The boundary condition is defined by the Fierz-Perelomov equation

\[\phi(x) \in \{ \phi \in \mathbb{R} \mid \partial^a \phi = \partial^b \phi \} \]

where \(\phi \) is the field, \(\partial^a \) and \(\partial^b \) are the boundaries of the region where the field is defined.

We have also defined the projection operator

\[(x^a x^b) \phi \in \{ \phi \in \mathbb{R} \mid \partial^a \phi = \partial^b \phi \} \]

and used it to define the stress tensor.

\[\tau^{\alpha \beta} = \partial^\alpha \phi - \partial^\beta \phi \]

where \(\alpha \) and \(\beta \) are the boundary conditions.

\[\tau^{\alpha \beta} \in \{ \phi \in \mathbb{R} \mid \partial^a \phi = \partial^b \phi \} \]

The stress tensor is a measure of the force per unit area acting on a surface.

\[\sigma = \partial^a \phi - \partial^a \phi \]

where \(\sigma \) is the stress.

\[\sigma \in \{ \phi \in \mathbb{R} \mid \partial^a \phi = \partial^a \phi \} \]

The stress tensor is a measure of the force per unit area acting on a surface.

\[\tau^{\alpha \beta} \in \{ \phi \in \mathbb{R} \mid \partial^a \phi = \partial^a \phi \} \]

The stress tensor is a measure of the force per unit area acting on a surface.
charge e and the magnetic flux Φ should be identified with the longitudinal linear momentum ν and $2\pi\kappa$, respectively.

The renormalized propagator is given by

$$D^{(\alpha,\kappa)}(x, x') = \frac{i}{2\pi^2} \sum_{n=-\infty}^{\infty} \int_0^{\infty} d\tau \frac{\tau^2 + \tau^2 - (2\pi\alpha n - \Delta \varphi)^2}{\left\{ \left(\pi(2\alpha n + 1) - \Delta \varphi \right)^2 + \tau^2 \right\}^{1/2}} \left[\left(\pi(2\alpha n - 1) - \Delta \varphi \right)^2 + \tau^2 \right]^{-1}, \quad (7)$$

where $\Delta t := t - t'$, likewise for φ and Z. As $\kappa \to 0$ the dominant contribution in Eq. (6) is the renormalized scalar propagator in an ordinary conical background. Therefore when $\kappa/r \to 0$, Eq. (6) yields for the diagonal components essentially the expressions long known in the literature for the vacuum fluctuations around an ordinary cosmic string ($\kappa = 0$). Regarding the remaining components, the prescription in Eq. (6) kills off the dominant contribution in Eq. (4), resulting that the subleading contribution yields two non vanishing off-diagonal components,

$$\langle T^{\nu^2} \rangle = \frac{i}{r^2} \lim_{x' \to x} \partial_{x'} \partial_{x} D^{(\alpha,\kappa)}(x, x') = \frac{\kappa}{r^2} B(\alpha), \quad (8)$$

and

$$\langle T^{x^2} \rangle = \frac{\kappa}{r^2} B(\alpha), \quad (9)$$

where

$$B(\alpha) := \frac{1}{32\pi^2} \int_0^{\infty} d\tau \alpha \sin(\pi/\alpha) \left[\cos(\pi/\alpha) - \cosh(\tau) + \tau \sinh(\tau) \right] - \pi \left\{ \cos(\pi/\alpha) \cosh(\tau) - 1 \right\}$$

$$\left[\cosh(\tau) - \cos(\pi/\alpha) \right]^{1/2} \cosh^2(\alpha \tau/2). \quad (10)$$

It is worth remarking that, unlike the diagonal components, $\langle T^{\nu^2} \rangle$ and $\langle T^{x^2} \rangle$ do not depend on the coupling parameter ξ.

The plot of $B(\alpha)$ against the disclination parameter α is shown in Fig. 4. When $\alpha = 1$, the integration in Eq. (11) can be analytically evaluated, resulting $B = 1/60\pi^2$, which corresponds approximately to the value of α suggested by the physics of formation of ordinary cosmic strings.

![FIG. 1: Plot $B(\alpha)$ versus α.](image)

It is instructive to display both disclination and screw dislocation effects in a same array. When $\xi = 1/6$ (conformal coupling), for example, $\langle T^{\nu^2} \rangle$ with respect to the local inertial frame [cf. Eq. (4)] can be cast into the form

$$\langle T^{\nu^2} \rangle = \frac{1}{r^2} \begin{pmatrix} -A & 0 & 0 & 0 \\ 0 & -A & 0 & 0 \\ 0 & 0 & 3A & \kappa B/r^2 \\ 0 & 0 & \kappa B & -A \end{pmatrix}, \quad (11)$$

where $A(\alpha) := (\alpha^{-4} - 1)/1440\pi^2$, and which holds far away from the defect (and for $\alpha \neq 1$, when $\kappa \neq 0$). When $\kappa \neq 0$, by setting $\alpha = 1$ in Eq. (11), A vanishes and subleading contributions depending on κ take over.

Before closing this note, let us interpret the polarization effect displayed in Eq. (6) in the light of the analogy with the Aharonov-Bohm effect following Eq. (2). Observing Eq. (6) we can say that a disappear (more precisely, a
screw dislocation) polarizes the vacuum of a scalar field, inducing a flux of longitudinal linear momentum around the defect. Such a flux depends on the direction of the screw dislocation (i.e., on the sign of κ) in the same way that vacuum currents around a needle solenoid depend on the direction of the magnetic flux.

We are grateful to Renato Klippert and Ricardo Medina for clarifying discussions. This work was partially supported by the Brazilian research agencies CNPq and FAPEMIG.

\[\text{\textcopyright 2003 Springer Science+Business Media, Inc. All rights reserved.}\]

* Electronic address: delorenzi@umeda.br

† Electronic address: monara@umeda.br