C, PT, CPT invariance of pseudo-Hermitian Hamiltonians

Zafar Ahmed
Nuclear Physics Division, Bhabha Atomic Research Centre
Trombay, Bombay 400 085, India
zahmed@apsara.barc.ernet.in
(February 20, 2003)

Abstract

We propose construction of a unique and definite metric (η_+), time-reversal operator (T) and an inner product such that the pseudo-Hermitian matrix Hamiltonians are C, PT, CPT invariant and PT(CPT)-norm is indefinite (definite). Here, P and C denote the generalized symmetries : parity and charge-conjugation respectively. The limitations of the other current approaches have been brought out.

I. INTRODUCTION : PT-SYMMETRY AND PSEUDO-HERMITICITY

Last few years have witnessed a remarkable development wherein the discrete symmetries of a Hamiltonian seem to decide if the eigenspectrum will be real. It has been conjectured [1] that Hamiltonians possessing symmetry under the combined transformation of parity (P: $x \rightarrow -x$) and time-reversal (T : $i \rightarrow -i$) will have real discrete spectrum provided the eigenstates are also simultaneous eigenstates of PT. Interesting situations are those where P and T are individually broken. An overwhelming number of evidences supporting the conjecture are available. [1-7].

The real eigenvalues of a PT symmetric Hamiltonian are found connected with a more general property of the Hamiltonian namely the pseudo-Hermiticity. The concept of pseudo-Hermiticity was developed in 50s-60s [9] following definition of a distorted definition of inner product $\langle \eta \rangle$ [8], η is called a metric. A Hamiltonian is called pseudo-Hermitian, if it is such that

$$\eta H \eta^{-1} = H^\dagger.$$ \hspace{1cm} (1)
The eigenstates corresponding to real eigenvalues are η-orthogonal and eigenstates corresponding to complex eigenvalues have zero η-norm (2). Identifying η for a non-Hermitian Hamiltonian when it has real eigenvalues is very crucial. Most of the PT-symmetric Hamiltonians having real eigenvalues have recently been claimed to be P-pseudo-Hermitian, and several other interesting results have been derived [10]. Several non-Hermitian Hamiltonians of both types PT-symmetric and non-PT-symmetric possessing real spectrum have been identified as pseudo-Hermitian under $\eta = e^{-\theta_p}$ and $e^{-\phi(x)}$ [11]. Some more interesting developments relate to weak-pseudo-Hermiticity [12], pseudo-anti-Hermiticity [13] and construction non-PT-symmetric (pseudo-Hermitian) complex potential potentials having real eigenvalues [14]. A new pseudo-unitary group and Gaussian-random pseudo-unitary ensembles of pseudo-Hermitian matrices have been proposed [15]. This development gives rise to new energy-level distributions which are expected to represent the spectral fluctuations of PT-symmetric systems.

Most interesting feature of the eigenstates of such Hamiltonians is the indefiniteness [5-8] (positivity-negativity) of the norm which is the consequence of the η-inner product [8]

$$\langle \Psi_m | \eta | \Psi_n \rangle = \epsilon_n \delta_{m,n},$$

where $\epsilon_n (= \pm 1)$ is indefinite (positive-negative). Recall, that the usual norm in Hermiticity is $\langle \Psi_n | \Psi_n \rangle$ positive-definite. Currently, the negativity of the PT-norm has been proposed to indicate the presence of a hidden symmetry called C which mimics charge-conjugation symmetry (C) [17]. It has been claimed that CPT-norm will be positive definite. An interesting scope for PT-symmetric quantum field theory has been argued. The construction of the new involutary operator C has been discussed. A 2×2 matrix Hamiltonian which is actually pseudo-Hermitian with real eigenvalues has been employed and by constructing $P=\eta$, $T=K_0$ and a CPT-norm the, the novel proposal has been illustrated [16]. K_0 represents complex-conjugation operator; e.g. $K_0(AB) = A^*B^*$. Though sufficient and consistent for their assumed model of non-Hermitian Hamiltonian, let us remark that these constructions are too simple to work in general.

