velocity is usually much larger than either $U(r)$ or $V(r)$, typically by 6 to 8 orders of a magnitude in an upper Main Sequence star rotating with the average velocity.

4. Numerical results

4.1. Comparisons and orders of magnitude

Let us compare the present value of ν_h to that given by Zahn (1992). We get the following ratio from Eq.(1) and (19),

$$\frac{\nu_h(\text{present})}{\nu_h(\text{Zahn})} = A c_h \left(\frac{r \overline{\Omega} V}{(2V - \alpha U)^2} \right)^{\frac{1}{4}}.$$ \hspace{1cm} (20)
The quantities V and U have the same order of magnitude. The numerical models below show that typically $V \approx \frac{1}{4} U$ and $(2V - \alpha U) \approx V$, thus we have the following order of magnitude,

$$\frac{\nu_h(\text{present})}{\nu_h(\text{Zahn})} \approx A c_h \left(\frac{r \Omega}{\nu} \right)^{\frac{1}{3}}. \quad (21)$$

Thus, we see that the ratio of the two estimates of the diffusion coefficient is equal to the power $\frac{1}{3}$ of the ratio of the local rotational velocity to the horizontal velocity of meridional circulation at the considered level. Let us consider a 20 M$_\odot$ star with an average rotation velocity of 220 km/s at the surface. At the middle of the MS phase, the vertical component of the meridional circulation lies between $3\cdot10^{-4}$ and $3\cdot10^{-3}$ m/s as shown by the models below (see also Meynet & Maeder 2000). Thus, we typically have $\frac{\nu_h(\text{present})}{\nu_h(\text{Zahn})}$ of the order of 10^2 (cf. Fig. 1). Thus, our estimate of the diffusion coefficient of the horizontal turbulence is much larger than the coefficient proposed by Zahn(1992; Eq.(2.29)) as given by Eq.(1). Thus, our estimate of the diffusion coefficient of the horizontal turbulence is much larger than the value given by Eq.(1), we see that the ratio of the two estimates of the diffusion coefficient is equal to the power $\frac{1}{3}$ of the ratio given by Eq.(19), in which the value of c_h = 1 would be used. This results from Eq.(1) and Eq.(18) relating ν_h and Ω_2. Thus, with the above estimates, we obtain a ratio of about $\frac{\Omega_2}{\Omega(r)} = 2 \cdot 10^{-3}$. As the value of ν_h obtained in this work is much larger than the value given by Eq.(1), we see that quite logically the degree of differential rotation on an isobar is much smaller. The present value of the coefficient reinforces Zahn’s hypothesis of shellular rotation. We also notice that the ratio $\frac{\Omega_2}{\Omega(r)}$ is larger for slowly rotating stars. This is quite a consistent feature, because ν_h is growing with the velocity of rotation.

4.2. Test with the evolution of a 20 M$_\odot$ model

In order to examine the consequence of the new coefficient of horizontal diffusion, we calculate stellar models for a 20 M$_\odot$ with composition $X = 0.705$ and $Z = 0.02$ with the same physics as in our recent papers (Maeder & Meynet 2001). The initial rotation velocity is 300 km/s, which corresponds to average rotation during the MS phase of about 240 km/s. Several expressions and diffusion coefficients will be discussed numerically below, let us briefly recall them. The vertical component $U(r)$ of the velocity of meridional circulation velocity is given by

$$U(r) = \frac{P}{\rho g C_p T} \left[\nabla_{\text{ad}} - \nabla + (\varphi/\delta) \nabla_{\text{ad}} \right] \times$$

Fig. 1. Values of the various diffusion coefficient in the interior of a star model of 20 M$_\odot$ at beginning of the MS phase, with an age of $8.577 \cdot 10^4$ yr. and central hydrogen content of $X_c = 0.702$. That is to say during the initial non–stationary phase of convergence of the rotation, where the velocities $U(r)$ are large. The new D_h is that given by Eq.(19) with $A=0.079$. The old D_h is that given by Eq.(1). K is the radiative diffusivity. D_{shear} is the coefficient of diffusion by shears. D_{eff} expresses the diffusion of the chemical elements by meridional circulation with account of the effects of horizontal turbulence. When not specified, the quantities shown are those for the new D_h.

$$\left\{ \begin{array}{l} L \left\{ E_{\Omega} + E_{\mu} \right\} \\
\end{array} \right\}. \quad (23)$$

P is the pressure, C_P the specific heat, E_{Ω} and E_{μ} are terms depending on the Ω– and μ–distributions respectively, up to the third order derivatives and on various thermodynamic quantities (see details in Maeder & Zahn, 1998). The term E_{Ω} expresses the driving effects of meridional circulation, while the term E_{μ} expresses the μ–currents which tend to inhibit the circulation. The term ∇_{μ} is very important numerically, its origin in this expression is more complex than could be thought at first sight. This expression also prevents infinite velocities at the edge of semiconvective zones. The term E_{Ω} expresses the driving of the circulation by the fluctuations of density due to the breakdown of radiative equilibrium.