II. CURRENT DEVELOPMENTS AND MOTIVATION

The next related development [18] caters to the construction of generalized involutary operators C,P,T from the bi-orthonormal [8,14] basis (Ψ, Φ) of the pseudo-Hermitian Hamiltonian with real eigenvalues. In doing so, the well developed machinery of pseudo-Hermiticity
has been aptly utilized. This development, however, does not dwell upon the negativity of the PT-norm and invoking of C for the positive-definiteness of the CPT-norm. In this approach, the search of various symmetries of H and their identification as C, PT or CPT has been proposed. Despite, obtaining a curiously different definition of T other than the simple K_0 [16], this dichotomy has neither been remarked nor resolved. Also, despite this incompatibility a similar definition of the CPT-inner product [16] has been adopted [18].

Further, when a Hamiltonian is Hermitian and of the type $\mathcal{H} = \frac{p^2}{2m} + V(x)$ by adopting the definition of C [16] which becomes P now due to Hermiticity, it has been claimed that Hermitian operators, \mathcal{H} have parity P and they are PT-invariant. It may be noted that, the definition of P proposed in [19] is identical to the definition of generalized parity proposed in [18] when the Hamiltonian becomes Hermitian.

While following these developments one very strongly feels that a Hermitian Hamiltonian ought to be P, T, PT, and CPT invariant. The PT (CPT)-norm ought to be indefinite (definite). Also the eigenstates of H should display the orthonormality consistent with the definition of norm under the same inner product. These primary contentions do however not meet in either of the approaches [16,18]

In fact, these expectations have been met lately, not without incorporating a generalized definition of T [20] a la, discarding $T = K_0$ [16] and proposing an inner product [20]. In this Letter, we propose further extension of these [20] definitions so as to bring consistency in proposing the C, PT, and CPT invariance of a pseudo-Hermitian Hamiltonian (real eigenvalues) definiteness of CPT-norm and the indefiniteness of PT-norm. In our studies, we prefer the use of matrix notations and matrix models of Hamiltonians. Recall that in case of Hermiticity, for the usual stationary states the three modifications $\Psi(x), \Psi^*(x)$ and $\Psi^\dagger(x)$ usually coincide. However, in matrix notations, we have four distinct modifications of the state these are Ψ, Ψ^\ast (complex-conjugate) ,Ψ' (transpose), Ψ^\dagger (transpose and complex-conjugate). This makes the matrix notations more general, unambiguous and unmistakable.

III. PSEUDO-HERMITIAN MATRICES : A UNIQUE AND DEFINITE METRIC

Let us notice the non-Hermitian complex matrix, H, given below admitting real eigenvalues $E_{0,1} = a \pm \sqrt{bc}$, when $bc > 0$. We find that there exist four metrics η_i under which H is pseudo-Hermitian
Here $r = \sqrt{c/b}$ and s is in general an arbitrary complex number, indicating that a metric need not necessarily be Hermitian. These η_1 (Pauli’s σ_x) and $\eta_{2,3,4}$ have, in fact, been found by crude algebraic manipulations demonstrating that metric η is non-unique as informed earlier [10]. Furthermore, if η_1 and η_2 are found then infinitely many metrics can be constructed as $\eta = (c_1 \eta_1 + c_2 \eta_2)$ provided η is invertible. On one hand, the four metrics given above (3) do provide several operators $F_{i,j} = \eta_i \eta_j^{-1}, i \neq j = 1, 4$ which by commuting with H bring out its hidden symmetries [10]. In fact, the currently discussed C, PT, and CPT symmetries shall be seen connected to $F_{i,j}$ in the examples to follow in the sequel. On the other hand, the non-uniqueness of η apart from its indefiniteness may be undesirable as the metric determines the expectation values of various operators as $\langle \Psi | A \eta \rangle$. We state and prove the following theorem which helps us in fixing a unique and definite metric. This could be seen as a method to find at least one metric under which a given matrix is pseudo-Hermitian.

Theorem :
If a diagonalizable complex matrix H admits real eigenvalues (E_1, E_2, \ldots, E_n) and D is its diagonalizing matrix then H is η-pseudo-Hermitian, where $\eta = (DD^\dagger)^{-1}$. Converse of this also holds.

Proof : Let

$$D^{-1}HD = \text{Diag}[E_1, E_2, \ldots, E_n]$$ \quad (4a)

$$\Rightarrow D^{-1}\eta^{-1}H\eta^{-1}\eta D = \text{Diag}[E_1, E_2, \ldots, E_n]$$ \quad (4b)

Invoking the pseudo-Hermiticity (1), we write

$$D^{-1}\eta^{-1}H^\dagger\eta D = \text{Diag}[E_1, E_2, \ldots, E_n]$$ \quad (4c)

The transpose-conjugation of Eq. 3(a) yields

$$D^\dagger H^\dagger(D^{-1})^\dagger = \text{Diag}[E_1, E_2, \ldots, E_n]$$ \quad (4d)

Upon comparing last two equations, we get $D^{-1}\eta^{-1} = D^\dagger$ and $\eta D = (D^{-1})^\dagger$ which imply $\eta = (DD^\dagger)^{-1}$. □

When H is Hermitian, D will be unitary and we get $\eta = I$ as a special case. In general, D
will be pseudo-unitary: \(D^\dagger = \delta D^{-1} \delta^{-1} \) \[8,15\], w.r.t. some metric \(\delta \) which may not be same as \(\eta \).

Proof (Converse): Let

\[
D^{-1}HD = \text{Diag}[E_1, E_2, E_3, \ldots, E_n].
\]

(5a)

and

\[
(DD^\dagger)^{-1}H(DD^\dagger) = H^\dagger
\]

(5b)

\[
\Rightarrow (D^\dagger)^{-1}(D^{-1}HD)D^\dagger = H^\dagger
\]

(5c)

\[
\Rightarrow (D^\dagger)^{-1}(\text{Diag}[E_1, E_2, E_3, \ldots, E_n])D^\dagger = H^\dagger
\]

(5d)

By taking transpose-conjugate on both the sides, we have

\[
\Rightarrow D(\text{Diag}[E_1, E_2, E_3, \ldots, E_n])^\dagger D^{-1} = H.
\]

(5e)

By left (right) multiplying by \(D \) (\(D^{-1} \)) on both the sides, we get

\[
\Rightarrow (\text{Diag}[E^*_1, E^*_2, E^*_3, \ldots, E^*_n]) = D^{-1}HD.
\]

(5f)

Eq. (5e) and (5f) imply nothing but the reality of eigenvalues. \(\square \)

Similarly, when all the eigenvalues are complex conjugate and \(D \) is the diagonalizing arrangement such that complex conjugate pairs remain together then it can be proved that \(\bar{\eta} = (DSD^\dagger)^{-1} \), where \(S \) is Pauli’s \(\sigma_x \), when \(H \) is \(2 \times 2 \) otherwise when \(H \) is \(2n \times 2n \), \(S \) is block-diagonal matrix: \(S = \text{Diag}[\sigma_x, \sigma_x, \sigma_x, \ldots, \sigma_x] \). We now denote and state thus obtained metric as

\[
\eta_+ = (DD^\dagger)^{-1},
\]

(6)

to actually see that the indefinite norm (2)

\[
N_{\eta_+} = \Psi^\dagger \eta_+ \Psi = \Psi^\dagger (DD^\dagger)^{-1} \Psi = \Psi^\dagger D^{-1} \Psi = (D^{-1} \Psi)^\dagger (D^{-1} \Psi) = \chi^\dagger \chi > 0.
\]

(7)

is now positive definite. Finding eigenvalues, eigenvectors and diagonalizing matrix is a standard exercise. In that the theorem stated and proved above is indeed an attractive proposal to find the metric for a given complex non-Hermitian matrix admitting real eigenvalues under which it is pseudo-Hermitian. However, by multiplying the columns (rows) by arbitrary constants we can get many diagonalizing matrices say \(D_j \) and this would give rise to as many metrics say \(\eta_j \) under which \(H \) will be pseudo-Hermitian. For the sake of uniqueness, one may only use \(\eta \)-normalized (2) eigen-vectors to construct \(D \). Earlier, it has been proved that if a pseudo-Hermitian Hamiltonian, \(H \), has real eigenvalues then there exists and operator \(O \) such that \(H \) is pseudo Hermitian under: \((OO^\dagger)\) \[10\] and \((OO^\dagger)^{-1}\) \[12\].