The diffusion by shear instabilities is expressed by a coefficient D_{shear}, namely

$$D_{\text{shear}} = \frac{4 (K + D_h)}{\left\{ \frac{\partial}{\delta} \nabla_{\mu} (1 + \frac{K}{D_h}) + (\nabla_{\text{ad}} - \nabla_{\text{rad}}) \right\} \times \frac{H_p}{g \delta} \left[\frac{\alpha}{4} \left(f_{\Omega} \frac{d \ln \Omega}{d \ln r} \right)^2 - (\nabla' - \nabla) \right]. \quad (24)$$
where f is a numerical factor equal to 0.8836, K is the thermal diffusivity and $(\nabla^2 - \nabla)$ expresses the difference between the internal nonadiabatic gradient and the local gradient (Maeder 2001). There is also the coefficient D_{eff}, which expresses the contribution of the meridional circulation and horizontal turbulence to the diffusion of the elements (Zahn 1992),

$$D_{\text{eff}} = \frac{|r \, U(r)|^2}{30 D_h}, \quad (25)$$

while the transport of angular momentum by circulation has to be treated explicitly as an advection. More details on these various expressions, on the hypotheses leading to them and on their domain of validity can be found in the given references.

Fig.1 shows the diffusion coefficients at the very beginning of the MS phase. There, the situation is non-stationary during 1-2 % of the MS lifetime, until the rotation has converged toward an equilibrium profile, (in reality a part of this convergence, but probably not the whole, may be achieved during the pre-MS phase). In this temporary stage, $U(r)$ is usually much larger (about a few 10^{-2} m s$^{-1}$) than later in the course of evolution, where it is only of the order of a few 10^{-3} m s$^{-1}$ (Meynet & Maeder 2000). We point out the much larger value of the new D_h with respect to the old one. With the new D_h, we see that D_{eff} is rather small with respect to D_{shear}, while with the old D_h, the coefficient D_{eff} would have been larger than D_{shear} everywhere, and in particular by several orders of magnitude close to the core. As to D_{shear}, the effect is opposite, the new D_h makes it bigger since K is replaced by $K + D_h$, when the μ-gradient is small.

Fig.2 shows the various diffusion coefficients near the middle of MS evolution. Interestingly enough, the star shows 3 cells of meridional circulation. At the interfaces located at $\frac{M}{M_\odot} = 0.535$ and 0.950, the nulling of $U(r)$ produces a kink in the curves of D_h, D_{shear} and D_{eff}. The outer cell is the Gratton–Opik cell, due to the lower density in the outer layers. The main inner cell is the usually dominant cell where $U(r)$ is positive. There the circulation rises along the polar axis and descends in the equatorial plane, (thus bringing angular momentum toward the interior). The third cell close to the core is not a well understood one. It was already present in some curves of Fig. 4 in Meynet & Maeder (2000). The velocities here are very small and slightly negative. We interpret this third cell as due to a change of the second derivative of the angular velocity Ω, which influences the expression of $U(r)$ as given by Maeder & Zahn (1998). (We also remark a kick in the curve of D_{shear} at $\frac{M}{M_\odot} = 0.41$; it is produced by variations of the nearly vertical gradient of μ in some regions.)

Fig. 2 tells us a lot about the diffusion coefficients in the stellar interior and their effects:

- As discussed above, the new D_h given by Eq.(19) is larger by about 2 orders of a magnitude with respect to the old one given by Eq.(1), the new value is not far from the thermal diffusivity K.

- The new D_h brings some change to D_{shear}. In regions where the μ-gradient is negligible, the ratio $\frac{D_{\text{shear}}(\text{new})}{D_{\text{shear}}(\text{old})}$ of the coefficients of shear diffusion calculated with the new and the old D_h behaves like $\frac{K}{K + D_h}$. In view of the values in Fig. 2, this means that D_{shear} in the outer regions is increased only moderately, currently less than a factor of two. Comparisons with Fig. 6 by Meynet & Maeder (2000) confirms the comparable order of magnitude of D_{shear}.

- When $\nabla \mu >> (\nabla_{\text{ad}} - \nabla_{\text{rad}})$, a situation which occurs close to the convective core, the ratio $\frac{D_{\text{shear}}(\text{new})}{D_{\text{shear}}(\text{old})}$ behaves like $\frac{D_h(\text{new})}{D_h(\text{old})}$. This means that D_{shear} is increased by a factor of 100 in the internal regions close to the core. Such a change should normally strongly favour mixing in the star, however this is not so much the case, because precisely in the regions close to the core D_{shear} is very small due to the very steep μ-gradient, which limits the shear diffusion as shown by Eq.(24). Close to the core, D_{eff} is generally similar or larger than D_{shear} (this was particularly the case when the low D_h given by Eq.(1) was used).

- Contrarily to the case of D_{shear}, D_{eff} is reduced by an increase of D_h, as is evident from Eq.(25). This can also be seen from a comparison between the present Fig. 2 and Fig. 6 by Meynet & Maeder (2000), where much larger values of D_{eff} can be seen.

- Last but not least, the old D_h was often of the same order as the old D_{shear} in some parts of the star. This was not satisfactory, in view of the hypothesis of shellular rotation as mentioned in Sect. 2. The new D_h, which is much larger than the new D_{shear} (cf. Fig. 2), solves the problem and makes the hypothesis of shellular rotation a much better one as also indicated by Eq.(22).
Thus we see that a larger horizontal turbulence makes D_{shear} larger and D_{eff} smaller. The situation is complex, since the relative importance of these two coefficients is not the same throughout the star. D_{shear} always dominates at some distance of the stellar core, while D_{eff} tends to dominate near the core, especially if D_h is small. In addition, the ratio of these two coefficients is changing during evolution, as seen from Fig. 1 and Fig. 2. Thus, a change of D_h affects the evolution of a star in a complex way.

A larger horizontal turbulence D_h also reduces the horizontal μ–gradients and thus it limits the importance of the so-called μ–currents introduced by Mestel (1953, 1965; see also Theado & Vauclair, 2001 and by Palacios et al, 2002). Quantitatively, the term E_{μ} which expresses the μ–currents contains a term $\Lambda = \frac{\mu}{\rho}$, as shown by Eq.(4.30) by Maeder & Zahn (1998) and Λ itself goes like $(D_h)^{-1}$ in a stationary situation (Eq.(4.40) in above reference). This establishes the relation of D_h with the μ–currents.

In addition, the horizontal turbulence also contributes to smear out the temperature and density fluctuations on an equipotential and this reduces the effects driving meridional circulation. Quantitatively, this is expressed by the term containing D_h in the expression of E_1 in Eq.(4.37) by Maeder & Zahn (1998). Thus, globally a higher D_h reduces both the terms driving the meridional circulation as well as the term which inhibit this circulation. In the numerical example, we see that the values of $U(r)$ mentioned above are generally smaller than those found by Meynet & Maeder (2000).

Fig. 3 illustrates the effects of the diffusion coefficients D_h on the internal distribution of hydrogen. The model with the new and higher values of D_h has a convective core and a surrounding H–profile which is close to that of the non–rotating model, in particular we see that the H–profile close to the core is much steeper than for the rotating model with the old D_h. In the outer layers, the H–content of the rotating model with the new D_h is lower than for the other two cases which means than mixing has been more efficient there. These properties are quite consistent with our previous discussion. Indeed, the higher D_h reduces the coefficient D_{eff}, which was the largest one close to the core. This prevents the growth of the core and creates the steep μ–gradient just above it. Now, the larger D_h makes D_{shear} larger outside the region of the very steep μ–gradient and this favours mixing in the outer layers. As a consequence, the enrichments in helium and nitrogen at the stellar surface are higher. This explains the rather paradoxical result that the model with the higher D_h has a slightly smaller convective core and at the same time a larger enrichment in CNO processed elements at the stellar surface.

Fig. 4 illustrates the tracks in the HR diagram. We see that the model with the new (and large) D_h has a turnoff...
5. Conclusions

The following conclusions have been obtained here:

- By expressing the balance between the energy dissipated by the horizontal turbulence and the excess of energy present in the differential rotation on an equipotential which can be dissipated in a dynamical time, we have found a new expression for the coefficient of diffusion D_h by the horizontal turbulence in rotating stars. This new coefficient is typically larger by a factor 10^2 than the one proposed by Zahn (1992).

- The differential rotation on an equipotential is found much smaller so that the hypothesis of shellular rotation by Zahn (1992) is reinforced.

- A higher horizontal turbulence reduces the importance of the μ-currents and also to a smaller extent the driving of the meridional circulation.

- Numerical models show in agreement with a physical discussion that due to the different effects of the horizontal turbulence on the shears and on the transport of chemicals by circulation, a larger D_h tends to contain the size of the core and at the same time to favour the spread of the processed elements up to the stellar surface.

- The tracks in the HR diagram obtained with the new and larger D_h for rotating stars are in agreement with the above effects.

It will be interesting to further explore the consequences of the larger D_h suggested here for other stellar masses and evolutionary stages.

Acknowledgements. I express my thanks to Georges Meynet and Jean–Paul Zahn for their useful comments during this work. Useful remarks by Alexander Heger are also acknowledged with thanks.

References

Opik E.J. 1951, MNRAS 111,278
Palacios, A., Talon, S., Charbonnel, C. & Forestini, M. 2002,
A&A, in press