Another, form for \(\eta_+ \) in terms of the eigenvectors has also been proposed \[18\].
IV. CONSTRUCTION OF C,P,T AND PROPOSAL OF AN INNER PRODUCT

When pseudo-Hermitian Hamiltonian (1) has real eigenvalues, we have [8]

\[H \Psi_n = E_n \Psi_n , \quad H^\dagger \Phi_n = E_n \Phi_n , \quad \Phi = \eta \Psi , \]

(8)

\([\Psi_n, \Phi_n]\) are called bi-orthonormal basis and \(\Phi = \eta \Psi\). We have also witnessed in the example above (3) that several metrics could be obtained under which a given \(H\) is pseudo-Hermitian. Let us stress that this interesting practical experience remains elusive in several formal definitions. Let us examine the properties of the metrics obtained in (3). The metric \(\eta_1\) is involutary \((U^2 = 1)\). The metrics \(\eta_1, \eta_3, \eta_4\) are Hermitian, unitary and simple \((\det U = 1)\). The metrics \(\eta_3, \eta_4\) are real-symmetric. The metric \(\eta_2\) very importantly is non-Hermitian in general. The metrics \(\eta_1, \eta_4\) are (constant) disentangled with the elements of \(H\) and we call them as secular [15]. It will be very interesting to investigate whether or not one can always find an involutary and secular metric for an arbitrary pseudo-Hermitian matrix. The interesting exposition [10] that most of the known PT-symmetric Hamiltonians are actually \(P\)-pseudo-Hermitian is very valuable in order to connect pseudo-Hermiticity with \(P\) and \(T\) and hence to possible physical situations [15]. Once, the involutary metric is found it will be fixed for the definition of orthonormality (2) and we will assume it to represent the generalized \(P\). This \textit{ad-hoc} strategy also seems to have been adopted in [16]. Therefore, the question of a definition to construct \(P\) again, from the bi-orthonormal basis \((\Psi, \Phi)\) either does not arise or will yield \(P = \eta\), eventually.

Here, one very important remark is in order: in the recent works on pseudo-Hermiticity, the indefiniteness of the \(\eta\)-norm (or orthonormality) has not been realized and this has given rise to an assumption that \textit{somehow} \(\Phi_m^\dagger \Psi_n\) is positive-definite (e.g., Eqs. (11,12) in [10], Eqs. (5,6) in [12], Eq. (7) in [13]). Consequently, representations of \(I\) (the completeness) in terms of \((\Psi, \Phi)\), for instance, for two level matrix Hamiltonian, has been given as \((\Psi_0 \Phi_0^\dagger + \Psi_1 \Phi_1^\dagger)\). Though, known earlier [3-9], however, the indefiniteness of the norm is centrally consequent to the novel identification of charge-conjugation symmetry by Bender et. al.[16].

Thus having fixed \(\eta\) for \(H\), we find \(\eta\)-normalized (2) eigenvectors \(\Psi_n\). These, normalized eigenvectors are used to construct the diagonalizing matrix \(D\) and \(\eta_+\) (6) which are unique only under the fixed \(\eta\). We obtain another basis \(\{\Upsilon_n\}\) as

\[\Upsilon_n = \eta_+ \Psi_n , \]

(9)

which by construction (see (7)) is such that
\[\Psi_m^\dagger \gamma_n = \delta_{m,n}. \]

In the spirit of [18], we propose to construct \(P \) as

\[P = \sum_{n=0}^{N} (-1)^n \psi_n \psi_n^\dagger, \]

such that \(P \gamma_n = (-)^n \psi_n \), implying that neither of \(\psi_n, \gamma_n \) are the eigenstates of parity as it should be. We define the anti-linear time-reversal operator \(T \) as

\[T = \left(\sum_{n=0}^{N} \gamma_n \gamma_n' \right) K_0 \]

such that \(T \psi_n = \gamma_n \) and we further have

\[PT = \left(\sum_{n=0}^{N} (-)^n \psi_n \gamma_n' \right) K_0, \]

such that \(PT \psi_n = (-)^n \psi_n \). We adopt the definition of \(C \) as proposed in [18]

\[C = \sum_{n=0}^{N} (-1)^n \psi_n \gamma_n^\dagger, \quad \text{where} \quad \sum_{n=0}^{N} \psi_n \gamma_n^\dagger = 1 \]

such that \(C \psi_n = (-)^n \psi_n \). Next using (13) and (14) the symmetry operator \(CPT \) takes the form

\[CPT = \left(\sum_{n=0}^{N} \psi_n \gamma_n^\dagger \right) K_0, \]

such that \(CPT \psi_n = \psi_n \). The following involutions

\[(CPT)^2 = (PT)^2 = C^2 = 1 \]

always hold. However, we get

\[T^2 = P^2, \quad \text{iff} \quad (-)^{m+n} \psi_m^\dagger \psi_n = \gamma_m^\dagger \gamma_n. \]

When the Hamiltonian is Hermitian, \(P \) and \(T \) have been proved to be involutary [20]. However, for pseudo-Hermitian Hamiltonian this becomes conditional. In Eq. (87) of [18], the above condition is suggested to be ensuring that \(P \) and \(T \) are involutary. Let us remark that this condition only ensures that \(P^2 = T^2 \). Further, since we choose \(P \) to be involutary and so will \(T \) be. We find that the following commutation relations

\[[H, C] = [H, PT] = [H, CPT] = 0, \quad \text{and} \quad [H, P] \neq 0 \neq [H, P] \]
displaying the invariance and non-invariance of the Hamiltonian. We now define a X-inner product as

$$(X \Psi_m)\dagger \Upsilon_n = (X \Psi_m)\dagger \eta_+ \Psi_n = \epsilon_n \delta_{m,n},$$

(19)

where $\epsilon_n(= \pm 1)$ is indefinite. Consequently, the X-norm as

$$N_{X,n} = (X \Psi_n)\dagger \Upsilon_n = (X \Psi_n)\dagger \eta_+ \Psi_n.$$

(20)

Here X represents the symmetry operators such as C, PT, and CPT constructed above, such that $[H, X] = 0$. Since $X \Psi_n = \epsilon_n \Psi$, ϵ_n is real, the X-inner product in view of (7) will be real-definite.

\section*{V. EXAMINATION OF THE OTHER CURRENT APPROACHES}

Let us examine the inner products defined in [16] and [18]. The inner product (Eqs.(5,12,22) in [16]) in our notations reads as

$$(X \Psi_m)\dagger \Psi_n,$$

(21)

which is not real-definite in general, noting the fact that Ψ_n are eigenvectors over a complex field (the elements of these vectors are complex). The same shortcoming of not being real-definite applies to the inner product analysed and proposed in (Eq. (75) in [18]) which would read as

$$(X \Upsilon_m)\dagger \Psi_n$$

(22)

We have earlier [20] proved and illustrated that the definition of the inner product (21) [16] does not let the energy-eigenstates of the Hermitian H to be orthogonal. We would like to claim that our definition of the X-inner product proposed here is most general and consistent so far [3-9,16,18-20], for the PT-symmetric or pseudo-Hermitian Hamiltonians.

Let us now appreciate how despite the inner product (21) not being real-definite in general, the physically intriguing and also consistent claims of C, PT, and CPT invariance of H and definiteness of CPT-norm could have been made. The eigenvectors of a pseudo Hermitian matrix are naturally η-orthogonal (2) let us remark that H in [16] is pseudo-Hermitian under $\eta = \sigma_x$, which has been chosen to be P. In fact, H (Eq.(14) in [16]) is a special example, where the elementary (ψ_n) eigenvectors are also \textit{incidentally} orthogonal.
as $\psi'_0 \psi_1 = 0$, in addition to the η-orthogonality: $\psi_0^\dagger \eta \psi_1 = 0$. Therefore, the concept and method of pseudo-Hermiticity which promises generality could be relaxed here [16]. Next, these eigenvectors are to be multiplied by suitable factors to obtain the relevant useful basis, $\{\Psi_n\}$, such that $PT\psi_n = \eta K_0 \Psi_n = (-)^n \Psi_n$. We would like to add one more such instance, where this method could succeed again is the following

$$H = \begin{bmatrix} a - c & ib \\ ib & a + c \end{bmatrix}, \quad \eta = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = P, \quad \psi_0 = \begin{bmatrix} 1 \\ -ir \end{bmatrix}, \quad \psi_1 = \begin{bmatrix} 1 \\ -i/r \end{bmatrix},$$

(23)

where, we again have $\psi'_0 \psi_1 = 0$, besides the η-orthogonality (2). The eigenvalues are $E_{0,1} = a \pm \sqrt{c^2 - b^2}$, $r = \frac{c \pm \sqrt{c^2 - b^2}}{b}$ these are real as long as $c^2 > b^2$. The illustrations I_1, I_2 given below are also aimed at citing examples where the approach taken in [16] does not work. It is, however, worth mentioning that the prescriptions suggested in Section IV, which are in keeping with the spirit of the approach in [18] sans the inner-product dwfined there and T, works for both the examples: one in [16] and the other discussed above in (23). The most notable failure of the approach in [16] has already been reported in [20] when it is applied back to Hermiticity.

VI. ILLUSTRATIONS

The definitions for the construction of P,T,C, though general, certain features can still not be proved. For instance whether C and P will always not commute. Whether P and T will always commute. When a complex (non-Hermitian) matrix Hamiltonian having real eigenvalues has P, which is not involutory will we get an involutory T? In this regard, simple doable examples are desirable. In the following we present two illustrations to throw some more light for the un-answered questions stated here.

Without loss of generality, we take 2×2 matrix Hamiltonians [15] and construct P,T,C as per Eqs. (11), (12) and (14) as

$$P = \Psi_0 \Psi_0 - \Psi_1 \Psi_1, \quad T = (\Upsilon_0 \Upsilon_0' + \Upsilon_1 \Upsilon_1') K_0, \quad C = \Psi_0 \Upsilon_0 - \Psi_1 \Upsilon_1,$$

(24)

for short. In illustration : I_1, we take up the same Hamiltonian as given in (3), here the fundamental metric (P) is involutory and in illustration : I_2, it is kept non-involutary.

I_1 :
We take pseudo-Hermitian Hamiltonian, H, and the fundamental metric, $\eta (= \eta_1)$, from (3). The η-normalized eigenvectors are
\[\Psi_0 = \sqrt{\frac{2}{r}} \begin{bmatrix} -i/r \\ 1 \end{bmatrix}, \Psi_1 = \sqrt{\frac{2}{r}} \begin{bmatrix} 1/r \\ -i \end{bmatrix} \]

(25)

One can readily check that \(\Psi_0^\dagger \eta \Psi_1 = 0 \), but \(\Psi_0^\dagger \Psi_1 = -i \frac{1 + x^2}{2r} \neq 0 \) for the approach [16] to work here. Following section IV, we obtain \(P, T, \eta^+ \) as

\[
P = \begin{bmatrix} 0 & -i/r \\ i/r & 0 \end{bmatrix}, \quad T = \begin{bmatrix} 0 & -i \\ -i & 0 \end{bmatrix} K_0, \quad \eta^+ = \begin{bmatrix} r & 0 \\ 0 & 1/r \end{bmatrix},
\]

(26)

Notice that \(P \) turns out to be the same as \(\eta_1 \)-the chosen fundamental metric. The symmetry operators \(C, PT \) and \(CPT \) are

\[
C = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}, \quad CPT = \begin{bmatrix} 0 & -i/r \\ -ir & 0 \end{bmatrix} K_0.
\]

(27)

The symmetry operator \(C \) could be checked to be identical to \(\eta_1 \eta_3^{-1} \). (see (3)), demonstrating how two distinct metrics combine to yield a hidden symmetry of the Hamiltonian. In addition to the general results stated above, we get \((CP)^{-1} = PC = \eta^+\), in actual \(CPT \)-invariance \(C, P \) do commute [17]. We also confirm the commutation of \(P \) and \(T \) and the involutions: \(T^2 = P^2 = 1 \). Similar, experience can be had by studying the model of [16] and (23).

Interestingly, the fundamental metrics in all these cases are the Pauli’s matrices which are involutary, Hermitian, unitary, simple and also \textit{secular}.

\textbf{I}_2:

In the following, let us now take an example where the fundamental metric is only Hermitian and \textit{secular} as it does not affect the eigenvalues: \(E_{0,1} = \frac{1}{2}[(a + b) \pm \sqrt{(a - b)^2 + 4c^2}] \). We introduce \(\theta = \frac{1}{2} \tan^{-1} \frac{2x}{a-b} \).

\[
H = \begin{bmatrix} a & -ic/x \\ icx & b \end{bmatrix}, \quad \eta = \begin{bmatrix} x & 0 \\ 0 & 1/x \end{bmatrix}, \quad \Psi_0 = \sqrt{x} \begin{bmatrix} \cos \theta/x \\ i \sin \theta \end{bmatrix}, \quad \Psi_1 = \frac{1}{\sqrt{x}} \begin{bmatrix} i \sin \theta \\ x \cos \theta \end{bmatrix},
\]

(28)

Check that the states are only \(\eta \)-orthogonal and the condition \(\Psi_0^\dagger \Psi_1 = i \sin \theta (1 + x^2)/x \neq 0 \) like in \textbf{I}_1 and unlike in Section V, is not met here. We construct \(P, T, C \) as

\[
P = \begin{bmatrix} \cos \theta/x & -i \sin \theta \\ i \sin \theta & x \cos \theta \end{bmatrix}, \quad T = \begin{bmatrix} x \cos \theta & i \sin \theta \\ i \sin \theta & \cos \theta \end{bmatrix} K_0, \quad C = \begin{bmatrix} \cos \theta & -i \sin \theta \\ -i \cos \theta & x \end{bmatrix}
\]

(29)

and \(\eta \) is returned as \(\eta^+ \). Very interestingly, \(P \) is different from the fundamental metric \(\eta \). Since this fundamental metric is definite giving \(\Psi_n^\dagger \eta \Psi_n = +1 \), the construction of \(\eta^+ \).
as per (6) yields it back. Unlike other examples here we have $T^2 \neq P^2 \neq 1$, whereas the results (16) are met. We find that P and T commute; C and P do not commute. We get $PC \neq (CP)^{-1} = \eta_+ = \eta$. When $x = 1$, the scenario for Hermiticity can be observed.

VII. CONCLUSIONS

The theorem stated and proved in section III adds an important result in matrix algebra [8] for constructing a metric(s) $\eta_+ = (DD^\dagger)^{-1}$ (6) where D is the diagonalizing matrix for the pseudo-Hermitian matrix which has real eigenvalues. The proven positive definiteness (7) of this metric is of utility while constructing the generalized P, T, C and an inner product for a matrix-Hamiltonian which possesses a real spectrum.

If X is a symmetry operator for the Hamiltonian H, i.e. $[X, H] = 0$ then the proposed definition of the inner product as $\langle X\Psi|\eta_+\Psi \rangle$ (19) or even $\langle X\Psi|\eta\Psi \rangle$ is the most general definition proposed so far [3-9,16,18-20] when Hamiltonians are PT-symmetric or η-pseudo-Hermitian.

We have examined the approach in [16] to be too simple to work in general. The approach in [18], sans its inner product, is found to be correct and more general. However, our modification of the definition of T makes it compatible with the proposed indefiniteness of PT-norm and definiteness of CPT-norm [16]. The examples using several matrix Hamiltonians drawn from our recent [15] studies on pseudo-Hermiticity have illustrated various contentions explicitly. The works using non-matrix Hamiltonians and yet making similar claims could be desirable further.

Admittedly, the only properties possessed by C, PT, and CPT are their involutions (16) various commutations (18) inner product (19), to strike their correspondence with the actual $C, PT, \lbrack CPT \rbrack$ of Hermitian field theory. Much deeper connections and arguments would be required to make claims a la the conventional CPT invariance [17]. One point that requires emphasis is that in pseudo-Hermiticity, we are able to construct only three distinct involutary operators, which we have designated as P, T and C as against the conventional P, T, C [17]. In this regard, our matrix Hamiltonians could be useful for further refinements in the theory of C, PT, and CPT invariance. Also these may be taken as toy models of a futuristic pseudo-Hermitian field theory.
REFERENCES

 W. Pauli, Rev. Mod. Phys. 15 (1943) 175.

12

